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Abstract. The main contributions of this paper is twofold. First, our primary concern is to suggest a new
iterative algorithm using the P-η-proximal-point mapping technique and Nadler’s technique for finding
the approximate solutions of a system of generalized multi-valued nonlinear variational-like inclusions.
Under some appropriate conditions imposed on the parameters and mappings involved in the system of
generalized multi-valued nonlinear variational-like inclusions, the strong convergence of the sequences
generated by our proposed iterative algorithm to a solution of the aforesaid system is proved. Second, the
H(., .)-η-cocoercive mapping considered in [R. Ahmad, M. Dilshad, M. Akram, Resolvent operator technique
for solving a system of generalized variational-like inclusions in Banach sapces, Filomat 26(5)(2012) 897–
908] is investigated and analyzed, and the fact that under the assumptions imposed on H(., .)-η-cocoercive
mapping, every H(., .)-η-cocoercive mapping is P-η-accretive and is not a new one is pointed out. At
the same time, some important comments on H(., .)-η-cocoercive mapping and the results given in the
above-mentioned paper are stated.

1. Introduction

The study of variational inequalities has a long history and interest in these types of inequalities is caused
by their wide applications in solving a large variety of problems arising in many diverse fields of pure
and applied science, such as mechanics, economics, engineering science, physics, elasticity, game theory,
optimization and control, and so forth. For this reason, the theory of variational inequalities has always
been an important subject as it evolved through the last decades, and the mathematical literature dedicated
to this is growing rapidly. In the course of the past few decades, because of their extraordinary utility and
broad applicability in many branches of sciences, variational inequalities have received a lot of attention
and many interesting generalizations of them are appeared in the literature. For a detailed description
of these generalizations along with relevant commentaries, the reader is referred to [4–7, 9, 10, 14, 20]
and the references therein. Without doubt, among the generalizations, variational inclusions are the most
important and well known ones, and in the last two decades the study of various types of variational
inclusion problems and related optimization problems has become a rapidly growing area of research, see,
for example, [1, 3, 8, 11, 12, 15–19, 24, 26–28, 32, 33, 35–37, 39] and the references contained therein. With the
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purpose of constructing iterative algorithms for solving various kinds of variational inequality problems
and other related optimization problems in the setting of different spaces, in the past several decades,
many interesting methods are designed and planned. Among the methods existing in the literature, the
proximal-point mapping method (resolvent operator technique) as a useful and significant generalization of
projection method is of interest and importance. For references in this regard and some detailed information,
we refer the interested reader to [1, 3, 15–19, 24, 26, 27, 29, 33, 34, 36, 37, 39] and the references given therein.

In the last two decades, the notions of monotone, maximal monotone, accretive and m-accretive op-
erators, which the beginning of the study and formulating of them comes back to the sixties, have been
developed and generalized in different contexts. In 2001, Huang and Fang [24] succeeded to introduce the
concept of maximal η-monotone operator as a generalization of maximal monotone operator. The same
authors [25] introduced the notion of generalized m-accretive (also referred to as m-η-accretive or η-m-
accretive [12]) mapping as a generalization of maximal η-monotone operators and m-accretive mappings.
Subsequently, another successfully efforts in this direction led to the emergence of several other extensions
of maximal monotone operators and m-accretive mappings which for example one can refer to H-monotone
operators [16], H-accretive mappings [15] and (H, η)-monotone operators [19]. With the goal of defining and
the introduction of a wider class of accretive mappings as a unifying framework for the generalized mono-
tone and generalized accretive operators existing in the literature, the efforts in this direction have been
continued and Kazmi and Khan [27], and Peng and Zhu [33] were the first, independently, to introduce and
study the notion of P-η-accretive mapping in a Banach space setting. They defined the P-η-proximal-point
mapping associated with a P-η-accretive mapping and gave some properties concerning it. The systems
of variational inclusions involving P-η-accretive mappings are considered in [27, 33] and the existence of
a unique solution for the above-mentioned systems of variational inclusions is proved under some suit-
able conditions. By using the P-η-proximal-point mapping technique, they proposed Mann-type iterative
algorithms for finding the approximate solution of the aforesaid systems of variational inclusions. In the
meanwhile, they studied the convergence analysis of the sequences generated by the Mann-type iterative
algorithms proposed in [27, 33].

Recently, Ahmad et al. [3] introduced and studied another class of generalized accretive mappings, the
so-called H(., .)-η-cocoercive mappings as a generalization of P-η-accretive and H(., .)-accretive mappings.
They used the resolvent operator associated with an H(., .)-η-cocoercive operator to suggest an iterative
algorithm for solving a system of generalized variational-like inclusions in q-uniformly smooth Banach
spaces. Moreover, they proved the strong convergence of the sequences generated by the proposed iterative
algorithm to a solution of the above mentioned system.

The paper is structured as follows. Section 2 provides the basic definitions and preliminaries concerning
P-η-accretive mappings. In Sect. 3, a new system of generalized multi-valued nonlinear variational
inclusions (in short, SGMNVI) is considered and its equivalence with a fixed point problem is proved
under some appropriate conditions. The obtained equivalence and Nadler’s technique are employed to
construct a new iterative algorithm for finding the approximate solution of the SGMNVI. We study the
convergence analysis of the sequences generated by our proposed iterative algorithm under some imposed
conditions on the parameters and mappings involved in the SGMNVI. In the final section, the notion of
H(., .)-η-cocoercive operator introduced and studied by Ahmad et al. [3] is investigated and analyzed. The
fact that contrary to the claim of the authors in [3], under the conditions imposed on it, every H(., .)-η-
cocoercive operator is actually a P-η-accretive mapping and is not a new one is pointed out. At the same
time, we give some important comments on H(., .)-η-cocoercive operators and with the help of them we
discuss the results appeared in [1].

2. Notation, basic definitions and fundamental properties

In what follows, unless otherwise stated, we always let X be a real Banach space with a norm ∥.∥, d be
the metric induced by the norm ∥.∥, X∗ be the topological dual space of X, ⟨., .⟩ be the dual pair between X
and X∗, and 2X (resp. CB(X)) denote the family of all the nonempty (resp. nonempty closed and bounded)
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subsets of X. Further, let D(., .) be the Hausdorffmetric of CB(X) defined by

D(A,B) = max{sup
x∈A

inf
y∈B
∥x − y∥, sup

y∈B
inf
x∈A
∥x − y∥}, ∀A,B ∈ CB(X).

For a given multi-valued mapping M : X→ 2X,

(i) the set Range(M) defined by

Range(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈M} =
⋃
x∈X

M(x)

is called the range of M;
(ii) the set Graph(M) defined by

Graph(M) = {(x,u) ∈ X × X : u ∈M(x)},

is called the graph of M.

For a Banach space X, the unit sphere of X, denoted by SX, is the set of all elements of X having
norm 1. Recall that a Banach space X is strictly convex if for each x and y in SX such that x , y and
each λ in (0, 1), ∥λx + (1 − λ)y∥ < 1, i.e., SX is strictly convex. As a consequence of this definition, the
condition that for x and y in SX such that x , y, 2 − ∥x + y∥ > 0 is equivalent to X being strictly convex
and provides us a characterization of strict convexity. X is said to be smooth if for every x ∈ SX there exits
a unique x∗ in X∗ such that ∥x∗∥ = ⟨x∗, x⟩ = 1. It is well known that X is smooth if X∗ is strictly convex,
and that X is strictly convex if X∗ is smooth. A Banach space X is uniformly convex if for each ε in (0, 2],
2δX(ε) = inf{2− ∥x+ y∥ : x, y ∈ SX, ∥x− y∥ ≥ ε} is positive. It is said to be uniformly smooth whenever given
ε > 0 there exists δ > 0 such that for all x ∈ SX and y ∈ X with ∥y∥ ≤ δ, then ∥x + y∥ + ∥x − y∥ < 2 + ε∥y∥.

The functions δX : [0, 2]→ [0, 1] and ρX : R+ → R+ given by

δX(ε) := inf{1 −
1
2
∥x + y∥ : x, y ∈ SX, ∥x − y∥ ≥ 2ε}

and

ρX(τ) := sup{
∥x + τy∥ + ∥x − τy∥

2
− 1 : x, y ∈ SX}

are respectively called the modulus of convexity and smoothness of X. In the light of the definitions of the
functions δX and ρX, a Banach space X is

(i) uniformly convex if and only if δX is strictly positive for every ε ∈ (0, 2];

(ii) uniformly smooth if and only if lim
τ→0

ρX(τ)
τ = 0.

It is worthwhile to stress that in the definitions of δX(ε) and ρX(τ), one can as well take the infimum and
supremum over all vectors x, y ∈ X with ∥x∥, ∥y∥ ≤ 1.

A Banach space X is uniformly convex (resp. uniformly smooth) if and only if X∗ is uniformly smooth
(resp. uniformly convex). The spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈ N, are uniformly convex as well
as uniformly smooth, see [13, 22, 30]. In the meanwhile, the modulus of convexity and smoothness of a
Hilbert space and the spaces lp, Lp and Wp

m, 1 < p < ∞, m ∈N, can be found in [13, 22, 30].
For a real constant q > 1, a mapping Jq : X→ 2X∗ satisfying the condition

Jq(x) = {x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥q, ∥x∗∥ = ∥x∥q−1
}, ∀x ∈ X,

is called the generalized duality mapping of X. In particular, J2 is the usual normalized duality mapping. It is
known that, in general, Jq(x) = ∥x∥q−2 J2(x), for all x , 0 and Jq is single-valued if X∗ is strictly convex. If X is
a Hilbert space, then J2 becomes the identity mapping on X.

A Banach space X is uniformly convex (resp., uniformly smooth) if and only if the dual X∗ is uniformly
smooth (resp., uniformly convex). Note that Jq is single-valued if X is uniformly smooth.
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For a real constant q > 1, X is called q-uniformly smooth if there exists a constant C > 0 such that
ρX(τ) ≤ Cτq, for all τ ∈ R+. It is well known that (see e.g. [38]) Lq (or lq) is q-uniformly smooth for 1 ≤ q ≤ 2
and is 2-uniformly smooth if q > 2.

In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [38] proved the
following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. For a real constant q > 1, X is q-uniformly smooth if
and only if there exists a constant cq > 0 such that for all x, y ∈ X,

∥x + y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩ + cq∥y∥q.

We also recall the following concepts and some known results which shall be used in the sequel.

Definition 2.2. Let X be a real q-uniformly smooth Banach space and let T : X → X and η : X × X → X be the
mappings. Then T is said to be

(i) η-accretive if

⟨T(x) − T(y), Jq(η(x, y))⟩ ≥ 0, ∀x, y ∈ X;

(ii) strictly η-accretive if T is η-accretive and equality holds if and only if x = y;
(iii) r-strongly η-accretive if there exists a constant r > 0 such that

⟨T(x) − T(y), Jq(η(x, y))⟩ ≥ r∥x − y∥q, ∀x, y ∈ X;

(iv) η-cocoercive with constant k if there exists a constant k > 0 such that

⟨T(x) − T(y), Jq(η(x, y))⟩ ≥ k∥T(x) − T(y)∥q, ∀x, y ∈ X;

(v) γ-relaxed η-cocoercive (as referred to as η-relaxed cocoercive with constant γ, see, for example [3, Definition
2.2(ii)]) if there exists a constant γ > 0 such that

⟨T(x) − T(y), Jq(η(x, y))⟩ ≥ −γ∥T(x) − T(y)∥q, ∀x, y ∈ X;

(vi) α-expansive if there exists a constant α > 0 such that

∥T(x) − T(y)∥ ≥ α∥T(x) − T(y)∥, ∀x, y ∈ X;

(vii) β-lipschitz continuous if there exists a constant β > 0 such that

∥T(x) − T(y)∥ ≤ β∥x − y∥, ∀x, y ∈ X.

Definition 2.3. [15, Definition 1.2] Let X be a real q-uniformly smooth Banach space, P : X→ X be a single-valued
mapping and M : X→ 2X be a multi-valued mapping. M is said to be

(i) accretive if

⟨u − v, Jq(x − y)⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);

(ii) m-accretive if M is accretive and (I + λM)(X) = X holds for all λ > 0, where I is the identity mapping on X;
(iii) P-accretive if M is accretive and (P + λM)(X) = X holds for every λ > 0.

Chidume et al. [12] defined a class of η-accretive mappings the so-called m-η-accretive (also referred
to as generalized m-accretive [25]) mappings as a generalization of the class of m-accretive mappings as
follows.

Definition 2.4. [12] Let X be a real q-uniformly smooth Banach space, η : X × X→ X be a vector-valued mapping.
The multi-valued mapping M : X→ 2X is said to be

(i) η-accretive if

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M);
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(ii) m-η-accretive if M is η-accretive and (I + λM)(X) = X holds for all λ > 0, where I is the identity mapping on
X.

We note that M is an m-η-accretive mapping if and only if M is η-accretive and there is no other η-
accretive mapping whose graph contains strictly Graph(M). The m-η-accretivity is to be understood in
terms of inclusion of graphs. If M : X→ 2X is an m-η-accretive mapping, then adding anything to its graph
so as to obtain the graph of a new multi-valued mapping, destroys the η-accretivity. If fact, the extended
mapping is no longer η-accretive. In other words, for every pair (x,u) ∈ X × X\Graph(M) there exists
(y, v) ∈ Graph(M) such that ⟨u − v, Jq(η(x, y))⟩ < 0. Taking into account of the above-mentioned arguments,
a necessary and sufficient condition for a multi-valued mapping M : X→ 2X to be m-η-accretive is that the
property

⟨u − v, Jq(η(x, y))⟩ ≥ 0, ∀(y, v) ∈ Graph(M)

is equivalent to u ∈ M(x). The above characterization of m-η-accretive mappings provides a useful and
manageable way for recognizing that an element u belongs to M(x).

Kazmi and Khan [27] and subsequently Peng and Zhu [33] introduced and studied another class of
generalized accretive operators the so-called P-η-accretive (also referred to as (H, η)-accretive) mappings as
an extension of m-η-accretive mappings as follows.

Definition 2.5. [27, 33] Let X be a real q-uniformly smooth Banach space, P : X → X and η : X × X → X be two
single-valued mappings and M : X→ 2X be a multi-valued mapping. M is said to be P-η-accretive if M is η-accretive
and (P + λM)(X) = X holds for every constant λ > 0.

The following example illustrates that for given mappings η : X×X→ X and P : X→ X, a P-η-accretive
mapping may be neither P-accretive nor m-η-accretive.

Example 2.6. Let m,n ∈ N be arbitrary but fixed and let Mm×n(F) be the space of all m × n matrices with
real or complex entries. Then

Mm×n(F) = {A =
(

ai j

)
|ai j ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n;F = R or C}

is a 2-uniformly smooth Banach space with respect to the Hilbert-Schmidt norm

∥A∥ =
( m∑

i=1

n∑
j=1

|ai j|
2
) 1

2 , ∀A ∈Mm×n(F)

induced by the Hilbert-Schmidt inner product

⟨A,B⟩ = tr(A∗B) =
m∑

i=1

n∑
j=1

āi jbi j, ∀A,B ∈Mm×n(F),

where tr denotes the trace, that is, the sum of the diagonal entries, A∗ denotes the Hermitian conjugate (or
adjoint) of the matrix A, that is, A∗ = At, the complex conjugate of the transpose A, the bar denotes complex
conjugation and superscript denotes the transpose of the entries. For i = 1, 2, . . . ,m and j = 1, 2, . . . ,n,
let Ei j be the m × n such that (i, j)-entry equals to one and all other entries equal to zero. Then the set
{Ei j : i = 1, 2, . . . ,m; j = 1, 2, . . . ,n} is called the set matrix-units and form a basis of Mm×n(F). Any matrix

A =
(

ai j

)
∈ Mm×n(F) can be written as A =

m∑
i=1

n∑
j=1

ai jEi j. If m = n, then {Ei j : i, j = 1, 2, . . . ,n} is the set of

matrix units of the space Mn×n(F) = Mn(F), that is, the space of all n × n real or complex matrices, and for

any A =
(

ai j

)
∈ Mm×n(F), we have A =

n∑
i, j=1

ai jEi j. Furthermore, In =
n∑

i=1
Eii, where for each k ∈ {1, 2, . . . ,n},
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Ekk =
(

ei j

)
is an n × n matrix with the entry ekk = 1 and 0’s everywhere else, is a representation of the

identity matrix In in Mn(F). Indeed, In =
(
δi j

)
and

δi j =

{
1, i = j,
0, i , j,

is the Kronecker delta. Let us denote by Dn(R) the space of all diagonal n×n matrices with real entries, that
is, the (i, j)-entry is an arbitrary real number if i = j, and is zero if i , j. Then

Dn(R) = {A =
(

ai j

)
|ai j ∈ R, ai j = 0 if i , j; i, j = 1, 2, . . . ,n}

is a subspace of Mn×n(R) = Mn(R) with respect to the operations of addition and scalar multiplication
defined on Mn(R), and the Hilbert-Schmidt inner product on Dn(R), and the Hilbert-Schmidt norm induced

by it become as ⟨A,B⟩ = tr(A∗B) = tr(AB) and ∥A∥ =
√
⟨A,A⟩ =

√
tr(AA) =

( n∑
i=1

a2
ii

) 1
2 , respectively. Let the

mappings M : Dn(R)→ 2Dn(R), η : Dn(R)×Dn(R)→ Dn(R) and P : Dn(R)→ Dn(R) be defined, respectively,
by

M(A) =
{
{Eii − Ekk : i = 1, 2, . . . ,n; i , k}, A = Ekk,
−A + Ekk, A , Ekk,

η(A,B) =
{

C, A,B , Ekk,
0, otherwise,

and P(A) = βA + γEkk, for all A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), where C =

(
ci j

)
is an n × n matrix with the

entries

ci j =

{
αieli(aii+bii)(bqi

ii − aqi

ii ), i = j,
0, i , j,

where for i = 1, 2, . . . ,n, αi, li(i = 1, 2, . . . ,n), β, γ ∈ R are arbitrary constants such that β < 0 < αi for each
i ∈ {1, 2, . . . ,n}, qi (i = 1, 2, . . . ,n) are arbitrary but fixed odd natural numbers, 0 is the zero vector (the zero
matrix) of the space Dn(R), and k ∈ {1, 2, . . . ,n} is an arbitrary but fixed natural number. Then for any
A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), A , B , Ekk, we have

⟨M(A) −M(B), J2(A − B)⟩ = ⟨B − A,A − B⟩ = −∥A − B∥2 = −
n∑

i=1

(aii − bii)2 < 0,

which means that M is not accretive and so it is not a P-accretive mapping.
For any given A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), A , B , Ekk, we obtain

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

= tr(
(

bi j − ai j

) (
ci j

)
)

=

n∑
i=1

αi(bii − aii)2eli(aii+bii)
qi∑

s=1

bqi−s
ii as−1

ii .

Since for each i ∈ {1, 2, . . . ,n}, qi is an odd natural number, it follows that
qi∑

s=1
bqi−s

ii as−1
ii ≥ 0 for each i ∈

{1, 2, . . . ,n}. Thus, the preceding relation implies that

⟨M(A) −M(B), J2(η(A,B))⟩ ≥ 0, ∀A,B ∈ Dn(R),A , B , Ekk.
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For each of the cases when A , B = Ekk, B , A = Ekk and A = B = Ekk, thanks to the fact that η(A,B) = 0, we
infer that

⟨u − v, J2(η(A,B))⟩ = 0, ∀u ∈M(A), v ∈M(B).

Therefore, M is an η-accretive mapping. Taking into account that for any Ekk , A ∈ Dn(R),

∥(I +M)(A)∥2 = ∥A − A + Ekk∥
2 = ∥Ekk∥

2 = ⟨Ekk,Ekk⟩ = tr(EkkEkk) =
n∑

i=1

e2
ii = e2

kk = 1 > 0

and (I +M)(Ekk) = {Eii : i = 1, 2, . . . ,n; i , k}, where I is the identity mapping on X = Dn(R), we deduce that
0 < (I +M)(Dn(R)). This fact ensures that I +M is not surjective, and so M is not an m-η-accretive mapping.
For any given constant λ > 0 and A ∈ Dn(R), by taking Q = 1

β−λA + γ+λλ−βEkk (λ , β because β < 0), it follows
that

(P + λM)(Q) = (P + λM)(
1
β − λ

A +
γ + λ

λ − β
Ekk) =

β

β − λ
A +
β(γ + λ)
λ − β

Ekk + γEkk

−
λ
β − λ

A −
λ(γ + λ)
λ − β

Ekk + λEkk = A.

Thereby, the mapping P+ λM is surjective for any real constant λ > 0 and so M is a P-η-accretive mapping.

The following example shows that for given mappings P : X → X and η : X × X → X, an m-η-accretive
mapping need not be P-η-accretive.

Example 2.7. Suppose that the space Dn(R) is the same as in Example 2.6 and let the mappings P,M :
Dn(R) → Dn(R) and η : Dn(R) × Dn(R) → Dn(R) be defined, respectively, by P(A) = P(

(
ai j

)
) =
(

a′i j

)
,

M(A) = M(
(

ai j

)
) =
(

a′′i j

)
and η(A,B) = η(

(
ai j

)
,
(

bi j

)
) =
(

ci j

)
for all A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R),

where for each i, j ∈ {1, 2, . . . ,n},

a′i j =

{
a2

ii, i = j,
0, i , j,

a′′i j =

{
αiaii, i = j,
0, i , j,

and

ci j =

{
βieki(aii+bii)(aqi

ii − bqi

ii ), i = j,
0, i , j,

ki ∈ R and αi, βi > 0 are arbitrary but fixed, and qi are arbitrary but fixed odd natural numbers. Then, for
any A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), we get

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

= tr
( (

a′′i j − b′′i j

) (
ci j

) )
= tr
( (

ãi j

) )
=

n∑
i=1

αiβi(aii − bii)2eki(aii+bii)
qi∑

l=1

aqi−l
ii bl−1

ii ,

(1)

where for each i, j ∈ {1, 2, . . . ,n},

ãi j =

{
αiβi(aii − bii)eki(aii+bii)(aqi

ii − bqi

ii ), i = j,
0, i , j.
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Since for each i ∈ {1, 2, . . . ,n}, qi is an odd natural number, it can be easily observed that
qi∑

l=1
aqi−l

ii bl−1
ii ≥ 0, for

each i ∈ {1, 2, . . . ,n}. Consequently, from (1) it follows that M is an η-accretive mapping.
Let for each i ∈ {1, 2, . . . ,n}, the mapping f̂i : R→ R be defined by f̂i(x) = x2+αix, for all x ∈ R. Then, for

any A =
(

ai j

)
∈ Dn(R), we obtain (P +M)(A) = (P +M)(

(
ai j

)
) =
(

âi j

)
, where for each i, j ∈ {1, 2, . . . ,n},

âi j =

{
a2

ii + αiaii, i = j,
0, i , j, =

{
f̂i(aii), i = j,
0, i , j.

In virtue of the fact that for each i ∈ {1, 2, . . . ,n}, f̂i(x) = x2 + αix = (x + αi
2 )2
−
α2

i
4 ≥ −

α2
i

4 , it follows that for

each i ∈ {1, 2, . . . ,n}, f̂i(R) = [−
α2

i
4 ,+∞) , R. This fact implies that (P +M)(Dn(R)) , Dn(R), that is, P +M

is not surjective, and so M is not P-η-accretive. Now, let λ > 0 be an arbitrary constant and let for each
i ∈ {1, 2, . . . ,n}, the mapping 1̂i : R → R be defined by 1̂i(x) = (1 + λαi)x, for all x ∈ R. Then, for any
A =
(

ai j

)
∈ Dn(R), it yields (I + λM)(A) = (I + λM)(

(
ai j

)
) =
(

a†i j

)
, where for each i, j ∈ {1, 2, . . . ,n},

a†i j =

{
(1 + λαi)aii, i = j,
0, i , j, =

{
1̂i(aii), i = j,
0, i , j,

where I is the identity mapping on Dn(R). Since 1̂i(R) = R for each i ∈ {1, 2, . . . ,n}, it follows that
(I + λM)(Dn(R)) = Dn(R), that is, I + λM is surjective. Taking into account the arbitrariness in the choice of
λ > 0, we conclude that M is an m-accretive mapping.

Example 2.8. Let the space Dn(R) be the same as in Example 2.6 and assume that the mappings P1,P2,M :
Dn(R) → Dn(R) and η : Dn(R) × Dn(R) → Dn(R) are defined, respectively, by P1(A) = P1(

(
ai j

)
) =
(

a′i j

)
,

P2(A) = P2(
(

ai j

)
) =
(

a′′i j

)
, M(A) = M(

(
ai j

)
) =
(

a′′′i j

)
, and η(A,B) = η(

(
ai j

)
,
(

bi j

)
) =
(

ci j

)
, for all

A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), where for each i, j ∈ {1, 2, . . . ,n},

a′i j =

 2a2
ii−1

a2
ii+1 − ϱ

k
√

aii, i = j,
0, i , j,

a′′i j =

{
3aii + 2 + |aii − 2|, i = j,
0, i , j,

a′′′i j =

{
ϱ k
√

aii, i = j,
0, i , j,

and

ci j =

{
γθσaiibii (aii − bii), i = j,
0, i , j,

where γ, ϱ, θ > 0 and σ ∈ R are arbitrary constants, and k is an arbitrary but fixed odd natural number.
In view of the fact that (Dn(R), ∥.∥) is a finite dimensional normed space, we infer that it is a 2-uniformly
smooth Banach space. Then, for any A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), it yields

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

= tr
( (

a′′′i j − b′′′i j

) (
ci j

) )
= γϱ

n∑
i=1

( k
√

aii −
k
√

bii)θσaiibii (aii − bii).

For any i ∈ {1, 2, . . . ,n},
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(i) if aii = bii = 0, then ( k
√

aii −
k√bii)(aii − bii) = 0;

(ii) if aii , 0 and bii = 0, then ( k
√

aii −
k√bii)(aii − bii) = aii

k
√

aii =
k
√

ak+1
ii ;

(iii) if aii = 0 and bii , 0, then ( k
√

aii −
k√bii)(aii − bii) = bii

k√bii =
k
√

bk+1
ii ;

(iv) if aii, bii , 0, then k
√

aii −
k√bii =

aii−bii
k∑

t=1

k
√

ak−t
ii bt−1

ii

.

Since k is an odd natural number, it follows that k
√

ak+1
ii ,

k
√

bk+1
ii > 0 and

k∑
t=1

k
√

ak−t
ii bt−1

ii > 0. These facts guarantee

that ( k
√

aii−
k√bii)(aii− bii) > 0 and

n∑
i=1

( k
√

aii−
k√bii)(aii− bii) =

n∑
i=1

(aii−bii)2

k∑
t=1

k
√

ak−t
ii bt−1

ii

> 0. Taking into account that γ, ϱ > 0,

in the light of the above-mentioned discussions, we deduce that for all A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R),

⟨M(A) −M(B), J2(η(A,B))⟩ = γϱ
n∑

i=1

( k
√

aii −
k
√

bii)θσaiibii (aii − bii) = γϱ
n∑

i=1

θσaiibii (aii − bii)2

k∑
t=1

k
√

ak−t
ii bt−1

ii

≥ 0,

i.e., M is an accretive mapping. Assume that the function f : R→ R is defined by f (x) := 2x2
−1

x2+1 for all x ∈ R.
Then, for any A =

(
ai j

)
∈ Dn(R), we get

(P1 +M)(A) = (P1 +M)(
(

ai j

)
) =
(

a′i j + a′′′i j

)
=
(

ãi j

)
,

where for each i, j ∈ {1, 2, . . . ,n},

ãi j =

 2a2
ii−1

a2
ii+1 , i = j,

0, i , j,
=

{
f (aii), i = j,
0, i , j.

In virtue of the fact that f (R) = [−1, 2), we conclude that (P1 +M)(Dn(R)) , Dn(R), which means that the
mapping P1 +M is not surjective, and so M is not a P1-η-accretive mapping. Now, let the real constant λ be
chosen arbitrarily but fixed and suppose that the function 1 : R→ R is defined by 1(x) := 3x+2+|x−2|+λϱ k

√
x,

for all x ∈ R. Then, for any A =
(

ai j

)
∈ Dn(R), we obtain

(P2 + λM)(A) = (P2 + λM)(
(

ai j

)
) =
(

a′′i j + λa′′′i j

)
=
(

âi j

)
,

where for each i, j ∈ {1, 2, . . . ,n},

âi j =

{
3aii + 2 + |aii − 2| + λϱ k

√
aii, i = j,

0, i , j, =
{
1(aii), i = j,
0, i , j.

Relying on the fact that 1(R) = R, it follows that (P2 + λM)(Dn(R)) = Dn(R), that is, P2 + λM is a surjective
mapping. Since the positive real constant λwas arbitrary, we deduce that M is a P2-η-accretive mapping.

In accordance with Example 2.6, for given mappings P : X → X and η : X × X → X, a P-η-accretive
mapping need not be m-η-accretive. The following proposition states conditions under which for given
mappings P : X→ X and η : X × X→ X, every P-η-accretive mapping is m-η-accretive.

Proposition 2.9. [27, Theorem 3.1] Let X be a real q-uniformly smooth Banach space, η : X × X→ X be a vector-
valued mapping, P : X→ X be a strictly η-accretive mapping, and M : X→ 2X be a P-η-accretive mapping, and let
x,u ∈ X be two given points. If ⟨u − v, Jq(η(x, y))⟩ ≥ 0 holds, for all (y, v) ∈ Graph(M), then u ∈M(x), that is, M is
an m-η-accretive mapping.
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Regarding to Example 2.7, for given mappings P : X → X and η : X × X → X, an m-η-accretive
mapping may not be P-η-accretive. In the next result, the sufficient conditions for guaranteeing that for
given mappings P : X→ X and η : X × X→ X, an m-η-accretive mapping to be P-η-accretive are provided.
Before proceeding to it, we need to recall the following concepts.

Definition 2.10. Let X be a real q-uniformly smooth Banach space. A single-valued mapping P : X → X is said to
be coercive if

lim
∥x∥→+∞

⟨P(x), Jq(x)⟩
∥x∥

= +∞.

Definition 2.11. Let X be a real q-uniformly smooth Banach space and P : X → X be a single-valued mapping.
P is said to be bounded, if P(A) is a bounded subset of X, for every bounded subset A of X. We say that P is a
hemi-continuous mapping if for any x, y, z ∈ X, the function t 7−→ ⟨P(x + ty), Jq(z)⟩ is continuous at 0+.

Proposition 2.12. Let X be a real q-uniformly smooth Banach space, η : X × X → X be a vector-valued mapping,
and P : X→ X be a bounded, coercive, hemi-continuous and η-accretive mapping. If M : X→ 2X is an m-η-accretive
mapping, then M is P-η-accretive.

Proof. Taking into consideration the fact that P is bounded, coercive, hemi-continuous and η-accretive,
invoking Theorem 3.1 of Guo [21, P.401], we conclude that P + λM is surjective for every λ > 0, i.e.,
(P + λM)(X) = X holds for every λ > 0. Accordingly, M is a P-η-accretive mapping. This completes the
proof.

Lemma 2.13. [33, Theorem 3.1(b)] Let X be a real q-uniformly smooth Banach space, η : X × X → X be a vector-
valued mapping, P : X → X be a strictly η-accretive mapping, and M : X → 2X be a P-η-accretive mapping. Then,
the mapping (P + λM)−1 is single-valued for every real constant λ > 0.

Based on Lemma 2.13, one can define the P-η-resolvent operator RP,η
M,λ associated with a P-η-accretive

mapping M and an arbitrary real constant λ > 0 as follows.

Definition 2.14. [27, 33] Let X be a real q-uniformly smooth Banach space, η : X × X → X be a vector-valued
mapping, P : X → X be a strictly η-accretive mapping, M : X → 2X be a P-η-accretive mapping, and λ > 0 be an
arbitrary real constant. The resolvent operator RP,η

M,λ : X→ X associated with P, η,M and λ is defined by

RP,η
M,λ(u) = (P + λM)−1(u), ∀u ∈ X.

Definition 2.15. A vector-valued mapping η : X × X → X is said to be τ-Lipschitz continuous if there exists a
constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥, for all u, v ∈ X.

Under some suitable conditions imposed on the mappings and parameter, the authors [33] proved
the Lipschitz continuity of the resolvent operator RP,η

M,λ associated with a P-η-accretive mapping M and an
arbitrary real constant λ > 0 and compute an estimate of its Lipschitz constant as follows.

Lemma 2.16. [33, Lemma 2.4] Let X be a real q-uniformly smooth Banach space, η : X × X → X be τ-Lipschitz
continuous, P : X → X be an r-strongly η-accretive mapping, M : X → 2X be a P-η-accretive mapping, and λ > 0
be an arbitrary real constant. Then, the P-η-proximal mapping RP,η

M,λ : X→ X is Lipschitz continuous with constant
τq−1

r , i.e.,

∥RP,η
M,λ(u) − RP,η

M,λ(v)∥ ≤
τq−1

r
∥u − v∥, ∀u, v ∈ X.
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3. Formulation of the Problem, Iterative Algorithms and Convergence Results

Let for each i ∈ {1, 2}, Xi be a real qi-uniformly smooth Banach space with dual space X∗i and norm ∥.∥i,
and ⟨., .⟩i be the dual pair between Xi and X∗i . Assume that for i = 1, 2, fi, pi : Xi → Xi, Si : X1 ×X2 → Xi and
Qi : X j × Xi → Xi ( j ∈ {1, 2}\{i}) are the mappings. Further, let for i = 1, 2, Fi : Xi → CB(Xi), Mi : Xi → 2Xi

and Ti : X j → CB(X j) ( j ∈ {1, 2}\{i}) be the multi-valued mappings. We consider the following system
of generalized multi-valued nonlinear variational inclusions (SGMNVI): find (x, y) ∈ X1 × X2, u ∈ F1(x),
v ∈ F2(y), w ∈ T1(y) and t ∈ T2(x) such that{

0 ∈ S1(p1(x), v) +Q1(w, t) +M1( f1(x)),
0 ∈ S2(u, p2(y)) +Q2(t,w) +M2( f2(y)). (2)

If qi = q for i = 1, 2, S1 = S, S2 = T, M1 = M, M2 = N, F1 = E, F2 = F, Q1 = Q2 ≡ 0, f1 = f , f2 = 1, p1 = p
and p2 = d, then the SGMNVI (2) collapses to the following generalized multi-valued nonlinear variational
inclusions system: find (x, y) ∈ X1 × X2, u ∈ E(x), v ∈ F(y) such that{

0 ∈ S(p(x), v) +M( f (x)),
0 ∈ T(u, d(y)) +N(1(y)). (3)

A special case of the system (3) where the underlying spaces are Hilbert spaces and the multi-valued
mappings M and N are A-monotone operators is considered in [28]. It should be remarked that for suitable
and appropriate choices of the mappings Si,Qi,Fi, Ti,Mi, fi, pi and the spaces Xi (i = 1, 2), the SGMNVI
(2) reduces to various classes of variational inclusions and variational inequalities, see for example, [17–
19, 23, 28, 32, 33, 36, 37, 39] and the references therein.

In order to construct an iterative algorithm for approximating the solution of the SGMNVI (2), we
require the lemma mentioned below, in which the equivalence between the SGMNVI (2) and a fixed point
problem is stated.

Lemma 3.1. Let Xi,Fi,Si,Ti,Qi,Mi, fi, pi (i = 1, 2) be the same as in the SGMNVI (2). Suppose further that for
each i ∈ {1, 2}, ηi : Xi × Xi → Xi is a vector-valued mapping, Pi : Xi → Xi is a strictly ηi-accretive mapping, and Mi
is a Pi-ηi-accretive mapping. Then (x, y) ∈ X1 ×X2, (u, v) ∈ F1(x)× F2(y) and (w, t) ∈ T1(y)× T2(x) are the solution
of the SGMNVI (2), if and only if f1(x) = RP1,η1

M1,λ
[P1( f1(x)) − λ(S1(p1(x), v) +Q1(w, t))],

f2(y) = RP2,η2

M2,ρ
[P2( f2(y)) − ρ(S2(u, p2(y)) +Q2(t,w))],

(4)

where λ, ρ > 0 are two constants.

Proof. The conclusions follow directly from Definition 2.14 and some simple arguments.

As an immediate consequence of the above result, we obtain the following conclusion.

Lemma 3.2. Suppose that Xi (i = 1, 2), S,T,E,F,M,N, f , 1, p, d are the same as in the system (3). Further, let for
each i ∈ {1, 2}, ηi : Xi → Xi be a vector-valued mapping, Pi : Xi → Xi be a strictly ηi-accretive mapping, M be a
P1-η1-accretive mapping and N be a P2-η2-accretive mapping. Then (x, y) ∈ X1 ×X2 and (u, v) ∈ F(x)× F(y) are the
solution of the system (3) if and only if f (x) = RP1,η1

M,λ [P1( f (x)) − λS1(p(x), v)],
1(y) = RP2,η2

N,ρ [P2(1(y)) − ρT(u, d(y))],

where λ, ρ > 0 are two constants.

Lemma 3.3. [31] Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued mapping. Then, for
any ε > 0 and for any given x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such that

d(u, v) ≤ (1 + ε)D(T(x),T(y)),

where D(., .) is the Hausdorff metric on CB(X).
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The fixed point formulation (4) and Nadler’s technique [31] enable us to construct the following iterative
algorithm for approximating the solution of the SGMNVI (2).

Algorithm 3.4. Let Xi,Fi,Si,Ti,Qi, fi, pi (i = 1, 2) be the same as in the SGMNVI (2). Suppose that for each i ∈ {1, 2},
ηi : Xi × Xi → Xi is a vector-valued mapping, Pi : Xi → Xi is a strictly ηi-accretive mapping and Mi : Xi → 2Xi is a
Pi-ηi-accretive mapping. For any given (x0, y0) ∈ X1 ×X2, (u0, v0) ∈ F1(x0) × F2(y0) and (w0, t0) ∈ T1(y0) × T2(x0),

define the iterative sequences {(xn, yn)}∞n=0, {(wn, tn)}∞n=0 ⊆
∞⋃

n=0
F1(xn)× F2(yn) and {(wn, tn)}∞n=0 ⊆

∞⋃
n=0

T1(yn)× T2(xn)

in X1 × X2 in the following way:

xn+1 = (1 − α1)xn + α1{xn − f1(xn) + RP1,η1

M1,λ
[P1( f1(xn))

−λ(S1(p1(xn), vn) +Q1(wn, tn))]} + α1en + rn,

yn+1 = (1 − α2)yn + α2{yn − f2(yn) + RP2,η2

M2,ρ
[P2( f2(yn))

−ρ(S2(un, p2(yn)) +Q2(tn,wn))]} + α2ln + kn,
un ∈ F1(xn); ∥un+1 − un∥1 ≤ (1 + (1 + n)−1)D1(F1(xn+1),F1(xn)),
vn ∈ F2(xn); ∥vn+1 − vn∥2 ≤ (1 + (1 + n)−1)D2(F2(yn+1),F2(yn)),
wn ∈ T1(yn); ∥wn+1 − wn∥2 ≤ (1 + (1 + n)−1)D2(T1(yn+1),T1(yn)),
tn ∈ T2(xn); ∥tn+1 − tn∥1 ≤ (1 + (1 + n)−1)D1(T2(xn+1),T2(xn)),

(5)

where n = 0, 1, 2, . . . ; λ, ρ > 0 are constants, α1, α2 ∈ (0, 1] are two parameters such that α1 + α2 ∈ (0, 1] and
{(en, ln)}∞n=0 and {(rn, kn)}∞n=0 are two sequences in X1 × X2 to take into account a possible inexact computation of the
resolvent operator point satisfying the following conditions:

lim
n→∞
∥en∥1 = lim

n→∞
∥rn∥1 = lim

n→∞
∥ln∥2 = lim

n→∞
∥kn∥2 = 0,

∞∑
n=0
∥en+1 − en∥1 < ∞,

∞∑
n=0
∥rn+1 − rn∥1 < ∞,

∞∑
n=0
∥ln+1 − ln∥2 < ∞,

∞∑
n=0
∥kn+1 − kn∥2 < ∞.

(6)

If qi = q for i = 1, 2, S1 = S, S2 = T, M1 = M, M2 = N, F1 = E, F2 = F, Q1 = Q2 ≡ 0, f1 = f , f2 = 1, p1 = p,
p2 = d, and en = rn = ln = kn = 0, then Algorithm 3.4 collapses to the following algorithm.

Algorithm 3.5. Suppose that Xi (i = 1, 2), S,T,E,F, f , 1, p, d are the same as in the system (3). Let for each i ∈ {1, 2},
ηi : X1 × X2 → Xi be a vector-valued mapping, Pi : Xi → Xi be a strictly ηi-accretive mapping, M : X1 → 2X1

be a P1-η1-accretive mapping and N : X2 → 2X2 be a P2-η2-accretive mapping. For any given (x0, y0) ∈ X1 × X2,
u0 ∈ E(x0) and v0 ∈ F(y0), define the iterative sequences {(xn, yn)}∞n=0 in X1 × X2, {un}

∞

n=0 in X1 and {vn}
∞

n=0 in X2 in
the following way:

xn+1 = (1 − α1)xn + α1{xn − f (xn) + RP1,η1

M,λ [P1( f (xn)) − λS(p(xn), vn)]},
yn+1 = (1 − α2)yn + α2{yn − 1(yn) + RP2,η2

N,ρ [P2(1(yn)) − ρT(un, d(yn))]},
un ∈ E(xn); ∥un+1 − un∥1 ≤ (1 + (1 + n)−1)D1(E(xn+1),E(xn)),
vn ∈ F(yn); ∥vn+1 − vn∥2 ≤ (1 + (1 + n)−1)D2(F(yn+1),F(yn)),

where n = 0, 1, 2, . . . ; λ, ρ > 0 are two constants, and α1, α2 ∈ (0, 1] are two parameters the same as in Algorithm
3.4.

We are now in a position to give the main result of this section concerning the strong convergence of
the sequences generated by our suggested iterative algorithm to a solution of the SGMNVI (2). For this
purpose, we need to recall the following definitions.

Definition 3.6. A multi-valued mapping T : X → CB(X) is said to be D-Lipschitz continuous with constant δ, if
there exists a constant δ > 0 such that

D(T(x),T(y)) ≤ δ∥x − y∥, ∀x, y ∈ X.
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Definition 3.7. Let X be a real q-uniformly smooth Banach space. A mapping f : X→ X is said to be

(i) (γ, µ)-relaxed cocoercive if there exist two constants γ, µ > 0 such that

⟨ f (x) − f (y), Jq(x − y)⟩ ≥ −γ∥ f (x) − f (y)∥q + µ∥x − y∥q, ∀x, y ∈ X;

(ii) δ-strongly accretive if there exists a constant δ > 0 such that

⟨ f (x) − f (y), Jq(x − y)⟩ ≥ δ∥x − y∥q, ∀x, y ∈ X.

Definition 3.8. Let X be a real q-uniformly smooth Banach space. Further, let p : X → X, S : X × X → X and
η : X × X→ X be the mappings. S is said to be

(i) (ξ, π)-relaxed η-cocoercive with respect to p in the first argument if there exist two constants ξ, π > 0 such that
for all x, y,u ∈ X,

⟨S(p(x),u) − S(p(y),u), Jq(η(x, y))⟩ ≥ −ξ∥S(p(x),u) − S(p(y),u)∥q + π∥x − y∥q;

(ii) (ς, ϱ)-relaxed η-cocoercive with respect to p in the second argument if there exist two constants ς, ϱ > 0 such
that for all x, y,u ∈ X,

⟨S(u, p(x)) − S(u, p(y)), Jq(η(x, y))⟩ ≥ −ς∥S(u, p(x)) − S(u, p(y))∥q + ϱ∥x − y∥q;

(iii) k-strongly η-accretive with respect to p in the first argument if there exists a constant k > 0 such that

⟨S(p(x),u) − S(p(y),u), Jq(η(x, y))⟩ ≥ k∥x − y∥q, ∀x, y,u ∈ X;

(iv) γ-strongly η-accretive with respect to p in the second argument if there exists a constant γ > 0 such that

⟨S(u, p(x)) − S(u, p(y)), Jq(η(x, y))⟩ ≥ γ∥x − y∥q, ∀x, y,u ∈ X;

(v) ϑ-Lipschitz continuous with respect to p in the first argument if there exists a constant ϑ > 0 such that

∥S(p(x),u) − S(p(y),u)∥ ≤ ϑ∥x − y∥, ∀x, y,u ∈ X;

(vi) δ-Lipschitz continuous with respect to p in the second argument if there exists a constant δ > 0 such that

∥S(u, p(x)) − S(u, p(y))∥ ≤ δ∥x − y∥, ∀x, y,u ∈ X.

Definition 3.9. Let X be a real q-uniformly smooth Banach space. A mapping Q : X × X → X is said to be
(θ, µ)-mixed Lipschitz continuous in the first and second arguments if there exist two constants θ, µ > 0 such that

∥Q(x, y) −Q(x′, y′)∥ ≤ θ∥x − x′∥ + µ∥y − y′∥, ∀x, x′, y, y′ ∈ X.

Theorem 3.10. Let for each i ∈ {1, 2}, Xi be a qi-uniformly smooth Banach space with qi > 1, ηi : Xi × Xi → Xi be
a τi-Lipschitz continuous mapping, Pi : Xi → Xi be a θi-strongly ηi-accretive and ϱi-Lipschitz continuous mapping,
and Mi : Xi → 2Xi be a Pi-ηi-accretive mapping. Suppose that for each i ∈ {1, 2}, fi : Xi → Xi is a (ξi, δi)-relaxed
cocoercive and λ fi -Lipschitz continuous mapping, and Qi : X j × Xi → Xi for j ∈ {1, 2}\{i} is (λQi , λ

′

Qi
)-mixed

Lipschitz continuous in the first and second arguments. Let S1 : X1 × X2 → X1 be (γS1 , δS1 )-relaxed η1-cocoercive
and ϖ1-Lipschitz continuous with respect to p1 in the first argument and ϖ2-Lipschitz continuous with respect to p1
in the second argument, and S2 : X1 ×X2 → X2 be (γS2 , δS2 )-relaxed η2-cocoercive and π2-Lipschitz continuous with
respect to p2 in the second argument and π1-Lipschitz continuous with respect to p2 in the first argument. Let for
each i ∈ {1, 2}, the mapping Fi : Xi → CB(Xi) be Di-Lipschitz continuous with constant λDFi

and for each i ∈ {1, 2}
and j ∈ {1, 2}\{i}, Ti : X j → CB(X j) be D j-Lipschitz continuous with constant λDTi

. If there exist two constants
λ, ρ > 0 such that

1 − α1 + α1
q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1
+
α1τ

q−1
1
θ1

(µ1 + λλQ1λDT2
)

+
α2τ

q−1
2 ρ(π1λDF1

+λQ2λDT2
)

θ2
< 1,

1 − α2 + α2
q2

√
1 − q2δ2 + (q2ξ2 + cq2 )λq2

f2
+
α2τ

q−1
2
θ2

(µ2 + ρλQ2λDT1
)

+
α1τ

q−1
1 λ(ϖ2λDF2

+λQ1λDT1
)

θ1
< 1,

(7)
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where

µ1 =
q1

√
ϱq1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 − q1λδS1 + q1λϖ1ϱ
q1−1
1 λq1−1

f1
+ q1λϖ1τ

q1−1
1 + cq1λ

q1ϖq1

1 ,

µ2 =
q2

√
ϱq2

2 λ
q2

f2
+ q2ργS2π

q2

2 − q2ρδS2 + q2ρπ2ϱ
q2−1
2 λq2−1

f2
+ q2ρπ2τ

q2−1
2 + cq2ρ

q2πq2

2 ,

and for the case where qi (i = 1, 2) are even natural numbers, in addition to (7), the following conditions hold:
qiδi < 1 + (qiξi + cqi )λ

qi

fi
,

q1λδS1 < ϱ
q1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 + q1λϖ1ϱ
q1−1
1 λq1−1

f1
+ q1λϖ1τ

q1−1
1 + cq1λ

q1ϖq1

1 ,

q2ρδS2 < ϱ
q2

2 λ
q2

f2
+ q2ργS2π

q2

2 + q2ρπ2ϱ
q2−1
2 λq2−1

f2
+ q2ρπ2τ

q2−1
2 + cq2ρ

q2πq2

2 ,

where cqi (i = 1, 2) are two constants guaranteed by Lemma 2.1, then, the iterative sequences {(xn, yn)}∞n=0,
{(un, vn)}∞n=0 and {(wn, tn)}∞n=0 generated by Algorithm 3.4 converge strongly to (x, y), (u, v) and (w, t), respectively,
and (x, y,u, v,w, t) is a solution of the SGMNVI (2).

Proof. By using (5), Lemma 2.16 and the assumptions, it yields

∥xn+1 − xn∥1 = ∥(1 − α1)xn + α1

(
xn − f1(xn) + RP1,η1

M1,λ
[P1( f1(xn))

− λ(S1(p1(xn), vn) +Q1(wn, tn))]
)
+ α1en + rn

− (1 − α1)xn−1 − α1

(
xn−1 − f1(xn−1) + RP1,η1

M1,λ
[P1( f1(xn−1))

− λ(S1(p1(xn−1), vn−1) +Q1(wn−1, tn−1))]
)
− α1en−1 − rn−1∥1

≤ (1 − α1)∥xn − xn−1∥1 + α1

(
∥xn − xn−1 − ( f1(xn) − f1(xn−1))∥1

+ ∥RP1,η1

M1,λ
[P1( f1(xn)) − λ(S1(p1(xn), vn) +Q1(wn, tn))]

− RP1,η1

M1,λ
[P1( f1(xn−1)) − λ(S1(p1(xn−1), vn−1)

+Q1(wn−1, tn−1))]∥1
)
+ α1∥en − en−1∥1 + ∥rn − rn−1∥1

≤ (1 − α1)∥xn − xn−1∥1 + α1∥xn − xn−1 − ( f1(xn) − f1(xn−1))∥1

+
α1τ

q1−1
1

θ1
∥P1( f1(xn)) − λ

(
S1(p1(xn), vn) +Q1(wn, tn))

− P1( f1(xn−1)) + λ
(
S1(p1(xn−1), vn−1) +Q1(wn−1, tn−1))∥1

+ α1∥en − en−1∥1 + ∥rn − rn−1∥1

≤ (1 − α1)∥xn − xn−1∥1 + α1∥xn − xn−1 − ( f1(xn) − f1(xn−1))∥1

+
α1τ

q1−1
1

θ1

(
∥P1( f1(xn)) − P1( f1(xn−1)) − λ

(
S1(p1(xn), vn)

− S1(p1(xn−1), vn)
)
∥1 + λ∥S1(p1(xn−1), vn) − S1(p1(xn−1), vn−1)∥1

+ λ∥Q1(wn, tn) −Q1(wn−1, tn−1)∥1
)
+ α1∥en − en−1∥1 + ∥rn − rn−1∥1.

(8)

Since f1 is (ξ1, δ1)-relaxed cocoercive and λ f1 -Lipschitz continuous, invoking Lemma 2.1, there exists a
constant cq1 > 0 such that for each n ∈N,

∥xn − xn−1 − ( f1(xn) − f1(xn−1))∥q1

1

≤ ∥xn − xn−1∥
q1

1 − q1⟨ f1(xn) − f1(xn−1), Jq1 (xn − xn−1)⟩1 + cq1∥ f1(xn) − f1(xn−1)∥q1

1

≤ ∥xn − xn−1∥
q1

1 − q1(−ξ1∥ f1(xn) − f1(xn−1)∥q1

1 + δ1∥xn − xn−1∥
q1

1 ) + cq1∥ f1(xn) − f1(xn−1)∥q1

1

≤

(
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1

)
∥xn − xn−1∥

q1

1 ,
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which implies that

∥xn − xn−1 − ( f1(xn) − f1(xn−1))∥1 ≤ q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1
∥xn − xn−1∥1. (9)

Owing to the fact that S1 is (γS1 , δS1 )-relaxed η1-cocoercive and ϖ1-Lipschitz continuous with respect to p1
in the first argument, η1 is τ1-Lipschitz continuous, P1 is ϱ1-Lipschitz continuous and f1 is λ f1 -Lipschitz
continuous, utilizing Lemma 2.1, we get

∥P1( f1(xn)) − P1( f1(xn−1)) − λ
(
S1(p1(xn), vn) − S1(p1(xn−1), vn)

)
∥

q1

1

≤ ∥P1( f1(xn)) − P1( f1(xn−1))∥q1

1 − q1λ⟨S1(p1(xn), vn) − S1(p1(xn−1), vn),

Jq1 (η1(xn, xn−1))⟩1 − q1λ⟨S1(p1(xn), vn) − S1(p1(xn−1), vn),

Jq1

(
P1( f1(xn)) − P1( f1(xn−1))

)
− Jq1 (η1(xn, xn−1))⟩1

+ cq1λ
q1∥S1(p1(xn), vn) − S1(p1(xn−1), vn)∥q1

1

≤ ϱq1

1 λ
q1

f1
∥xn − xn−1∥

q1

1 − q1λ
(
− γS1∥S1(p1(xn), vn) − S1(p1(xn−1), vn)∥q1

1

+ δS1∥xn − xn−1∥
q1

1

)
+ q1λ⟨S1(p1(xn), vn) − S1(p1(xn−1), vn), Jq1 (η1(xn, xn−1))

− Jq1

(
P1( f1(xn)) − P1( f1(xn−1))

)
⟩1 + cq1λ

q1ϖq1

1 ∥xn − xn−1∥
q1

1

≤ ϱq1

1 λ
q1

f1
∥xn − xn−1∥

q1

1 + q1λγS1ϖ
q1

1 ∥xn − xn−1∥
q1

1 − q1λδS1∥xn − xn−1∥
q1

1

+ q1λ∥S1(p1(xn), vn) − S1(p1(xn−1), vn)∥1
(
∥Jq1 (η1(xn, xn−1))∥1

+ ∥Jq1

(
P1( f1(xn)) − P1( f1(xn−1))

)
∥1

)
+ cq1λ

q1
n ϖ

q1

1 ∥xn − xn−1∥
q1

1

≤

(
ϱq1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 − q1λδS1 + cq1λ
q1ϖq1

1

)
∥xn − xn−1∥

q1

1

+ q1λϖ1∥xn − xn−1∥1

(
∥η1(xn, xn−1)∥q1−1

1 + ∥P1( f1(xn)) − P1( f1(xn−1))∥q1−1
1

)
=
(
ϱq1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 − q1λδS1 + cq1λ
q1ϖq1

1

)
∥xn − xn−1∥

q1

1

+ q1λϖ1∥xn − xn−1∥1

(
τq1−1

1 ∥xn − xn−1∥
q1−1
1 + ϱq1−1

1 λq1−1
f1
∥xn − xn−1∥

q1−1
1

)
=
(
ϱq1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 − q1λδS1 + q1λϖ1ϱ
q1−1
1 λq1−1

f1
+ q1λϖ1τ

q1−1
1 + cq1λ

q1ϖq1

1

)
∥xn − xn−1∥

q1

1 ,

from which we deduce that for each n ∈N,

∥P1( f1(xn)) − P1( f1(xn−1)) − λn

(
S1(p1(xn), vn) − S1(p1(xn−1), vn)

)
∥1

≤ µ1∥xn − xn−1∥1,
(10)

where

µ1 =
q1

√
ϱq1

1 λ
q1

f1
+ q1λγS1ϖ

q1

1 − q1λδS1 + q1λϖ1ϱ
q1−1
1 λq1−1

f1
+ q1λϖ1τ

q1−1
1 + cq1λ

q1ϖq1

1 .

In virtue of the facts that S1 is ϖ2-Lipschitz continuous with respect to p1 in the second argument and F2 is
D2-Lipschitz continuous with constant λDF2

, by using (5), it follows that

∥S1(p1(xn−1), vn) − S1(p1(xn−1), vn−1)∥1 ≤ ϖ2∥vn − vn−1∥2

≤ ϖ2(1 + n−1)D2(F2(yn),F2(yn−1))

≤ ϖ2λDF2
(1 + n−1)∥yn − yn−1∥2.

(11)

Taking into account that Q1 is (λQ1 , λ
′

Q1
)-mixed Lipschitz continuous in the first and second arguments,

by (5) and the facts that the mapping Ti is D j-Lipschitz continuous with constant λDTi
for i ∈ {1, 2} and
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j ∈ {1, 2}\{i}, we obtain

∥Q1(wn, tn) −Q1(wn−1, tn−1)∥1 ≤ λQ1∥wn − wn−1∥2 + λQ1∥tn − tn−1∥1

≤ λQ1 (1 + n−1)D2(T1(yn),T1(yn−1))

+ λQ1 (1 + n−1)D1(T2(xn),T2(xn−1))

≤ λQ1λDT1
(1 + n−1)∥yn − yn−1∥2

+ λQ1λDT2
(1 + n−1)∥xn − xn−1∥1.

(12)

Combining (8)–(12), we derive that for each n ∈N,

∥xn+1 − xn∥1 ≤ (1 − α1)∥xn − xn−1∥1 + α1
q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1
∥xn − xn−1∥1

+
α1τ

q1−1
1

θ1

(
µ1∥xn − xn−1∥1 + λϖ2λDF2

(1 + n−1)∥yn − yn−1∥2

+ λλQ1λDT1
(1 + n−1)∥yn − yn−1∥2 + λλQ1λDT2

(1 + n−1)∥xn − xn−1∥1

)
+ α1∥en − en−1∥1 + ∥rn − rn−1∥1

= (1 − α1)∥xn − xn−1∥1 + α1
q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1

+
α1τ

q1−1
1

θ1

(
µ1 + λλQ1λDT2

(1 + n−1)
)
∥xn − xn−1∥1

+
α1τ

q1−1
1 λ(ϖ2λDF2

+ λQ1λDT1
)(1 + n−1)

θ1
∥yn − yn−1∥2

+ α1∥en − en−1∥1 + ∥rn − rn−1∥1

= Λ1(n)∥xn − xn−1∥1 + Γ1(n)∥yn − yn−1∥2 + α1∥en − en−1∥1 + ∥rn − rn−1∥1,

(13)

where for each n ∈N,

Λ1(n) = 1 − α1 + α1
q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1
+
α1τ

q1−1
1

θ1
(µ1 + λλQ1λDT2

(1 + n−1)),

Γ1(n) =
α1τ

q1−1
1 λ(ϖ2λDF2

+ λQ1λDT1
)(1 + n−1)

θ1
.

In a similar manner, employing (5) and the assumptions, one can obtain

∥yn+1 − yn∥2 ≤ Λ2(n)∥xn − xn−1∥1 + Γ2(n)∥yn − yn−1∥2

+ α2∥ln − ln−1∥2 + ∥kn − kn−1∥2,
(14)

where for each n ∈N,

Λ2(n) =
α2τ

q2−1
2 ρ(π1λDF1

+ λQ2λDT2
)(1 + n−1)

θ2
,

Γ2(n) = 1 − α2 + α2
q2

√
1 − q2δ2 + (q2ξ2 + cq2 )λq2

f2
+
α2τ

q2−1
2

θ2
(µ2 + ρλQ2λDT1

(1 + n−1)),

µ2 =
q2

√
ϱq2

2 λ
q2

f2
+ q2ργS2π

q2

2 − q2ρδS2 + q2ρπ2ϱ
q2−1
2 λq2−1

f2
+ q2ρπ2τ

q2−1
2 + cq2ρ

q2πq2

2 .

Let us now define a norm ∥.∥∗ on X1 × X2 by

∥(u, v)∥∗ = ∥u∥1 + ∥v∥2, ∀(u, v) ∈ X1 × X2.
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It is easy to see that (X1 × X2, ∥.∥∗) is a Banach space. Then by using (13) and (14), and picking α = α1 + α2,
we obtain

∥(xn+1, yn+1) − (xn, yn)∥∗ = ∥xn+1 − xn∥1 + ∥yn+1 − yn∥2

≤ (Λ1(n) + Λ2(n))∥xn − xn−1∥1 + (Γ1(n) + Γ2(n))∥yn − yn−1∥2

+ (α1 + α2)(∥en − en−1∥1 + ∥ln − ln−1∥2)
+ ∥rn − rn−1∥1 + ∥kn − kn−1∥2

≤ ϑ(n)∥(xn, yn) − (xn−1, yn−1)∥∗ + α∥(en, ln) − (en−1, ln−1)∥∗
+ ∥(rn, kn) − (rn−1, kn−1)∥∗,

(15)

where for each n ∈N, ϑ(n) = max{Λ1(n) + Λ2(n),Γ1(n) + Γ2(n)}. In the light of the facts that Λi(n)→ Λi and
Γi(n)→ Γi, as n→∞, where

Λ1 = 1 − α1 + α1
q1

√
1 − q1δ1 + (q1ξ1 + cq1 )λq1

f1
+
α1τ

q1−1
1

θ1
(µ1 + λλQ1λDT2

),

Λ2 =
α2τ

q2−1
2 ρ(π1λDF1

+ λQ2λDT2
)

θ2
, Γ1 =

α1τ
q1−1
1 λ(ϖ2λDF2

+ λQ1λDT1
)

θ1
,

Γ2 = 1 − α2 + α2
q2

√
1 − q2δ2 + (q2ξ2 + cq2 )λq2

f2
+
α2τ

q2−1
2

θ2
(µ2 + ρλQ2λDT1

),

we deduce that ϑ(n)→ ϑ, as n→∞, where ϑ = max{Λ1 +Λ2,Γ1 + Γ2}. Clearly, with the help of (7) we infer
that ϑ ∈ (0, 1), and so there exists ϑ̂ ∈ (0, 1) (take ϑ̂ = ϑ+1

2 ∈ (ϑ, 1)) and n0 ∈ N such that ϑ(n) ≤ ϑ̂, for all
n ≥ n0. Then, for all n > n0, by (15), it follows that

∥(xn+1, yn+1) − (xn, yn)∥∗ ≤ ϑ̂∥(xn, yn) − (xn−1, yn−1)∥∗ + α∥(en, ln) − (en−1, ln−1)∥∗
+ ∥(rn, kn) − (rn−1, kn−1)∥∗

≤ ϑ̂[ϑ̂∥(xn−1, yn−1) − (xn−2, yn−2)∥∗ + α∥(en−1, ln−1) − (en−2, ln−2)∥∗
+ ∥(rn−1, kn−1) − (rn−2, kn−2)∥∗]
+ α∥(en, ln) − (en−1, ln−1)∥∗ + ∥(rn, kn) − (rn−1, kn−1)∥∗

= ϑ̂2
∥(xn−1, yn−1) − (xn−2, yn−2)∥∗ + α(ϑ̂∥(en−1, ln−1) − (en−2, ln−2)∥∗

+ ∥(en, ln) − (en−1, ln−1)∥∗) + ϑ̂∥(rn−1, kn−1) − (rn−2, kn−2)∥∗
+ ∥(rn, kn) − (rn−1, kn−1)∥∗
≤ . . .

≤ ϑ̂n−n0∥(xn0+1, yn0+1) − (xn0 , yn0 )∥∗

+ α
n−n0∑
j=1

ϑ̂ j−1
∥(ln−( j−1), ln−( j−1)) − (en− j, ln− j)∥∗

+

n−n0∑
j=1

ϑ̂ j−1
∥(rn−( j−1), kn−( j−1)) − (rn− j, kn− j)∥∗.

(16)
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Making use of (16), for any m ≥ n > n0, we obtain

∥(xm, ym) − (xn, yn)∥∗ ≤
m−1∑
i=n

∥(xi+1, yi+1) − (xi, yi)∥∗

≤

m−1∑
i=n

ϑ̂i−n0∥(xn0+1, yn0+1) − (xn0 , yn0 )∥∗

+ α
m−1∑
i=n

i−n0∑
j=1

ϑ̂ j−1
∥(ei−( j−1), li−( j−1)) − (ei− j, li− j)∥∗

+

m−1∑
i=n

i−n0∑
j=1

ϑ̂ j−1
∥(ri−( j−1), ki−( j−1)) − (ri− j, ki− j)∥∗.

(17)

Since ϑ̂ < 1, (6) and (17) guarantee that ∥(xm, ym) − (xn, yn)∥∗ → 0, as n → ∞, and so {(xn, yn)}∞n=0 is a
Cauchy sequence in X1 × X2. In view of the completeness of X1 × X2, there exists (x, y) ∈ X1 × X2 such
that (xn, yn) → (x, y), as n → ∞. By (5) and in virtue of the facts that for each i ∈ {1, 2}, the mapping Fi is
Di-Lipschitz continuous with constant λDFi

, and the mapping Ti is D j-Lipschitz continuous with constant
λDTi

for j ∈ {1, 2}\{i}, we get

∥un+1 − un∥1 ≤ (1 + (1 + n)−1)D1(F1(xn+1),F1(xn)) ≤ (1 + (1 + n)−1)λDF1
∥xn+1 − xn∥1,

∥vn+1 − vn∥2 ≤ (1 + (1 + n)−1)D2(F2(yn+1),F2(yn)) ≤ (1 + (1 + n)−1)λDF2
∥yn+1 − yn∥2,

∥wn+1 − wn∥2 ≤ (1 + (1 + n)−1)D2(T1(yn+1),T1(yn)) ≤ (1 + (1 + n)−1)λDT1
∥yn+1 − yn∥2,

∥tn+1 − tn∥1 ≤ (1 + (1 + n)−1)D1(T2(xn+1),T2(xn)) ≤ (1 + (1 + n)−1)λDT2
∥xn+1 − xn∥1.

The above relations imply that the sequences {un}
∞

n=0, {tn}
∞

n=0 and {vn}
∞

n=0, {wn}
∞

n=0 are also Cauchy in X1 and
X2, respectively. Thus, there are u, t ∈ X1 and v,w ∈ X2 such that un → u, tn → t, vn → v and wn → w, as
n→∞. We now show that u ∈ F1(x). Since for each n ≥ 0, un ∈ F1(xn), applying (5) and considering the fact
that F1 is D1-Lipschitz continuous with constant λDF1

, we have

d1(u,F1(x)) = inf{∥u − z∥ : z ∈ F1(x)}
≤ ∥u − un∥ + d1(un,F1(x))
≤ ∥u − un∥ +D1(F1(xn),F1(x))
≤ ∥u − un∥ + λDF1

∥xn − x∥,

where d1 is the metric induced by the norm ∥.∥1 in X1. The right-hand side of the above inequality tends
to zero, as n → ∞. Since F1(x) is closed, we deduce that u ∈ F1(x). In a similar fashion to the preceding
analysis, one can show that v ∈ F2(y), w ∈ T1(y) and t ∈ T2(x). Owing to the facts that the mappings
RP1,η1

M1,λ
,RP1,η1

M1,λ
,Pi,Si,Qi, fi and pi (i = 1, 2) are continuous, it follows from (5) and (8) that f1(x) = RP1,η1

M1,λ
[P1( f1(x)) − λ(S1(p1(x), v) +Q1(w, t))],

f2(y) = RP2,η2

M2,ρ
[P2( f2(y)) − ρ(S2(u, p2(y)) +Q2(t,w))].

Now, Lemma 3.1 guarantees that (x, y,u, v, t,w) is a solution of the SGMNVI (2). This completes the
proof.

We obtain the following corollary as a direct consequence of the above theorem immediately.

Corollary 3.11. Assume that, for each i ∈ {1, 2}, Xi is a qi-uniformly smooth Banach space with qi > 1, ηi : Xi×Xi →

Xi is a τi-Lipschitz continuous mapping and Pi : Xi → Xi is a θi-strongly ηi-accretive and ϱi-Lipschitz continuous
mapping. Let M : X1 → 2X1 be a P1-η1-accretive mapping and N : X2 → 2X2 be a P2-η2-accretive mapping. Let
f : X1 → X1 be a δ1-strongly accretive and λ f -Lipschitz continuous mapping, 1 : X2 → X2 be a δ2-strongly accretive
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and λ1-Lipschitz continuous mapping. Suppose that the mapping S : X1 × X2 → X1 is δS-strongly η1-accretive and
λSp -Lipschitz continuous with respect to p in the first argument and λS2 -Lipschitz continuous with respect to p in the
second argument, and the mapping T : X2 ×X2 → X2 is δT-strongly η2-accretive and λTd -Lipschitz continuous with
respect to d in the second argument and λT1 -Lipschitz continuous with respect to d in the first argument. Assume that
the mapping E : X1 → CB(X1) is D1-Lipschitz continuous with constant λDE and the mapping F : X2 → CB(X2) is
D2-Lipschitz continuous with constant λDF . If there exist two constants λ, ρ > 0 such that

1 − α1 + α1
q

√
1 − qδ1 + cqλ

q
f +

α1τ
q−1
1
θ1
θ′ +

α2τ
q−1
2 ρλT1λDE
θ2

< 1,

1 − α2 + α2
q
√

1 − qδ2 + cqλ
q
1 +

α2τ
q−1
2
θ2
θ′′ +

α1τ
q−1
1 λλS2λDF
θ1

< 1,
(18)

where

θ′ = q
√
ϱq

1λ
q
f − qλδS + qλλSpϱ

q−1
1 λ

q−1
f + qλλSpτ

q−1
1 + cqλqλq

Sp
,

θ′′ =
q
√
ϱq

2λ
q
1 − qρδT + qρλTdϱ

q−1
2 λ

q−1
1 + qρλTdτ

q−1
2 + cqρqλq

Td
,

and for the case where q is an even natural number, in addition to (18), the following conditions hold:
qδ1 < 1 + cqλ

q
f , qδ2 ≤ 1 + cqλ

q
1,

qλδS < ϱ
q
1λ

q
f + qλλSpϱ

q−1
1 λ

q−1
f + qλλSpτ

q−1
1 + cqλqλq

Sp
,

qρδT < ϱ
q
2λ

q
1 + qρλTdϱ

q−1
2 λ

q−1
1 + qρλTdτ

q−1
2 + cqρqλq

Td
,

where cq is a constant guaranteed by Lemma 2.1. Then the iterative sequences {xn}
∞

n=0, {yn}
∞

n=0, {un}
∞

n=0 and {vn}
∞

n=0
generated by Algorithm 3.5 converge strongly to x, y,u and v, respectively, and (x, y,u, v) is a solution of the system
(3).

4. Remarks on H(., .)-η-cocoercive mappings

In the present section, the notion of H(., .)-η-cocoercive operator and the results in related to it, introduced
and studied in [3] are investigated and analyzed, and some remarks on H(., .)-η-cocoercive operators are
stated. We also show that one can obtain the results given in [3] using the results derived in Section 3.

Definition 4.1. [3, Definition 2.4] Let X be a q-uniformly smooth Banach space with q > 1. A multi-valued
mapping M : X→ 2X is said to be η-cocoercive (or γ-η-cocoercive), if there exists a constant γ > 0 such that

⟨u − v, Jq(η(x, y))⟩ ≥ γ∥u − v∥q, ∀x, y ∈ X,u ∈M(x), v ∈M(y).

Obviously, for a given vector-valued mapping η : X×X→ X, every η-cocoercive multi-valued mapping
is η-accretive, but the coverse is not in general true. The following example illustrates that for given
constant γ > 0 and a vector-valued mapping η : X × X → X, an η-accretive multi-valued mapping is not
γ-η-cocoercive necessarily.

Example 4.2. Let Dn(R) be the same as in Example 2.6 and let the mappings M : Dn(R) → 2Dn(R) and
η : Dn(R) ×Dn(R)→ Dn(R) be defined by

M(A) =
{
{Ei j − Ekk : i, j = 1, 2, . . . ,n}, A = Ekk,
γA + Ekk, A , Ekk,

and

η(A,B) =
{

Q, A,B , Ekk,
0, otherwise,
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for all A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), where Q =

(
qi j

)
is an n × n matrix with the entries

qi j =

{
αi(bii − aii), i = j,
0, i , j,

αi(i = 1, 2, . . . ,n), γ ∈ R are arbitrary but fixed constants such that for each i ∈ {1, 2, . . . ,n}, γ < 0 < αi, 0 is
the zero n × n matrix, and Ei, j,Ekk are the same as in Example 2.6.

Then for any A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), A , B , Ekk, taking into account that γ < 0 < αi for each

i ∈ {1, 2, . . . ,n}, it follows that

⟨M(A) −M(B), J2(η(A,B))⟩ = ⟨M(A) −M(B), η(A,B)⟩

= tr(γ(A − B)Q) =
n∑

i=1

−γαi(bii − aii)2 > 0.
(19)

In the meanwhile, for each of the cases when A , B = Ekk, B , A = Ekk and A = B = Ekk, thanks to the fact
that η(A,B) = 0, we deduce that

⟨u − v, J2(η(A,B))⟩ = 0, ∀u ∈M(A), v ∈M(B).

Consequently, M is an η-accretive mapping. Furthermore, for any A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R), we

obtain

∥A − B∥2 = ⟨A − B,A − B⟩ = tr((A − B)(A − B)) =
n∑

i=1

(aii − bii)2. (20)

Letting ϱ = max{αi : i = 1, 2, . . . ,n} and making use of (19) and (20), for any A =
(

ai j

)
,B =

(
bi j

)
∈ Dn(R),

A , B , Ekk, it yields

⟨M(A) −M(B), J2(η(A,B))⟩ =
n∑

i=1
−γαi(bii − aii)2

≤ −γϱ
n∑

i=1
(aii − bii)2 = −γϱ∥A − B∥2,

and so M is not µ-η-cocoercive for all µ > −γϱ.

Definition 4.3. [3, Definition 2.3] Let X be a q-uniformly smooth Banach space with q > 1. Let A,B : X → X,
H : X × X→ X, η : X × X→ X be the mappings and Jq : X→ 2X∗ be the generalized duality mapping. Then

(i) H(A, .) is said to be µ-η-cocoercive with respect to A if there exists a constant µ > 0 such that

⟨H(Ax,u) −H(Ay,u), Jq(η(x, y))⟩ ≥ µ∥Ax − Ay∥q, ∀x, y,u ∈ X;

(ii) H(.,B) is said to be γ-relaxed η-cocoercive (also referred to as γ-η-relaxed cocoercive, see, [3]) if there exists a
constant γ > 0 such that

⟨H(u,Bx) −H(u,By), Jq(η(x, y))⟩ ≥ −γ∥Bx − By∥q, ∀x, y,u ∈ X;

(iii) H(A, .) is said to be r1-Lipschitz continuous with respect to A if there exists a constant r1 > 0 such that

∥H(Ax,u) −H(Ay,u)∥ ≤ r1∥x − y∥, ∀x, y,u ∈ X;

(iv) H(.,B) is said to be r2-Lipschitz continuous with respect to B if there exists a constant r2 > 0 such that

∥H(u,Bx) −H(u,By)∥ ≤ r2∥x − y∥, ∀x, y,u ∈ X.

In related to Definition 4.3, the authors [3] presented a Matlab programme and claimed that H(., .) is
1
3 -η-cocoercive with respect to A and 1

2 -relaxed η-cocoercive with respect to B.
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Example 4.4. Let X = R2 with usual inner product, and let A,B : R2
→ R2 be defined by A(x1, x2) = (x1, 3x2)

and B(y1, y2) = (−y1,−y1 − y2), for all x = (x1, x2), y = (y1, y2) ∈ R2. Let H(A,B), η : R2
×R2

→ R2 be defined
by H(Ax,By) = Ax + By and η(x, y) = x − y for all x, y ∈ R2. The Hilbert space R2 is a 2-uniformly smooth
Banach space due to the fact that it is finite dimensional. Then, for all x, y,u ∈ R2, we obtain

⟨H(Ax,u) −H(Ay,u), J2(η(x, y))⟩ = ⟨Ax − Ay, x − y⟩
= ⟨(x1, 3x2) − (y1, 3y2), (x1 − y1, x2 − y2)⟩
= ⟨(x1 − y1, 3(x2 − y2)), (x1 − y1, x2 − y2)⟩

= (x1 − y1)2 + 3(x2 − y2)2

and

∥Ax − Ay∥2 = ⟨Ax − Ay,Ax − Ay⟩ = ⟨(x1 − y1, 3(x2 − y2)), (x1 − y1, 3(x2 − y2))⟩

= (x1 − y1)2 + 9(x2 − y2)2

≤ 3(x1 − y1)2 + 9(x2 − y2)2

= 3⟨H(Ax,u) −H(Ay,u), J2(η(x, y))⟩,

which implies that

⟨H(Ax,u) −H(Ay,u), J2(η(x, y))⟩ ≥
1
3
∥Ax − Ay∥2,

that is, H(., .) is 1
3 -η-cocoercive with respect to A. The authors claimed that H(., .) is 1

2 -relaxed η-cocoercive
with respect to B. A careful checking illustrates that this fact is not true in general. In fact, in the light of
Definition 4.6, H(., .) is 1

2 -relaxed η-cocoercive with respect to B if and only if

⟨H(u,Bx) −H(u,By), J2(η(x, y))⟩ ≥ −
1
2
∥Bx − By∥2, ∀x, y,u ∈ R2.

In view of the definitions of the mappings H, η and B, for all x = (x1, x2), y = (y1, y2),u ∈ R2, it yields

⟨H(u,Bx) −H(u,By), J2(η(x, y))⟩ = ⟨Bx − By, x − y⟩
= ⟨(y1 − x1, y1 − x1 + y2 − x2), (x1 − y1, x2 − y2)⟩

= −(x1 − y1)2
− (x1 − y1)(x2 − y2) − (x2 − y2)2

= −{(x1 − y1)2 + (x1 − y1)(x2 − y2) + (x2 − y2)2
}

and

∥Bx − By∥2 = ⟨Bx − By,Bx − By⟩
= ⟨(y1 − x1, y1 − x1 + y2 − x2), (y1 − x1, y1 − x1 + y2 − x2)⟩

= 2(y1 − x1)2 + 2(y1 − x1)(y2 − x2) + (y2 − x2)2

≤ 2{(y1 − x1)2 + (y1 − x1)(y2 − x2) + (y2 − x2)2
}

= −2⟨H(u,Bx) −H(u,By), J2(η(x, y))⟩,

whence we deduce that

⟨H(u,Bx) −H(u,By), J2(η(x, y))⟩ ≤ −
1
2
∥Bx − By∥2, ∀x, y,u ∈ R2.

The preceding inequality shows that contrary to the claim in [3], H(., .) is not 1
2 -relaxed η-cocoercive with

respect to B necessarily.

Proposition 4.5. Let X be a q-uniformly smooth Banach space with q > 1, and let A,B : X→ X and H, η : X×X→ X
be the mappings. Suppose further that the mapping P : X × X → X is defined by P(x) = H(Ax,Bx), for all x ∈ X.
Then, the following assertions hold:
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(i) If the mapping H(A,B) is µ-η-cocoercive with respect to A and γ-relaxed η-cocoercive with respect to B, the
mapping A is α-expansive and B is β-Lipschitz continuous, µ > γ and α > β, then P is (µαq

− γβq)-strongly
η-accretive and hence it is strictly η-accretive.

(ii) If H(A,B) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with respect to B, then P is
(r1 + r2)-Lipschitz continuous.

Proof. (i) Owing to the fact that the mapping H(A,B) is µ-η-cocoercive with respect to A and γ-relaxed
η-cocoercive with respect to B, the mapping A is α-expansive and B is β-Lipschitz continuous, µ > γ and
α > β, for all x, y ∈ X, we obtain

⟨P(x) − P(y), η(x, y)⟩ = ⟨H(Ax,Bx) −H(Ay,By), η(x, y)⟩
= ⟨H(Ax,Bx) −H(Ay,Bx), η(x, y)⟩
+ ⟨H(Ay,Bx) −H(Ay,By), η(x, y)⟩
≥ µ∥Ax − Ay∥q − γ∥Bx − By∥q

≥ µαq
∥x − y∥q − γβq

∥x − y∥q

= (µαq
− γβq)∥x − y∥q.

Since µ > γ, α > β and q > 1, the preceding inequality guarantees that P is (µαq
− γβq)-strongly η-accretive.

Now, the fact that P is strictly η-accretive is straightforward.
(ii) Relying on the fact that H(A,B) is r1-Lipschitz continuous and r2-Lipschitz continuous with respect

to A and B, respectively, it follows that for all x, y ∈ X,

∥P(x) − P(y)∥ = ∥H(Ax,Bx) −H(Ay,By)∥
≤ ∥H(Ax,Bx) −H(Ay,Bx)∥
+ ∥H(Ay,Bx) −H(Ay,By)∥
≤ (r1 + r2)∥x − y∥,

that is, P is (r1 + r2)-Lipschitz continuous. This completes the proof.

Ahmad et al. [3] introduced and studied a class of accretive mappings the so-called H(., .)-η-cocoercive
mappings as a generalization of P-η-accretive (or (H, η)-accretive) and H(., .)-accretive mappings as follows.

Definition 4.6. [3, Definition 2.6] Let X be a q-uniformly smooth Banach space with q > 1. Let A,B : X → X,
H : X × X → X, η : X × X → X be the mappings. Then a multi-valued mapping M : X → 2X is said to be
H(., .)-η-cocoercive with respect to the mappings A and B if M is η-cocoercive and (H(A,B) + λM)(X) = X, for all
λ > 0.

From Definition 4.6 and in the light of the mentioned arguments, it follows that every H(., .)-η-cocoercive
mapping is actually a P-η-accretive mapping. In fact, by defining the mapping P : X → X as P(x) =
H(Ax,Bx), for all x ∈ X, and in view of the fact that every η-cocercive mapping is η-accretive, we deduce
that the class of H(., .)-η-cocoercive mappings coicides exactly with the class of P-η-accretive mappings and
is not new. In other words, Definition 4.6 is actually the same Definition 2.5 and is not a new one.

In order to define the proximal mapping associated with the H(., .)-η-cocoercive mappings, Ahmad et
al. [3] presented the following theorem which states conditions under which the mapping (H(A,B)+λM)−1

is single-valued for every λ > 0.

Theorem 4.7. [3, Theorem 2.7] Let X be a q-uniformly smooth Banach space with q > 1. Let H(A,B) be µ-
η-cocoercive with respect to A and γ-relaxed η-cocoercive with respect to B, A be α-expansive, B be β-Lipschit
continuous, µ > γ and α > β. Let M be an H(., .)-η-cocoercive mapping with respect to A and B. Then the mapping
(H(A,B) + λM)−1 is single-valued for every real constant λ > 0.
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Proof. Define P : X → X by P(x) = H(Ax,Bx), for all x ∈ X. Thanks to the assumptions and by means of
Proposition 4.5(i), we deduce that P is a strictly η-accretive mapping. Furthermore, M is a P-η-accretive
mapping. We note that all the conditions of Lemma 2.1 hold. In accordance with Lemma 2.1, the mapping
(P + λ)−1 = (H(A,B) + λ)−1 is single-valued for every λ > 0. This gives the desired result.

Based on Theorem 4.7, the authors [3] defined the proximal mapping RH(.,.)−η
λ,M associated with the H(., .)-

η-cocoercive mapping M as follows.

Definition 4.8. [3, Definition 2.8] Let X be a q-uniformly smooth Banach space with q > 1. Let H(A,B) be
µ-η-cocoercive with respect to A and γ-relaxed η-cocoercive with respect to B. Suppose that A is α-expansive, B is
β-Lipschitz continuous and µ > γ, α > β. Let M be an H(., .)-η-cocoercive mapping with respect to A and B. Then
the proximal mapping RH(.,.)−η

λ,M : X→ X is defined by

RH(.,.)−η
λ,M (u) = (H(A,B) + λM)−1(u), ∀u ∈ X.

Remark 4.9. (i) In Theorem 4.7, the necessary and sufficient conditions for the mapping (H(., .) + λM)−1

to be single-valued for every λ > 0, are stated. In the light of the mentioned theorem, and by comparing
it with Definition 4.8, it should be pointed out that the τ-Lipschitz continuity condition of the mapping
η : X × X → X, mentioned in the context of Definition 2.8 of [3] is extra and must be deleted, as we have
done in Definition 4.8.

(ii) By defining P : X → X as P(x) = H(Ax,Bx), for all x ∈ X, in virtue of the assumptions of Definition
4.8 and by using Proposition 4.5(i), P is a strictly η-accretive mapping and M is a P-η-accretive mapping.
Regarding to Definition 2.14, for any constant λ > 0, the P-η-resolvent operator RP,η

M,λ : X → X associated
with P, η,M and λ, for any x ∈ X is defined as follows:

RP,η
M,λ(u) = RH(.,.)−η

λ,M (u) = (P + λM)−1(u) = (H(A,B) + λM)−1(u), ∀u ∈ X,

that is, Definition 4.8 is actually the same Definition 2.14 and is not a new one.

In Theorem 2.9 of [3], the authors proved the Lipschitz continuity of the resolvent operator RH(.,.)−η
λ,M and

calculated its Lipschitz constant under some appropriate conditions as follows.

Theorem 4.10. [3, Theorem 2.9] Let X be a q-uniformly smooth Banach space with q > 1. Let H(A,B) be µ-η-
cocoercive with respect to A, γ-relaxed η-cocoercive with respect to B, A be α-expansive, B be β-Lipschitz continuous,
η be τ-Lipschitz continuous and µ > γ, α > β. Let M be an H(., .)-η-cocoercive mapping with respect to A and B.
Then the resolvent operator RH(.,.)−η

λ,M : X→ X is τq−1

µαq−γβq -Lipschitz continuous, that is,

∥RH(.,.)−η
λ,M (u) − RH(.,.)−η

λ,M (v)∥ ≤
τq−1

µαq − γβq ∥u − v∥, ∀u ∈ X. (21)

Proof. Let P : X → X be defined by P(x) = H(Ax,Bx), for all x ∈ X. By utilizing the assumptions and
Proposition 4.5(i), we conclude that P is (µαq

− γβq)-strongly η-accretive. Furthermore, M is a P-η-accretive
mapping. Then all the conditions of Lemma 2.16 hold. Therefore, by picking θ = µαq

− γβq, Lemma 2.16
implies that the resolvent operator RP,η

M,λ = RH(.,.)−η
λ,M : X→ X is τ

q−1

θ -Lipschitz continuous, i.e., (21) holds. The
proof is finished.

Let X1 and X2 be two q-uniformly smooth Banach spaces with q > 1 and let A1,B1 : X1 → X1,
A2,B2 : X2 → X2, H1, η1 : X1 × X1 → X1 and H2, η2 : X2 × X2 → X2 be the mappings. Recently, Ah-
mad et al. [3] considered and studied the system (4) when M and N are H1(A1,B1)-η1-cocoercive and
H2(A2,B2)-η2-cocoercive mappings, respectively. With the goal of constructing an iterative algorithm for
approximating a solution of the system (4) involving Hi(Ai,Bi)-ηi-cocoercive mappings (i = 1, 2), they
presented a characterization of its solution as follows.
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Lemma 4.11. [3, Lemma 3.1] Let X1 and X2 be two q-uniformly smooth Banach spaces with q > 1. Let f , p,A1,B1 :
X1 → X1, 1, d,A2,B2 : X2 → X2, S : X1 × X2 → X1, T : X1 × X2 → X2, H1, η1 : X1 × X1 → X1 and
H2, η2 : X2 × X2 → X2 be the mappings. Let, for each i ∈ {1, 2}, Hi(Ai,Bi) be µi-ηi-cocoercive with respect to Ai and
γi-relaxed ηi-cocoercive with respect to Bi, Ai be αi-expansive, Bi be βi-Lipschitz continuous, µi > γi and αi > βi.
Let E : X1 → CB(X1), F : X2 → CB(X2), M : X1 → 2X1 and N : X2 → 2X2 be the multi-valued mappings such
that M is an H1(A1,B1)-η1-cocoercive mapping and N : X2 → 2X2 is an H2(A2,B2)-η2-cocoercive mapping. Then,
(x, y,u, v) ∈ X1 × X2 × E(x) × E(y) is a solution of the system (4) (involving Hi(., .)-ηi-cocoercive mappings) if and
only if (x, y,u, v) satisfies f (x) = RH1(.,.)−η1

λ,M [H1(A1( f (x)),B1( f (x))) − λS(p(x), v)],

1(y) = RH2(.,.)−η2

ρ,N [H2(A2(1(y)),B2(1(y))) − ρT(u, d(y))],

where λ, ρ > 0 are two constants.

Proof. Assume that for each i ∈ {1, 2}, Pi : Xi → Xi is defined by Pi(x) = Hi(Aix,Bix), for all x ∈ Xi. The
assumptions and Proposition 4.5(i) imply that Pi is a strictly ηi-accretive for i = 1, 2, M is a P1-η1-accretive
mapping and N is a P2-η2-accretive mapping. Then, all the conditions of Lemma 3.2 hold, and so the
assertion follows by Lemma 3.2 immediately.

In the light of Remark 4.9, it is worth mentioning that the τ1-Lipschitz continuity and τ2-Lipschitz
continuity conditions of the mappings η1 and η2, respectively, mentioned in the context of Lemma 3.1 of
[3] are extra and must be deleted, as we have done in the context of Lemma 4.11. In view of the proof of
Lemma 4.11, it must be remarked that contrary to the claim of the authors in [3], the characterization of
the solution for the system (4) involving Hi(., .)-ηi-cocoercive mappings (i = 1, 2), presented in Lemma 4.11
is actually the same characterization of the solution for the system (4) involving Pi-ηi-accretive mappings
presented in Lemma 3.2, and is not a new one.

Utilizing Lemma 4.11, Ahmad et al. [3] suggested an iterative algorithm for solving the system (4)
involving Hi(., .)-ηi-cocoercive mappings (i = 1, 2) as follows.

Algorithm 4.12. [3, Algorithm 3.3] Let X1,X2, f , 1,S,T, p, d,A1,B1,A2,B2,H1,H2, η1, η2, E,F,M and N be the
same as in Lemma 4.11. For any given (x0, y0) ∈ X1×X2, u0 ∈ E(x0), v0 ∈ F(y0), compute the sequences {(xn, yn)}∞n=0,
{un}

∞

n=0 and {vn}
∞

n=0 by the following iterative schemes:

xn+1 = (1 − t1)xn + t1

[
xn − f (xn) + RH1(.,.)−η1

λ,M [H1(A1( f (xn)),B1( f (xn))) − λS(p(xn), vn)]
]
, (22)

yn+1 = (1 − t2)yn + t2

[
yn − 1(yn) + RH2(.,.)−η2

ρ,N [H2(A2(1(yn)),B2(1(yn))) − ρT(un, d(yn))]
]
, (23)

where t1, t2 ∈ (0, 1] are two parameters and λ, ρ > 0 are two constants, n = 0, 1, 2, . . . and we choose un+1 ∈ E(xn),
vn+1 ∈ F(yn+1) such that{

∥un+1 − un∥ ≤ D(E(xn+1),E(xn)),
∥vn+1 − vn∥ ≤ D(F(yn+1),F(yn)). (24)

By a careful reading Algorithm 4.12, we found that the sequences {(xn, yn)}∞n=0, {un}
∞

n=0 and {vn}
∞

n=0
generated by Algorithm 4.12 are not well defined necessarily. In fact, for any given (x0, y0) ∈ X1 × X1,
u0 ∈ E(x0), v0 ∈ F(y0), the authors computed x1 and y1 by means of the iterative schemes (22) and (23),
respectively, and then they claimed that one can choose u1 ∈ E(x1) and v1 ∈ F(y1) such that the following
relations hold:{

∥u1 − u0∥ ≤ D(E(x1),E(x0)),
∥v1 − v0∥ ≤ D(F(y1),F(y0)). (25)

In the light of Lemma 3.3, if X is a metric space and T : X→ CB(X) is a multi-valued mapping, then for any
ε > 0 and for any given x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such that

d(u, v) ≤ (1 + ε)D(T(x),T(y)).
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However, for any given x, y ∈ X, u ∈ T(x), there may not be a point v ∈ T(y) such that d(u, v) ≤ D(T(x),T(y)).
In support of this fact, the following example is provided.

Example 4.13. Consider X = l∞(Z) = {z = {zn}
∞
n=−∞| sup

n∈Z
|zn| < ∞, zn ∈ C}, the Banach space consisting

of all bounded complex sequences z = {zn}
∞
n=−∞ with the supremum norm ∥z∥∞ = sup

n∈Z
|zn|. Any element

z = {zn}
∞
n=−∞ = {xn + iyn}

∞
n=−∞ ∈ l∞(Z) can be written as follows:

z =
∑

σ∈{±1,±3,... }

[
(. . . , 0, . . . , 0, x2σ−1 + iy2σ−1, 0, x2σ+1 + iy2σ+1, 0, . . . )

+ (. . . , 0, . . . , 0, x2σ + iy2σ, 0, x2σ+2 + iy2σ+2, 0, . . . )
]

=
∑

σ∈{±1,±3,... }

[ y2σ−1 + y2σ+1 − i(x2σ−1 + x2σ+1)
2

ω2σ−1,2σ+1

+
y2σ−1 − y2σ+1 − i(x2σ−1 − x2σ+1)

2
ω′2σ−1,2σ+1 +

y2σ + y2σ+2 − i(x2σ + x2σ+2)
2

ω2σ,2σ+2

+
y2σ − y2σ+2 − i(x2σ − x2σ+2)

2
ω′2σ,2σ+2

]
,

where for each σ ∈ {±1,±3, . . . }, ω2σ−1,2σ+1 = (. . . , 0, . . . , 0, i2σ−1, 0, i2σ+1, 0, . . . ), i in the (2σ− 1)th and (2σ+ 1)th
positions and 0’s elsewhere,ω′2σ−1,2σ+1 = (. . . , 0, . . . , 0, i2σ−1, 0, −i2σ+1, 0, . . . ), i and −i at the (2σ−1)th and (2σ+
1)th coordinates, and all other coordinates are zero, ω2σ,2σ+2 = (. . . , 0, . . . , 0, i2σ, 0, i2σ+2, 0, . . . ), i at the (2σ)th
and (2σ + 2)th places, respectively, and 0’s everywhere else, and ω′2σ,2σ+2 = (. . . , 0, . . . , 0, i2σ, 0,−i2σ+2, 0, . . . ), i
and −i at the (2σ)th and (2σ + 2)th coordinates, respectively, and all other coordinates are zero. Therefore,
the set

B =
{
ω2σ−1,2σ+1, ω

′

2σ−1,2σ+1, ω2σ,2σ+2, ω
′

2σ,2σ+2 : σ = ±1,±3, . . .
}

spans the Banach space l∞(Z). It is easy to show that the setB is linearly independent and so it is a Schauder
basis for the Banach space l∞(Z). Define the multi-valued mapping T : X→ CB(X) by

T(x) =

 {{
ξ

βnp ! nq !+2√nγ!
i}∞n=−∞, ω′2σ−1,2σ+1, ω2σ,2σ+2 : σ = ±1,±3, . . . }, x , ω2r−1,2r+1,

{ω2σ−1,2σ+1, ω′2σ,2σ+2 : σ = ±1,±3, . . . }, x = ω2r−1,2r+1,

where ξ ∈ [−1, 0) and β > 1 are arbitrary but fixed real numbers, p, q and γ are arbitrary but fixed even
natural numbers, and r ∈ {±1,±3, . . . } is chosen arbitrarily but fixed. Take ω2r−1,2r+1 , x ∈ X arbitrarily,
y = ω2r−1,2r+1 and u = { ξ

βnp ! nq !+2√nγ!
i}∞n=−∞. If a = { ξ

βnp ! nq !+2√nγ!
i}∞n=−∞, then in view of the fact that ξ < 0, for any

σ ∈ {±1,±3, . . . }, it yields

d(a, ω2σ−1,2σ+1) = ∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω2σ−1,2σ+1∥∞

= sup{|
ξ

βnp! nq !+2√nγ!
|, |

ξ

β(2σ−1)p! (2σ−1)q !+2
√

(2σ − 1)γ!
− 1|,

|
ξ

β(2σ+1)p! (2σ+1)q !+2
√

(2σ + 1)γ!
− 1| : n ∈ Z,n , 2σ − 1, 2σ + 1}

=


|

ξ

β(2σ−1)p ! (2σ−1)q !+2
√

(2σ−1)γ!
− 1|, if σ ∈ {2m + 1|m ∈N ∪ {0}},

|
ξ

β(2σ+1)p ! (2σ+1)q !+2
√

(2σ+1)γ!
− 1|, if σ ∈ {−(2m + 1)|m ∈N ∪ {0}},

=


1 − ξ

β(2σ−1)p ! (2σ−1)q !+2
√

(2σ−1)γ!
, if σ ∈ {2m + 1|m ∈N ∪ {0}},

1 − ξ

β(2σ+1)p ! (2σ+1)q !+2
√

(2σ+1)γ!
, if σ ∈ {−(2m + 1)|m ∈N ∪ {0}},
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and

d(a, ω′2σ,2σ+2) = ∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω

′

2σ,2σ+2∥∞

= sup{|
ξ

βnp! nq !+2√nγ!
|, |

ξ

β(2σ)p! (2σ)q !+2
√

(2σ)γ!
− 1|,

|
ξ

β(2σ+2)p! (2σ+2)q !+2
√

(2σ + 2)γ!
+ 1| : n ∈ Z,n , 2σ, 2σ + 2}

= |
ξ

β(2σ)p! (2σ)q !+2
√

(2σ)γ!
− 1| = 1 −

ξ

β(2σ)p! (2σ)q !+2
√

(2σ)γ!
.

Since ξ ∈ [−1, 0), we infer that

d(a,T(y)) = inf
b∈T(y)

d(a, b) = inf
{
1 − ξ

β(2σ+µ)p ! (2σ+µ)q !+2
√

(2σ+µ)γ!
: µ = 0,±1; σ = ±1,±3, . . .

}
= 1.

For the case when a = ω′2s−1,2s+1 for some s ∈ {±1,±3, . . . }, then for each σ ∈ {±1,±3, . . . }, we obtain

d(a, ω2σ−1,2σ+1) =
{
∥ω′2s−1,2s+1 − ω2s−1,2s+1∥∞, σ = s,
∥ω′2s−1,2s+1 − ω2σ−1,2σ+1∥∞, σ , s, =

{
2, σ = s,
1, σ , s,

and d(a, ω′2σ,2σ+2) = ∥ω′2s−1,2s+1 − ω
′

2σ,2σ+2∥∞ = 1. Thus, d(a,T(y)) = inf
b∈T(y)

d(a, b) = 1.

If a = ω2t,2t+2 for some t ∈ {±1,±3, . . . }, in virtue of the facts that for each σ ∈ {±1,±3, . . . },

d(a, ω2σ−1,2σ+1) = ∥ω2t,2t+2 − ω2σ−1,2σ+1∥∞ = 1

and

d(a, ω′2σ,2σ+2) =
{
∥ω2t,2t+2 − ω′2t,2t+2∥∞, σ = t,
∥ω2t,2t+2 − ω′2σ,2σ+2∥∞, σ , t, =

{
2, σ = t,
1, σ , t,

we deduce that d(a,T(y)) = inf
b∈T(y)

d(a, b) = 1. Consequently, sup
a∈T(x)

d(a,T(y)) = 1.

If b = ω2k−1,2k+1 for some k ∈ {±1,±3, . . . }, due to the fact that ξ ∈ [−1, 0), it follows that

d({
ξ

βnp! nq !+2√nγ!
i}∞n=−∞, ω2k−1,2k+1)

= ∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω2k−1,2k+1∥∞

= sup{|
ξ

βnp! nq !+2√nγ!
|, |

ξ

β(2k−1)p! (2k−1)q !+2
√

(2k − 1)γ!
− 1|,

|
ξ

β(2k+1)p! (2k+1)q !+2
√

(2k + 1)γ!
− 1| : n ∈ Z,n , 2k − 1, 2k + 1}

=


|

ξ

β(2k−1)p ! (2k−1)q !+2
√

(2k−1)γ!
− 1|, if k ∈ {2m + 1|m ∈N ∪ {0}},

|
ξ

β(2k+1)p ! (2k+1)q !+2
√

(2k+1)γ!
− 1|, if k ∈ {−(2m + 1)|m ∈N ∪ {0}},

=


1 − ξ

β(2k−1)p ! (2k−1)q !+2
√

(2k−1)γ!
, if k ∈ {2m + 1|m ∈N ∪ {0}},

1 − ξ

β(2k+1)p ! (2k+1)q !+2
√

(2k+1)γ!
, if k ∈ {−(2m + 1)|m ∈N ∪ {0}},
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and for each σ ∈ {±1,±3, . . . },

d(ω′2σ−1,2σ+1, ω2k−1,2k+1) =
{
∥ω′2k−1,2k+1 − ω2k−1,2k+1∥∞, σ = k,
∥ω′2σ−1,2σ+1 − ω2k−1,2k+1∥∞, σ , k, =

{
2, σ = k,
1, σ , k,

and

d(ω2σ,2σ+2, ω2k−1,2k+1) = ∥σ2σ,2σ+2 − σ2k−1,2k+1∥∞ = 1.

In the light of these facts and considering the fact that ξ < 0, we conclude that

d(T(x), b) = inf
a∈T(x)

d(a, b) = 1.

In the case where b = ω′2 j,2 j+2 for some j ∈ {±1,±3, . . . }, owing to the fact that ξ ∈ [−1, 0), we get

d({
ξ

βnp! nq !+2√nγ!
i}∞n=−∞, ω

′

2 j,2 j+2) = ∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω

′

2 j,2 j+2∥∞

= sup{|
ξ

βnp! nq !+2√nγ!
|, |

ξ

β(2 j)p! (2 j)q !+2
√

(2 j)γ!
− 1|,

|
ξ

β(2 j+2)p! (2 j+2)q !+2
√

(2 j + 2)γ!
+ 1| : n ∈ Z,n , 2 j, 2 j + 2}

= |
ξ

β(2 j)p! (2 j)q !+2
√

(2 j)γ!
− 1| = 1 −

ξ

β(2 j)p! (2 j)q !+2
√

(2 j)γ!
,

and for each σ ∈ {±1,±3, . . . },

d(ω′2σ−1,2σ+1, ω
′

2 j,2 j+2) = ∥ω′2σ−1,2σ+1 − ω
′

2 j,2 j+2∥∞ = 1

and

d(ω2σ,2σ+2, ω
′

2 j,2 j+2) =
{
∥ω2 j,2 j+2 − ω′2 j,2 j+2∥∞, σ = j,
∥ω2σ,2σ+2 − ω′2 j,2 j+2∥∞, σ , j, =

{
2, σ = j,
1, σ , j.

Since ξ < 0, we conclude that d(T(x), b) = inf
a∈T(x)

d(a, b) = 1. Accordingly, sup
b∈T(y)

d(T(x), b) = 1, and so

D(T(x),T(y)) = max
{

sup
a∈T(x)

d(a,T(y)), sup
b∈T(y)

d(T(x), b)
}
= 1.

Taking into account that for each σ ∈ {±1,±3, . . . },

∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω2σ−1,2σ+1∥∞

=


1 − ξ

β(2σ−1)p ! (2σ−1)q !+2
√

(2σ−1)γ!
> 1, if σ ∈ {2m + 1|m ∈N ∪ {0}},

1 − ξ

β(2σ+1)p ! (2σ+1)q !+2
√

(2σ+1)γ!
> 1, if σ ∈ {−(2m + 1)|m ∈N ∪ {0}},

and

∥{
ξ

βnp! nq !+2√nγ!
i}∞n=−∞ − ω

′

2σ,2σ+2∥∞ = 1 −
ξ

β(2σ)p! (2σ)q !+2
√

(2σ)γ!
> 1,

because ξ ∈ [−1, 0), it follows that for any v ∈ T(y), d(u, v) = ∥u − v∥∞ > D(T(x),T(y)).
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It is worthwhile to stress that if T(y) is compact then such a point v does exist. In fact, if T : X → C(X),
where C(X) is the family of all the nonempty compact subsets of X, then for any given x, y ∈ X, u ∈ T(x), there
exists v ∈ T(y) such that d(u, v) ≤ D(T(x),T(y)). In virtue of the above mentioned arguments, Algorithm
4.12 is not well-defined necessarily. We now present the correct version of Algorithm 4.12, only by editing
(24) as follows.

Algorithm 4.14. Let X1,X2, f , 1, p, d,S,T,A1,B1,A2,B2,H1,H2, η1, η2,E,F,M and N be the same as in Lemma
4.11. For any given (x0, y0) ∈ X1 ×X2, u0 ∈ E(x0), v0 ∈ F(y0), define the sequences {(xn, yn)}∞n=0, {un}

∞

n=0 and {vn}
∞

n=0
in the following way:

xn+1 = (1 − t1)xn + t1

[
xn − f (xn) + RH1(.,.)−η1

λ,M [H1(A1( f (xn)),B1( f (xn))) − λS(p(xn), vn)]
]
,

yn+1 = (1 − t2)yn + t2

[
yn − 1(yn) + RH2(.,.)−η2

ρ,N [H2(A2(1(yn)),B2(1(yn))) − ρT(un, d(yn))]
]
,

where t1, t2 ∈ (0, 1] are two parameters and λ, ρ > 0 are two constants, n = 0, 1, 2, . . . and we choose un+1 ∈ E(xn),
vn+1 ∈ F(yn+1) such that{

∥un+1 − un∥ ≤ (1 + (1 + n)−1)D(E(xn+1,E(xn)),
∥vn+1 − vn∥ ≤ (1 + (1 + n)−1)D(F(yn+1,F(yn)).

By defining Pi : Xi → Xi as Pi(x) = Hi(Aix,Bix), for i = 1, 2, and for all x ∈ Xi, and in the light of the
conditions of Lemma 4.11, Proposition 4.5 implies that for i = 1, 2, Pi is a strictly ηi-accretive mapping, and
M and N are P1-η1-accretive and P2-η2-accretive mappings, respectively. Then, by letting αi = ti, for i = 1, 2,
we observe that Algorithm 4.14 is actually the same Algorithm 3.5 and is not a new one.

In Theorem 3.4 of [3], the authors studied the convergence analysis of Algorithm 4.12 under some certain
conditions. Taking into account that Algorithm 4.12 is not in general well defined, and Algorithm 4.14 is
the correct version of Algorithm 4.12, we infer that the statement of [3, Theorem 3.4] is not true necessarily.
In the following its correct version is provided.

Theorem 4.15. Let X1 and X2 be two q-uniformly smooth Banach spaces with q > 1. Let A1,B1, p : X1 → X1,
A2,B2, d : X2 → X2, H1 : X1 ×X2 → X1, H2 : X2 ×X1 → X2 be the mappings such that H1(A1,B1) is η1-cocoercive
with respect to A1 with constant µ1 and relaxed η1-cocoercive with respect to B1 with constant γ1, A1 is α1-expansive,
B1 is β1-Lipschitz continuous, α1 > β1 and µ1 > γ1; H2(A2,B2) is η2-cocoercive with respect to A2 with constant
µ2 and relaxed η2-cocoercive with respect to B2 with constant γ2, A2 is α2-expansive, B2 is β2-Lipschitz continuous,
α2 > β2 and µ2 > γ2. Assume that η1 : X1 ×X1 → X1 is τ1-Lipschitz continuous, η2 : X2 ×X2 → X2 is τ2-Lipschitz
continuous, f : X1 → X1 is strongly accretive with constant δ1 and λ f -Lipschitz continuous and 1 : X2 → X2 is
strongly accretive with constant δ2 and λ1-Lipschitz continuous. Let S : X1 ×X2 → X1 be strongly η1-accretive with
respect to p with constant λS and λSp -Lipschitz continuous with respect to p in the first argument and λS2 -Lipschitz
continuous in the second argument. Suppose that T : X1 × X2 → X2 is strongly η2-accretive with constant δT with
respect to d and λTd -Lipschitz continuous with respect to d in the second argument, and λT1 -Lipschitz continuous
in the first argument. Let E : X1 → CB(X1) be D-Lipschitz continuous with constant λDE and F : X2 → CB(X2)
be D-Lipschitz continuous with constant λDF . Let H1(A1,B1) be r1-Lipschitz continuous with respect to A1 and
r2-Lipschitz continuous with respect to B1, and H2(A2,B2) be r3-Lipschitz continuous with respect to A2 and r4-
Lipschitz continuous with respect to B2. Suppose that M : X1 → 2X1 is H1(A1,B1)-η1-cocoercive and N : X2 → 2X2

is H2(A2,B2)-η2-cocoercive. If there exist positive constants ρ and λ such that

1 − t1 + t1
q
√

1 − qδ1 + cqλ
q
f +

t1τ
q−1
1

µ1α
q
1 − γ1β

q
1

θ′ +
t2τ

q−1
2 ρλT1λDE

µ2α
q
2 − γ2β

q
2

< 1, (26)

1 − t2 + t2
q
√

1 − qδ2 + cqλ
q
1 +

t2τ
q−1
2

µ2α
q
2 − γ2β

q
2

θ′′ +
t1τ

q−1
1 λλS2λDF

µ1α
q
1 − γ1β

q
1

< 1, (27)
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where

θ′ = q
√

(r1 + r2)qλq
f − qλδS + qλλSp (r1 + r2)q−1λq−1

f + qλλSpτ
q−1
1 + cqλqλ

q
Sp
,

θ′′ =
q
√

(r3 + r4)qλq
1 − qρδT + qρλTd (r3 + r4)q−1λq−1

1 + qρλTdτ
q−1
2 + cqρqλq

Td
,

where in the case when q is an even natural number, in addition to (26) and (27), the following conditions hold:

qδ1 < 1 + cqλ
q
f , qδ2 ≤ 1 + cqλ

q
1, (28)

qλδS < (r1 + r2)qλq
f + qλλSp (r1 + r2)q−1λq−1

f + qλλSpτ
q−1
2 + cqλ

qλq
Sp
, (29)

qρδT < (r3 + r4)qλq
1 + qρλTd (r3 + r4)q−1λq−1

1 + qρλTdτ
q−1
2 + cqρ

qλq
Td
, (30)

where cq is a constant guaranteed by Lemma 2.1. Then, the iterative sequences {xn}
∞

n=0, {yn}
∞

n=0, {un}
∞

n=0 and {vn}
∞

n=0
generated by Algorithm 4.14 converge strongly to x, y,u and v, respectively, and (x, y,u, v) is a solution of the system
(4) (involving Hi(., .)-ηi-cocoercive mappings (i = 1, 2)).

Proof. Let us define Pi : Xi → Xi as Pi(x) = Hi(Aix,Bix), for each i ∈ {1, 2} and x ∈ Xi. From the assumptions
and Proposition 4.5, it follows that for each i ∈ {1, 2}, the mapping Pi is (µiα

q
i − γiβ

q
i )-strongly ηi-accretive,

P1 is (r1 + r2)-Lipschitz continuous and P2 is (r3 + r4)-Lipschitz continuous. Furthermore, M and N are
P1-η1-accretive and P2-η2-accretive mappings, respectively. Taking ϱ1 = r1 + r2, ϱ2 = r3 + r4, θi = µiα

q
i − γiβ

q
i

and αi = ti, for each i ∈ {1, 2}, we note that all the conditions of Corollary 3.11 hold. Now, the statement
follows by utilizing the statement of Corollary 3.11 immediately.

It should be pointed out that if q is an even natural number, then the positive constants ρ and λ, in
addition to (5), must be also satisfied (28)–(30), as we have added the mentioned conditions to the conditions
of Theorem 4.15. At the same time, there are some mistakes in (3.4) of [3]. In fact, in (3.4) of [3], λ f q , λ1q and
τq1 must be replaced by λq

f , λ
q
1 and τq−1

1 , respectively, as we have done in (26) and (27).
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