# Algorithmic and Analytical Approach of Solutions of a System of Generalized Multi-Valued Nonlinear Variational Inclusions 

Javad Balooee ${ }^{\text {a }}$, Jen-Chih Yao ${ }^{\text {b }}$<br>${ }^{a}$ School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran<br>${ }^{b}$ Research Center for Interneural Computing, China Medical University Hospital, China Medical University, Taichung, Taiwan


#### Abstract

The main contributions of this paper is twofold. First, our primary concern is to suggest a new iterative algorithm using the $P-\eta$-proximal-point mapping technique and Nadler's technique for finding the approximate solutions of a system of generalized multi-valued nonlinear variational-like inclusions. Under some appropriate conditions imposed on the parameters and mappings involved in the system of generalized multi-valued nonlinear variational-like inclusions, the strong convergence of the sequences generated by our proposed iterative algorithm to a solution of the aforesaid system is proved. Second, the $H(.,)-.\eta$-cocoercive mapping considered in [R. Ahmad, M. Dilshad, M. Akram, Resolvent operator technique for solving a system of generalized variational-like inclusions in Banach sapces, Filomat 26(5)(2012) 897908] is investigated and analyzed, and the fact that under the assumptions imposed on $H(.,$.$) - \eta$-cocoercive mapping, every $H(.,$.$) - \eta$-cocoercive mapping is $P-\eta$-accretive and is not a new one is pointed out. At the same time, some important comments on $H(.,)-.\eta$-cocoercive mapping and the results given in the above-mentioned paper are stated.


## 1. Introduction

The study of variational inequalities has a long history and interest in these types of inequalities is caused by their wide applications in solving a large variety of problems arising in many diverse fields of pure and applied science, such as mechanics, economics, engineering science, physics, elasticity, game theory, optimization and control, and so forth. For this reason, the theory of variational inequalities has always been an important subject as it evolved through the last decades, and the mathematical literature dedicated to this is growing rapidly. In the course of the past few decades, because of their extraordinary utility and broad applicability in many branches of sciences, variational inequalities have received a lot of attention and many interesting generalizations of them are appeared in the literature. For a detailed description of these generalizations along with relevant commentaries, the reader is referred to [4-7, $9,10,14,20$ ] and the references therein. Without doubt, among the generalizations, variational inclusions are the most important and well known ones, and in the last two decades the study of various types of variational inclusion problems and related optimization problems has become a rapidly growing area of research, see, for example, $[1,3,8,11,12,15-19,24,26-28,32,33,35-37,39]$ and the references contained therein. With the

[^0]purpose of constructing iterative algorithms for solving various kinds of variational inequality problems and other related optimization problems in the setting of different spaces, in the past several decades, many interesting methods are designed and planned. Among the methods existing in the literature, the proximal-point mapping method (resolvent operator technique) as a useful and significant generalization of projection method is of interest and importance. For references in this regard and some detailed information, we refer the interested reader to $[1,3,15-19,24,26,27,29,33,34,36,37,39]$ and the references given therein.

In the last two decades, the notions of monotone, maximal monotone, accretive and $m$-accretive operators, which the beginning of the study and formulating of them comes back to the sixties, have been developed and generalized in different contexts. In 2001, Huang and Fang [24] succeeded to introduce the concept of maximal $\eta$-monotone operator as a generalization of maximal monotone operator. The same authors [25] introduced the notion of generalized $m$-accretive (also referred to as $m$ - $\eta$-accretive or $\eta$ - $m$ accretive [12]) mapping as a generalization of maximal $\eta$-monotone operators and $m$-accretive mappings. Subsequently, another successfully efforts in this direction led to the emergence of several other extensions of maximal monotone operators and $m$-accretive mappings which for example one can refer to H -monotone operators [16], $H$-accretive mappings [15] and $(H, \eta)$-monotone operators [19]. With the goal of defining and the introduction of a wider class of accretive mappings as a unifying framework for the generalized monotone and generalized accretive operators existing in the literature, the efforts in this direction have been continued and Kazmi and Khan [27], and Peng and Zhu [33] were the first, independently, to introduce and study the notion of $P-\eta$-accretive mapping in a Banach space setting. They defined the $P-\eta$-proximal-point mapping associated with a $P-\eta$-accretive mapping and gave some properties concerning it. The systems of variational inclusions involving $P-\eta$-accretive mappings are considered in [27,33] and the existence of a unique solution for the above-mentioned systems of variational inclusions is proved under some suitable conditions. By using the $P-\eta$-proximal-point mapping technique, they proposed Mann-type iterative algorithms for finding the approximate solution of the aforesaid systems of variational inclusions. In the meanwhile, they studied the convergence analysis of the sequences generated by the Mann-type iterative algorithms proposed in $[27,33]$.

Recently, Ahmad et al. [3] introduced and studied another class of generalized accretive mappings, the so-called $H(.,)-.\eta$-cocoercive mappings as a generalization of $P-\eta$-accretive and $H(.,$.$) -accretive mappings.$ They used the resolvent operator associated with an $H(.,)-.\eta$-cocoercive operator to suggest an iterative algorithm for solving a system of generalized variational-like inclusions in $q$-uniformly smooth Banach spaces. Moreover, they proved the strong convergence of the sequences generated by the proposed iterative algorithm to a solution of the above mentioned system.

The paper is structured as follows. Section 2 provides the basic definitions and preliminaries concerning $P-\eta$-accretive mappings. In Sect. 3, a new system of generalized multi-valued nonlinear variational inclusions (in short, SGMNVI) is considered and its equivalence with a fixed point problem is proved under some appropriate conditions. The obtained equivalence and Nadler's technique are employed to construct a new iterative algorithm for finding the approximate solution of the SGMNVI. We study the convergence analysis of the sequences generated by our proposed iterative algorithm under some imposed conditions on the parameters and mappings involved in the SGMNVI. In the final section, the notion of $H(.,)-.\eta$-cocoercive operator introduced and studied by Ahmad et al. [3] is investigated and analyzed. The fact that contrary to the claim of the authors in [3], under the conditions imposed on it, every $H(.,)-.\eta-$ cocoercive operator is actually a $P-\eta$-accretive mapping and is not a new one is pointed out. At the same time, we give some important comments on $H(.,)-.\eta$-cocoercive operators and with the help of them we discuss the results appeared in [1].

## 2. Notation, basic definitions and fundamental properties

In what follows, unless otherwise stated, we always let $X$ be a real Banach space with a norm $\|\|,$.$d be$ the metric induced by the norm $\|\|,. X^{*}$ be the topological dual space of $X,\langle.,$.$\rangle be the dual pair between X$ and $X^{*}$, and $2^{X}$ (resp. $C B(X)$ ) denote the family of all the nonempty (resp. nonempty closed and bounded)
subsets of $X$. Further, let $D(.,$.$) be the Hausdorff metric of C B(X)$ defined by

$$
D(A, B)=\max \left\{\sup _{x \in A} \inf _{y \in B}\|x-y\|, \sup _{y \in B} \inf _{x \in A}\|x-y\|\right\}, \quad \forall A, B \in C B(X) .
$$

For a given multi-valued mapping $M: X \rightarrow 2^{X}$,
(i) the set Range $(M)$ defined by

$$
\operatorname{Range}(M)=\{y \in X: \exists x \in X:(x, y) \in M\}=\bigcup_{x \in X} M(x)
$$

is called the range of $M$;
(ii) the set $\operatorname{Graph}(M)$ defined by

$$
\operatorname{Graph}(M)=\{(x, u) \in X \times X: u \in M(x)\}
$$

is called the graph of $M$.
For a Banach space $X$, the unit sphere of $X$, denoted by $S_{X}$, is the set of all elements of $X$ having norm 1. Recall that a Banach space $X$ is strictly convex if for each $x$ and $y$ in $S_{X}$ such that $x \neq y$ and each $\lambda$ in $(0,1),\|\lambda x+(1-\lambda) y\|<1$, i.e., $S_{X}$ is strictly convex. As a consequence of this definition, the condition that for $x$ and $y$ in $S_{X}$ such that $x \neq y, 2-\|x+y\|>0$ is equivalent to $X$ being strictly convex and provides us a characterization of strict convexity. $X$ is said to be smooth if for every $x \in S_{X}$ there exits a unique $x^{*}$ in $X^{*}$ such that $\left\|x^{*}\right\|=\left\langle x^{*}, x\right\rangle=1$. It is well known that $X$ is smooth if $X^{*}$ is strictly convex, and that $X$ is strictly convex if $X^{*}$ is smooth. A Banach space $X$ is uniformly convex if for each $\varepsilon$ in $(0,2]$, $2 \delta_{X}(\varepsilon)=\inf \left\{2-\|x+y\|: x, y \in S_{X},\|x-y\| \geq \varepsilon\right\}$ is positive. It is said to be uniformly smooth whenever given $\varepsilon>0$ there exists $\delta>0$ such that for all $x \in S_{X}$ and $y \in X$ with $\|y\| \leq \delta$, then $\|x+y\|+\|x-y\|<2+\varepsilon\|y\|$.

The functions $\delta_{X}:[0,2] \rightarrow[0,1]$ and $\rho_{X}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$given by

$$
\delta_{X}(\varepsilon):=\inf \left\{1-\frac{1}{2}\|x+y\|: x, y \in S_{X},\|x-y\| \geq 2 \varepsilon\right\}
$$

and

$$
\rho_{X}(\tau):=\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1: x, y \in S_{X}\right\}
$$

are respectively called the modulus of convexity and smoothness of $X$. In the light of the definitions of the functions $\delta_{X}$ and $\rho_{X}$, a Banach space $X$ is
(i) uniformly convex if and only if $\delta_{X}$ is strictly positive for every $\varepsilon \in(0,2]$;
(ii) uniformly smooth if and only if $\lim _{\tau \rightarrow 0} \frac{\rho_{X}(\tau)}{\tau}=0$.

It is worthwhile to stress that in the definitions of $\delta_{X}(\varepsilon)$ and $\rho_{X}(\tau)$, one can as well take the infimum and supremum over all vectors $x, y \in X$ with $\|x\|,\|y\| \leq 1$.

A Banach space $X$ is uniformly convex (resp. uniformly smooth) if and only if $X^{*}$ is uniformly smooth (resp. uniformly convex). The spaces $l^{p}, L^{p}$ and $W_{m}^{p}, 1<p<\infty, m \in \mathbb{N}$, are uniformly convex as well as uniformly smooth, see $[13,22,30]$. In the meanwhile, the modulus of convexity and smoothness of a Hilbert space and the spaces $l^{p}, L^{p}$ and $W_{m}^{p}, 1<p<\infty, m \in \mathbb{N}$, can be found in $[13,22,30]$.

For a real constant $q>1$, a mapping $J_{q}: X \rightarrow 2^{X^{*}}$ satisfying the condition

$$
J_{q}(x)=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|^{q},\left\|x^{*}\right\|=\|x\|^{q-1}\right\}, \quad \forall x \in X,
$$

is called the generalized duality mapping of $X$. In particular, $J_{2}$ is the usual normalized duality mapping. It is known that, in general, $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$, for all $x \neq 0$ and $J_{q}$ is single-valued if $X^{*}$ is strictly convex. If $X$ is a Hilbert space, then $J_{2}$ becomes the identity mapping on $X$.

A Banach space $X$ is uniformly convex (resp., uniformly smooth) if and only if the dual $X^{*}$ is uniformly smooth (resp., uniformly convex). Note that $J_{q}$ is single-valued if $X$ is uniformly smooth.

For a real constant $q>1, X$ is called $q$-uniformly smooth if there exists a constant $C>0$ such that $\rho_{X}(\tau) \leq C \tau^{q}$, for all $\tau \in \mathbb{R}^{+}$. It is well known that (see e.g. [38]) $L_{q}$ (or $l_{q}$ ) is $q$-uniformly smooth for $1 \leq q \leq 2$ and is 2-uniformly smooth if $q>2$.

In the study of characteristic inequalities in $q$-uniformly smooth Banach spaces, Xu [38] proved the following result.

Lemma 2.1. Let $X$ be a real uniformly smooth Banach space. For a real constant $q>1, X$ is $q$-uniformly smooth if and only if there exists a constant $c_{q}>0$ such that for all $x, y \in X$,

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y_{,} J_{q}(x)\right\rangle+c_{q}\|y\|^{q} .
$$

We also recall the following concepts and some known results which shall be used in the sequel.
Definition 2.2. Let $X$ be a real $q$-uniformly smooth Banach space and let $T: X \rightarrow X$ and $\eta: X \times X \rightarrow X$ be the mappings. Then $T$ is said to be
(i) $\eta$-accretive if

$$
\left\langle T(x)-T(y), J_{q}(\eta(x, y))\right\rangle \geq 0, \quad \forall x, y \in X ;
$$

(ii) strictly $\eta$-accretive if $T$ is $\eta$-accretive and equality holds if and only if $x=y$;
(iii) $r$-strongly $\eta$-accretive if there exists a constant $r>0$ such that

$$
\left\langle T(x)-T(y), J_{q}(\eta(x, y))\right\rangle \geq r\|x-y\|^{q}, \quad \forall x, y \in X ;
$$

(iv) $\eta$-cocoercive with constant $k$ if there exists a constant $k>0$ such that

$$
\left\langle T(x)-T(y), J_{q}(\eta(x, y))\right\rangle \geq k\|T(x)-T(y)\|^{q}, \quad \forall x, y \in X
$$

(v) $\gamma$-relaxed $\eta$-cocoercive (as referred to as $\eta$-relaxed cocoercive with constant $\gamma$, see, for example [3, Definition 2.2(ii)]) if there exists a constant $\gamma>0$ such that

$$
\left\langle T(x)-T(y), J_{q}(\eta(x, y))\right\rangle \geq-\gamma\|T(x)-T(y)\|^{q}, \quad \forall x, y \in X
$$

(vi) $\alpha$-expansive if there exists a constant $\alpha>0$ such that

$$
\|T(x)-T(y)\| \geq \alpha\|T(x)-T(y)\|, \quad \forall x, y \in X
$$

(vii) $\beta$-lipschitz continuous if there exists a constant $\beta>0$ such that

$$
\|T(x)-T(y)\| \leq \beta\|x-y\|, \quad \forall x, y \in X
$$

Definition 2.3. [15, Definition 1.2] Let $X$ be a real $q$-uniformly smooth Banach space, $P: X \rightarrow X$ be a single-valued mapping and $M: X \rightarrow 2^{X}$ be a multi-valued mapping. $M$ is said to be
(i) accretive if

$$
\left\langle u-v, J_{q}(x-y)\right\rangle \geq 0, \quad \forall(x, u),(y, v) \in \operatorname{Graph}(M) ;
$$

(ii) $m$-accretive if $M$ is accretive and $(I+\lambda M)(X)=X$ holds for all $\lambda>0$, where $I$ is the identity mapping on $X$;
(iii) $P$-accretive if $M$ is accretive and $(P+\lambda M)(X)=X$ holds for every $\lambda>0$.

Chidume et al. [12] defined a class of $\eta$-accretive mappings the so-called $m-\eta$-accretive (also referred to as generalized $m$-accretive [25]) mappings as a generalization of the class of $m$-accretive mappings as follows.

Definition 2.4. [12] Let $X$ be a real $q$-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be a vector-valued mapping. The multi-valued mapping $M: X \rightarrow 2^{X}$ is said to be
(i) $\eta$-accretive if

$$
\left\langle u-v, J_{q}(\eta(x, y))\right\rangle \geq 0, \quad \forall(x, u),(y, v) \in \operatorname{Graph}(M)
$$

(ii) $m$ - $\eta$-accretive if $M$ is $\eta$-accretive and $(I+\lambda M)(X)=X$ holds for all $\lambda>0$, where $I$ is the identity mapping on X.

We note that $M$ is an $m-\eta$-accretive mapping if and only if $M$ is $\eta$-accretive and there is no other $\eta$ accretive mapping whose graph contains strictly $\operatorname{Graph}(M)$. The $m-\eta$-accretivity is to be understood in terms of inclusion of graphs. If $M: X \rightarrow 2^{X}$ is an $m-\eta$-accretive mapping, then adding anything to its graph so as to obtain the graph of a new multi-valued mapping, destroys the $\eta$-accretivity. If fact, the extended mapping is no longer $\eta$-accretive. In other words, for every pair $(x, u) \in X \times X \backslash \operatorname{Graph}(M)$ there exists $(y, v) \in \operatorname{Graph}(M)$ such that $\left\langle u-v, J_{q}(\eta(x, y))\right\rangle<0$. Taking into account of the above-mentioned arguments, a necessary and sufficient condition for a multi-valued mapping $M: X \rightarrow 2^{X}$ to be $m$ - $\eta$-accretive is that the property

$$
\left\langle u-v, J_{q}(\eta(x, y))\right\rangle \geq 0, \quad \forall(y, v) \in \operatorname{Graph}(M)
$$

is equivalent to $u \in M(x)$. The above characterization of $m-\eta$-accretive mappings provides a useful and manageable way for recognizing that an element $u$ belongs to $M(x)$.

Kazmi and Khan [27] and subsequently Peng and Zhu [33] introduced and studied another class of generalized accretive operators the so-called $P-\eta$-accretive (also referred to as ( $H, \eta$ )-accretive) mappings as an extension of $m-\eta$-accretive mappings as follows.

Definition 2.5. [27,33] Let $X$ be a real $q$-uniformly smooth Banach space, $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$ be two single-valued mappings and $M: X \rightarrow 2^{X}$ be a multi-valued mapping. $M$ is said to be $P$ - $\eta$-accretive if $M$ is $\eta$-accretive and $(P+\lambda M)(X)=X$ holds for every constant $\lambda>0$.

The following example illustrates that for given mappings $\eta: X \times X \rightarrow X$ and $P: X \rightarrow X$, a $P-\eta$-accretive mapping may be neither $P$-accretive nor $m-\eta$-accretive.

Example 2.6. Let $m, n \in \mathbb{N}$ be arbitrary but fixed and let $M_{m \times n}(\mathbb{F})$ be the space of all $m \times n$ matrices with real or complex entries. Then

$$
M_{m \times n}(\mathbb{F})=\left\{A=\left(a_{i j}\right) \mid a_{i j} \in \mathbb{F}, i=1,2, \ldots, m ; j=1,2, \ldots, n ; \mathbb{F}=\mathbb{R} \text { or } \mathbb{C}\right\}
$$

is a 2-uniformly smooth Banach space with respect to the Hilbert-Schmidt norm

$$
\|A\|=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}}, \quad \forall A \in M_{m \times n}(\mathbb{F})
$$

induced by the Hilbert-Schmidt inner product

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{a}_{i j} b_{i j}, \quad \forall A, B \in M_{m \times n}(\mathbb{F}),
$$

where $t r$ denotes the trace, that is, the sum of the diagonal entries, $A^{*}$ denotes the Hermitian conjugate (or adjoint) of the matrix $A$, that is, $A^{*}=\overline{A^{t}}$, the complex conjugate of the transpose $A$, the bar denotes complex conjugation and superscript denotes the transpose of the entries. For $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$, let $E_{i j}$ be the $m \times n$ such that $(i, j)$-entry equals to one and all other entries equal to zero. Then the set $\left\{E_{i j}: i=1,2, \ldots, m ; j=1,2, \ldots, n\right\}$ is called the set matrix-units and form a basis of $M_{m \times n}(\mathbb{F})$. Any matrix $A=\left(a_{i j}\right) \in M_{m \times n}(\mathbb{F})$ can be written as $A=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} E_{i j}$. If $m=n$, then $\left\{E_{i j}: i, j=1,2, \ldots, n\right\}$ is the set of matrix units of the space $M_{n \times n}(\mathbb{F})=M_{n}(\mathbb{F})$, that is, the space of all $n \times n$ real or complex matrices, and for any $A=\left(a_{i j}\right) \in M_{m \times n}(\mathbb{F})$, we have $A=\sum_{i, j=1}^{n} a_{i j} E_{i j}$. Furthermore, $I_{n}=\sum_{i=1}^{n} E_{i i}$, where for each $k \in\{1,2, \ldots, n\}$,
$E_{k k}=\left(e_{i j}\right)$ is an $n \times n$ matrix with the entry $e_{k k}=1$ and 0 's everywhere else, is a representation of the identity matrix $I_{n}$ in $M_{n}(\mathbb{F})$. Indeed, $I_{n}=\left(\delta_{i j}\right)$ and

$$
\delta_{i j}= \begin{cases}1, & i=j, \\ 0, & i \neq j,\end{cases}
$$

is the Kronecker delta. Let us denote by $D_{n}(\mathbb{R})$ the space of all diagonal $n \times n$ matrices with real entries, that is, the ( $i, j$ )-entry is an arbitrary real number if $i=j$, and is zero if $i \neq j$. Then

$$
D_{n}(\mathbb{R})=\left\{A=\left(a_{i j}\right) \mid a_{i j} \in \mathbb{R}, a_{i j}=0 \text { if } i \neq j ; i, j=1,2, \ldots, n\right\}
$$

is a subspace of $M_{n \times n}(\mathbb{R})=M_{n}(\mathbb{R})$ with respect to the operations of addition and scalar multiplication defined on $M_{n}(\mathbb{R})$, and the Hilbert-Schmidt inner product on $D_{n}(\mathbb{R})$, and the Hilbert-Schmidt norm induced by it become as $\langle A, B\rangle=\operatorname{tr}\left(A^{*} B\right)=\operatorname{tr}(A B)$ and $\|A\|=\sqrt{\langle A, A\rangle}=\sqrt{\operatorname{tr}(A A)}=\left(\sum_{i=1}^{n} a_{i i}^{2}\right)^{\frac{1}{2}}$, respectively. Let the mappings $M: D_{n}(\mathbb{R}) \rightarrow 2^{D_{n}(\mathbb{R})}, \eta: D_{n}(\mathbb{R}) \times D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ and $P: D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ be defined, respectively, by

$$
\begin{aligned}
& M(A)= \begin{cases}\left\{E_{i i}-E_{k k}: i=1,2, \ldots, n ; i \neq k\right\}, & A=E_{k k}, \\
-A+E_{k k} & A \neq E_{k k},\end{cases} \\
& \eta(A, B)= \begin{cases}C, & A, B \neq E_{k k}, \\
0, & \text { otherwise },\end{cases}
\end{aligned}
$$

and $P(A)=\beta A+\gamma E_{k k}$, for all $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, where $C=\left(c_{i j}\right)$ is an $n \times n$ matrix with the entries

$$
c_{i j}= \begin{cases}\alpha_{i} e^{l_{i}\left(a_{i i}+b_{i i}\right)}\left(b_{i i}^{q_{i}}-a_{i i}^{q_{i}}\right), & i=j, \\ 0, & i \neq j,\end{cases}
$$

where for $i=1,2, \ldots, n, \alpha_{i}, l_{i}(i=1,2, \ldots, n), \beta, \gamma \in \mathbb{R}$ are arbitrary constants such that $\beta<0<\alpha_{i}$ for each $i \in\{1,2, \ldots, n\}, q_{i}(i=1,2, \ldots, n)$ are arbitrary but fixed odd natural numbers, $\mathbf{0}$ is the zero vector (the zero matrix) of the space $D_{n}(\mathbb{R})$, and $k \in\{1,2, \ldots, n\}$ is an arbitrary but fixed natural number. Then for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R}), A \neq B \neq E_{k k}$, we have

$$
\left\langle M(A)-M(B), J_{2}(A-B)\right\rangle=\langle B-A, A-B\rangle=-\|A-B\|^{2}=-\sum_{i=1}^{n}\left(a_{i i}-b_{i i}\right)^{2}<0
$$

which means that $M$ is not accretive and so it is not a $P$-accretive mapping.
For any given $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R}), A \neq B \neq E_{k k}$, we obtain

$$
\begin{aligned}
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle & =\langle M(A)-M(B), \eta(A, B)\rangle \\
& =\operatorname{tr}\left(\left(b_{i j}-a_{i j}\right)\left(c_{i j}\right)\right) \\
& =\sum_{i=1}^{n} \alpha_{i}\left(b_{i i}-a_{i i}\right)^{2} e^{l_{i}\left(a_{i i}+b_{i i}\right)} \sum_{s=1}^{q_{i}} b_{i i}^{q_{i}-s} a_{i i}^{s-1} .
\end{aligned}
$$

Since for each $i \in\{1,2, \ldots, n\}, q_{i}$ is an odd natural number, it follows that $\sum_{s=1}^{q_{i}} b_{i i}^{q_{i}-s} a_{i i}^{s-1} \geq 0$ for each $i \in$ $\{1,2, \ldots, n\}$. Thus, the preceding relation implies that

$$
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle \geq 0, \quad \forall A, B \in D_{n}(\mathbb{R}), A \neq B \neq E_{k k}
$$

For each of the cases when $A \neq B=E_{k k}, B \neq A=E_{k k}$ and $A=B=E_{k k}$, thanks to the fact that $\eta(A, B)=0$, we infer that

$$
\left\langle u-v, J_{2}(\eta(A, B))\right\rangle=0, \quad \forall u \in M(A), v \in M(B)
$$

Therefore, $M$ is an $\eta$-accretive mapping. Taking into account that for any $E_{k k} \neq A \in D_{n}(\mathbb{R})$,

$$
\|(I+M)(A)\|^{2}=\left\|A-A+E_{k k}\right\|^{2}=\left\|E_{k k}\right\|^{2}=\left\langle E_{k k}, E_{k k}\right\rangle=\operatorname{tr}\left(E_{k k} E_{k k}\right)=\sum_{i=1}^{n} e_{i i}^{2}=e_{k k}^{2}=1>0
$$

and $(I+M)\left(E_{k k}\right)=\left\{E_{i i}: i=1,2, \ldots, n ; i \neq k\right\}$, where $I$ is the identity mapping on $X=D_{n}(\mathbb{R})$, we deduce that $\mathbf{0} \notin(I+M)\left(D_{n}(\mathbb{R})\right)$. This fact ensures that $I+M$ is not surjective, and so $M$ is not an $m-\eta$-accretive mapping. For any given constant $\lambda>0$ and $A \in D_{n}(\mathbb{R})$, by taking $Q=\frac{1}{\beta-\lambda} A+\frac{\gamma+\lambda}{\lambda-\beta} E_{k k}(\lambda \neq \beta$ because $\beta<0)$, it follows that

$$
\begin{aligned}
(P+\lambda M)(Q)= & (P+\lambda M)\left(\frac{1}{\beta-\lambda} A+\frac{\gamma+\lambda}{\lambda-\beta} E_{k k}\right)=\frac{\beta}{\beta-\lambda} A+\frac{\beta(\gamma+\lambda)}{\lambda-\beta} E_{k k}+\gamma E_{k k} \\
& -\frac{\lambda}{\beta-\lambda} A-\frac{\lambda(\gamma+\lambda)}{\lambda-\beta} E_{k k}+\lambda E_{k k}=A
\end{aligned}
$$

Thereby, the mapping $P+\lambda M$ is surjective for any real constant $\lambda>0$ and so $M$ is a $P-\eta$-accretive mapping.
The following example shows that for given mappings $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$, an $m-\eta$-accretive mapping need not be $P-\eta$-accretive.
Example 2.7. Suppose that the space $D_{n}(\mathbb{R})$ is the same as in Example 2.6 and let the mappings $P, M$ : $D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ and $\eta: D_{n}(\mathbb{R}) \times D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ be defined, respectively, by $P(A)=P\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime}\right)$, $M(A)=M\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime \prime}\right)$ and $\eta(A, B)=\eta\left(\left(a_{i j}\right),\left(b_{i j}\right)\right)=\left(c_{i j}\right)$ for all $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
& a_{i j}^{\prime}= \begin{cases}a_{i i^{\prime}}^{2}, & i=j, \\
0, & i \neq j,\end{cases} \\
& a_{i j}^{\prime \prime}= \begin{cases}\alpha_{i} a_{i i,}, & i=j, \\
0, & i \neq j,\end{cases}
\end{aligned}
$$

and

$$
c_{i j}= \begin{cases}\beta_{i} e^{k_{i}\left(a_{i i}+b_{i i}\right)}\left(a_{i i}^{q_{i}}-b_{i i}^{q_{i}},,\right. & i=j, \\ 0, & i \neq j,\end{cases}
$$

$k_{i} \in \mathbb{R}$ and $\alpha_{i}, \beta_{i}>0$ are arbitrary but fixed, and $q_{i}$ are arbitrary but fixed odd natural numbers. Then, for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, we get

$$
\begin{align*}
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle & =\langle M(A)-M(B), \eta(A, B)\rangle \\
& =\operatorname{tr}\left(\left(a_{i j}^{\prime \prime}-b_{i j}^{\prime \prime}\right)\left(c_{i j}\right)\right) \\
& =\operatorname{tr}\left(\left(\widetilde{a}_{i j}\right)\right)  \tag{1}\\
& =\sum_{i=1}^{n} \alpha_{i} \beta_{i}\left(a_{i i}-b_{i i}\right)^{2} e^{k_{i}\left(a_{i i}+b_{i i}\right)} \sum_{l=1}^{q_{i}} a_{i i}^{q_{i}-l} b_{i i}^{l-1}
\end{align*}
$$

where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\widetilde{a}_{i j}= \begin{cases}\alpha_{i} \beta_{i}\left(a_{i i}-b_{i i}\right) e^{k_{i}\left(a_{i i}+b_{i i}\right)}\left(a_{i i}^{q_{i}}-b_{i i}^{q_{i}}\right), & i=j, \\ 0, & i \neq j\end{cases}
$$

Since for each $i \in\{1,2, \ldots, n\}, q_{i}$ is an odd natural number, it can be easily observed that $\sum_{l=1}^{q_{i}} a_{i i}^{q_{i}-l} b_{i i}^{l-1} \geq 0$, for each $i \in\{1,2, \ldots, n\}$. Consequently, from (1) it follows that $M$ is an $\eta$-accretive mapping.

Let for each $i \in\{1,2, \ldots, n\}$, the mapping $\widehat{f_{i}}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\widehat{f_{i}}(x)=x^{2}+\alpha_{i} x$, for all $x \in \mathbb{R}$. Then, for any $A=\left(a_{i j}\right) \in D_{n}(\mathbb{R})$, we obtain $(P+M)(A)=(P+M)\left(\left(a_{i j}\right)\right)=\left(\widehat{a}_{i j}\right)$, where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\widehat{a}_{i j}=\left\{\begin{array}{ll}
a_{i i}^{2}+\alpha_{i} a_{i i}, & i=j, \\
0, & i \neq j,
\end{array}= \begin{cases}\widehat{f_{i}}\left(a_{i i}\right), & i=j, \\
0, & i \neq j\end{cases}\right.
$$

In virtue of the fact that for each $i \in\{1,2, \ldots, n\}, \widehat{f_{i}}(x)=x^{2}+\alpha_{i} x=\left(x+\frac{\alpha_{i}}{2}\right)^{2}-\frac{\alpha_{i}^{2}}{4} \geq-\frac{\alpha_{i}^{2}}{4}$, it follows that for each $i \in\{1,2, \ldots, n\}, \widehat{f_{i}}(\mathbb{R})=\left[-\frac{\alpha_{i}^{2}}{4},+\infty\right) \neq \mathbb{R}$. This fact implies that $(P+M)\left(D_{n}(\mathbb{R})\right) \neq D_{n}(\mathbb{R})$, that is, $P+M$ is not surjective, and so $M$ is not $P-\eta$-accretive. Now, let $\lambda>0$ be an arbitrary constant and let for each $i \in\{1,2, \ldots, n\}$, the mapping $\widehat{g}_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $\widehat{g}_{i}(x)=\left(1+\lambda \alpha_{i}\right) x$, for all $x \in \mathbb{R}$. Then, for any $A=\left(a_{i j}\right) \in D_{n}(\mathbb{R})$, it yields $(I+\lambda M)(A)=(I+\lambda M)\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{+}\right)$, where for each $i, j \in\{1,2, \ldots, n\}$,

$$
a_{i j}^{+}=\left\{\begin{array}{ll}
\left(1+\lambda \alpha_{i}\right) a_{i i}, & i=j, \\
0, & i \neq j,
\end{array}= \begin{cases}\widehat{g}_{i}\left(a_{i i}\right), & i=j, \\
0, & i \neq j,\end{cases}\right.
$$

where $I$ is the identity mapping on $D_{n}(\mathbb{R})$. Since $\widehat{g_{i}}(\mathbb{R})=\mathbb{R}$ for each $i \in\{1,2, \ldots, n\}$, it follows that $(I+\lambda M)\left(D_{n}(\mathbb{R})\right)=D_{n}(\mathbb{R})$, that is, $I+\lambda M$ is surjective. Taking into account the arbitrariness in the choice of $\lambda>0$, we conclude that $M$ is an $m$-accretive mapping.

Example 2.8. Let the space $D_{n}(\mathbb{R})$ be the same as in Example 2.6 and assume that the mappings $P_{1}, P_{2}, M$ : $D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ and $\eta: D_{n}(\mathbb{R}) \times D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ are defined, respectively, by $P_{1}(A)=P_{1}\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime}\right)$, $P_{2}(A)=P_{2}\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime \prime}\right), M(A)=M\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime \prime \prime}\right)$, and $\eta(A, B)=\eta\left(\left(a_{i j}\right),\left(b_{i j}\right)\right)=\left(c_{i j}\right)$, for all $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
& a_{i j}^{\prime}= \begin{cases}\frac{2 a_{i i}^{2}-1}{a_{i i}^{2}+1}-\varrho \sqrt[k]{a_{i i}}, & i=j, \\
0, & i \neq j,\end{cases} \\
& a_{i j}^{\prime \prime}= \begin{cases}3 a_{i i}+2+\left|a_{i i}-2\right|, & i=j, \\
0, & i \neq j,\end{cases} \\
& a_{i j}^{\prime \prime \prime}= \begin{cases}\varrho \sqrt[k]{a_{i i}}, & i=j, \\
0, & i \neq j,\end{cases}
\end{aligned}
$$

and

$$
c_{i j}= \begin{cases}\gamma \theta^{\sigma a_{i i} b_{i i}}\left(a_{i i}-b_{i i}\right), & i=j, \\ 0, & i \neq j,\end{cases}
$$

where $\gamma, \varrho, \theta>0$ and $\sigma \in \mathbb{R}$ are arbitrary constants, and $k$ is an arbitrary but fixed odd natural number. In view of the fact that $\left(D_{n}(\mathbb{R}),\|\cdot\|\right)$ is a finite dimensional normed space, we infer that it is a 2-uniformly smooth Banach space. Then, for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, it yields

$$
\begin{aligned}
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle & =\langle M(A)-M(B), \eta(A, B)\rangle \\
& =\operatorname{tr}\left(\left(a_{i j}^{\prime \prime \prime}-b_{i j}^{\prime \prime \prime}\right)\left(c_{i j}\right)\right) \\
& =\gamma \varrho \sum_{i=1}^{n}\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right) \theta^{\sigma a_{i i} b_{i i}}\left(a_{i i}-b_{i i}\right) .
\end{aligned}
$$

For any $i \in\{1,2, \ldots, n\}$,
(i) if $a_{i i}=b_{i i}=0$, then $\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right)\left(a_{i i}-b_{i i}\right)=0$;
(ii) if $a_{i i} \neq 0$ and $b_{i i}=0$, then $\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right)\left(a_{i i}-b_{i i}\right)=a_{i i} \sqrt[k]{a_{i i}}=\sqrt[k]{a_{i i}^{k+1}}$;
(iii) if $a_{i i}=0$ and $b_{i i} \neq 0$, then $\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right)\left(a_{i i}-b_{i i}\right)=b_{i i} \sqrt[k]{b_{i i}}=\sqrt[k]{b_{i i}^{k+1}}$;
(iv) if $a_{i i}, b_{i i} \neq 0$, then $\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}=\frac{a_{i i}-b_{i i}}{\sum_{t=1}^{k} \sqrt[k]{a_{i i}^{k-t} b_{i i}^{t-1}}}$.

Since $k$ is an odd natural number, it follows that $\sqrt[k]{a_{i i}^{k+1}}, \sqrt[k]{b_{i i}^{k+1}}>0$ and $\sum_{t=1}^{k} \sqrt[k]{a_{i i}^{k-t} b_{i i}^{t-1}}>0$. These facts guarantee that $\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right)\left(a_{i i}-b_{i i}\right)>0$ and $\sum_{i=1}^{n}\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right)\left(a_{i i}-b_{i i}\right)=\sum_{i=1}^{n} \frac{\left(a_{i i}-b_{i i}\right)^{2}}{\sum_{t=1}^{k} \sqrt[k]{a_{i i}^{k-t} b_{i i}^{t-1}}}>0$. Taking into account that $\gamma, \varrho>0$, in the light of the above-mentioned discussions, we deduce that for all $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$,

$$
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle=\gamma \varrho \sum_{i=1}^{n}\left(\sqrt[k]{a_{i i}}-\sqrt[k]{b_{i i}}\right) \theta^{\sigma a_{i j} b_{i i}}\left(a_{i i}-b_{i i}\right)=\gamma \varrho \sum_{i=1}^{n} \frac{\theta^{\sigma a_{i j} b_{i i}}\left(a_{i i}-b_{i i}\right)^{2}}{\sum_{t=1}^{k} \sqrt[k]{a_{i i}^{k-t} b_{i i}^{t-1}} \geq 0, ~ ; ~, ~}
$$

i.e., $M$ is an accretive mapping. Assume that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x):=\frac{2 x^{2}-1}{x^{2}+1}$ for all $x \in \mathbb{R}$. Then, for any $A=\left(a_{i j}\right) \in D_{n}(\mathbb{R})$, we get

$$
\left(P_{1}+M\right)(A)=\left(P_{1}+M\right)\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime}+a_{i j}^{\prime \prime \prime}\right)=\left(\widetilde{a}_{i j}\right)
$$

where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\widetilde{a}_{i j}=\left\{\begin{array}{ll}
\frac{2 a_{i i}^{2}-1}{a_{i i}^{2}+1}, & i=j, \\
0, & i \neq j,
\end{array}= \begin{cases}f\left(a_{i i}\right), & i=j, \\
0, & i \neq j\end{cases}\right.
$$

In virtue of the fact that $f(\mathbb{R})=[-1,2)$, we conclude that $\left(P_{1}+M\right)\left(D_{n}(\mathbb{R})\right) \neq D_{n}(\mathbb{R})$, which means that the mapping $P_{1}+M$ is not surjective, and so $M$ is not a $P_{1}-\eta$-accretive mapping. Now, let the real constant $\lambda$ be chosen arbitrarily but fixed and suppose that the function $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x):=3 x+2+|x-2|+\lambda \varrho \sqrt[k]{x}$, for all $x \in \mathbb{R}$. Then, for any $A=\left(a_{i j}\right) \in D_{n}(\mathbb{R})$, we obtain

$$
\left(P_{2}+\lambda M\right)(A)=\left(P_{2}+\lambda M\right)\left(\left(a_{i j}\right)\right)=\left(a_{i j}^{\prime \prime}+\lambda a_{i j}^{\prime \prime \prime}\right)=\left(\widehat{a_{i j}}\right),
$$

where for each $i, j \in\{1,2, \ldots, n\}$,

$$
\widehat{a}_{i j}=\left\{\begin{array}{ll}
3 a_{i i}+2+\left|a_{i i}-2\right|+\lambda \varrho \sqrt[k]{a_{i i}}, & i=j, \\
0, & i \neq j,
\end{array}= \begin{cases}g\left(a_{i i}\right), & i=j, \\
0, & i \neq j .\end{cases}\right.
$$

Relying on the fact that $g(\mathbb{R})=\mathbb{R}$, it follows that $\left(P_{2}+\lambda M\right)\left(D_{n}(\mathbb{R})\right)=D_{n}(\mathbb{R})$, that is, $P_{2}+\lambda M$ is a surjective mapping. Since the positive real constant $\lambda$ was arbitrary, we deduce that $M$ is a $P_{2}-\eta$-accretive mapping.

In accordance with Example 2.6, for given mappings $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$, a $P$ - $\eta$-accretive mapping need not be $m-\eta$-accretive. The following proposition states conditions under which for given mappings $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$, every $P-\eta$-accretive mapping is $m$ - $\eta$-accretive.

Proposition 2.9. [27, Theorem 3.1] Let $X$ be a real q-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be a vectorvalued mapping, $P: X \rightarrow X$ be a strictly $\eta$-accretive mapping, and $M: X \rightarrow 2^{X}$ be a $P-\eta$-accretive mapping, and let $x, u \in X$ be two given points. If $\left\langle u-v, J_{q}(\eta(x, y))\right\rangle \geq 0$ holds, for all $(y, v) \in \operatorname{Graph}(M)$, then $u \in M(x)$, that is, $M$ is an $m-\eta$-accretive mapping.

Regarding to Example 2.7, for given mappings $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$, an $m-\eta$-accretive mapping may not be $P-\eta$-accretive. In the next result, the sufficient conditions for guaranteeing that for given mappings $P: X \rightarrow X$ and $\eta: X \times X \rightarrow X$, an $m-\eta$-accretive mapping to be $P-\eta$-accretive are provided. Before proceeding to it, we need to recall the following concepts.

Definition 2.10. Let $X$ be a real $q$-uniformly smooth Banach space. A single-valued mapping $P: X \rightarrow X$ is said to be coercive if

$$
\lim _{\|x\| \rightarrow+\infty} \frac{\left\langle P(x), J_{q}(x)\right\rangle}{\|x\|}=+\infty
$$

Definition 2.11. Let $X$ be a real $q$-uniformly smooth Banach space and $P: X \rightarrow X$ be a single-valued mapping. $P$ is said to be bounded, if $P(A)$ is a bounded subset of $X$, for every bounded subset $A$ of $X$. We say that $P$ is a hemi-continuous mapping if for any $x, y, z \in X$, the function $t \longmapsto\left\langle P(x+t y), J_{q}(z)\right\rangle$ is continuous at $0^{+}$.

Proposition 2.12. Let $X$ be a real $q$-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be a vector-valued mapping, and $P: X \rightarrow X$ be a bounded, coercive, hemi-continuous and $\eta$-accretive mapping. If $M: X \rightarrow 2^{X}$ is an m- $\eta$-accretive mapping, then $M$ is $P-\eta$-accretive.

Proof. Taking into consideration the fact that $P$ is bounded, coercive, hemi-continuous and $\eta$-accretive, invoking Theorem 3.1 of Guo [21, P.401], we conclude that $P+\lambda M$ is surjective for every $\lambda>0$, i.e., $(P+\lambda M)(X)=X$ holds for every $\lambda>0$. Accordingly, $M$ is a $P-\eta$-accretive mapping. This completes the proof.

Lemma 2.13. [33, Theorem 3.1(b)] Let $X$ be a real $q$-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be a vectorvalued mapping, $P: X \rightarrow X$ be a strictly $\eta$-accretive mapping, and $M: X \rightarrow 2^{X}$ be a $P-\eta$-accretive mapping. Then, the mapping $(P+\lambda M)^{-1}$ is single-valued for every real constant $\lambda>0$.

Based on Lemma 2.13, one can define the $P-\eta$-resolvent operator $R_{M, \lambda}^{P, \eta}$ associated with a $P-\eta$-accretive mapping $M$ and an arbitrary real constant $\lambda>0$ as follows.

Definition 2.14. [27,33] Let $X$ be a real $q$-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be a vector-valued mapping, $P: X \rightarrow X$ be a strictly $\eta$-accretive mapping, $M: X \rightarrow 2^{X}$ be a $P-\eta$-accretive mapping, and $\lambda>0$ be an arbitrary real constant. The resolvent operator $R_{M, \lambda}^{P, \eta}: X \rightarrow X$ associated with $P, \eta, M$ and $\lambda$ is defined by

$$
R_{M, \lambda}^{P, \eta}(u)=(P+\lambda M)^{-1}(u), \quad \forall u \in X
$$

Definition 2.15. A vector-valued mapping $\eta: X \times X \rightarrow X$ is said to be $\tau$-Lipschitz continuous if there exists a constant $\tau>0$ such that $\|\eta(x, y)\| \leq \tau\|x-y\|$, for all $u, v \in X$.

Under some suitable conditions imposed on the mappings and parameter, the authors [33] proved the Lipschitz continuity of the resolvent operator $R_{M, \lambda}^{P, \eta}$ associated with a $P-\eta$-accretive mapping $M$ and an arbitrary real constant $\lambda>0$ and compute an estimate of its Lipschitz constant as follows.

Lemma 2.16. [33, Lemma 2.4] Let $X$ be a real $q$-uniformly smooth Banach space, $\eta: X \times X \rightarrow X$ be $\tau$-Lipschitz continuous, $P: X \rightarrow X$ be an $r$-strongly $\eta$-accretive mapping, $M: X \rightarrow 2^{X}$ be a $P$ - $\eta$-accretive mapping, and $\lambda>0$ be an arbitrary real constant. Then, the $P-\eta$-proximal mapping $R_{M, \lambda}^{P, \eta}: X \rightarrow X$ is Lipschitz continuous with constant $\frac{\tau^{q-1}}{r}$, i.e.,

$$
\left\|R_{M, \lambda}^{P, \eta}(u)-R_{M, \lambda}^{P, \eta}(v)\right\| \leq \frac{\tau^{q-1}}{r}\|u-v\|, \quad \forall u, v \in X
$$

## 3. Formulation of the Problem, Iterative Algorithms and Convergence Results

Let for each $i \in\{1,2\}, X_{i}$ be a real $q_{i}$-uniformly smooth Banach space with dual space $X_{i}^{*}$ and norm $\|.\|_{i}$, and $\langle., .\rangle_{i}$ be the dual pair between $X_{i}$ and $X_{i}^{*}$. Assume that for $i=1,2, f_{i}, p_{i}: X_{i} \rightarrow X_{i}, S_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ and $Q_{i}: X_{j} \times X_{i} \rightarrow X_{i}(j \in\{1,2\} \backslash\{i\})$ are the mappings. Further, let for $i=1,2, F_{i}: X_{i} \rightarrow C B\left(X_{i}\right), M_{i}: X_{i} \rightarrow 2^{X_{i}}$ and $T_{i}: X_{j} \rightarrow C B\left(X_{j}\right)(j \in\{1,2\} \backslash\{i\})$ be the multi-valued mappings. We consider the following system of generalized multi-valued nonlinear variational inclusions (SGMNVI): find $(x, y) \in X_{1} \times X_{2}, u \in F_{1}(x)$, $v \in F_{2}(y), w \in T_{1}(y)$ and $t \in T_{2}(x)$ such that

$$
\left\{\begin{array}{l}
0 \in S_{1}\left(p_{1}(x), v\right)+Q_{1}(w, t)+M_{1}\left(f_{1}(x)\right),  \tag{2}\\
0 \in S_{2}\left(u, p_{2}(y)\right)+Q_{2}(t, w)+M_{2}\left(f_{2}(y)\right) .
\end{array}\right.
$$

If $q_{i}=q$ for $i=1,2, S_{1}=S, S_{2}=T, M_{1}=M, M_{2}=N, F_{1}=E, F_{2}=F, Q_{1}=Q_{2} \equiv 0, f_{1}=f, f_{2}=g, p_{1}=p$ and $p_{2}=d$, then the SGMNVI (2) collapses to the following generalized multi-valued nonlinear variational inclusions system: find $(x, y) \in X_{1} \times X_{2}, u \in E(x), v \in F(y)$ such that

$$
\left\{\begin{array}{l}
0 \in S(p(x), v)+M(f(x)),  \tag{3}\\
0 \in T(u, d(y))+N(g(y)) .
\end{array}\right.
$$

A special case of the system (3) where the underlying spaces are Hilbert spaces and the multi-valued mappings $M$ and $N$ are $A$-monotone operators is considered in [28]. It should be remarked that for suitable and appropriate choices of the mappings $S_{i}, Q_{i}, F_{i}, T_{i}, M_{i}, f_{i}, p_{i}$ and the spaces $X_{i}(i=1,2)$, the SGMNVI (2) reduces to various classes of variational inclusions and variational inequalities, see for example, [17$19,23,28,32,33,36,37,39$ ] and the references therein.

In order to construct an iterative algorithm for approximating the solution of the SGMNVI (2), we require the lemma mentioned below, in which the equivalence between the SGMNVI (2) and a fixed point problem is stated.
Lemma 3.1. Let $X_{i}, F_{i}, S_{i}, T_{i}, Q_{i}, M_{i}, f_{i}, p_{i}(i=1,2)$ be the same as in the SGMNVI (2). Suppose further that for each $i \in\{1,2\}, \eta_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ is a vector-valued mapping, $P_{i}: X_{i} \rightarrow X_{i}$ is a strictly $\eta_{i}$-accretive mapping, and $M_{i}$ is a $P_{i}-\eta_{i}$-accretive mapping. Then $(x, y) \in X_{1} \times X_{2},(u, v) \in F_{1}(x) \times F_{2}(y)$ and $(w, t) \in T_{1}(y) \times T_{2}(x)$ are the solution of the SGMNVI (2), if and only if

$$
\left\{\begin{array}{l}
f_{1}(x)=R_{M_{1}, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}\left(f_{1}(x)\right)-\lambda\left(S_{1}\left(p_{1}(x), v\right)+Q_{1}(w, t)\right)\right]  \tag{4}\\
f_{2}(y)=R_{M_{2}, \rho}^{P_{2}, \eta_{2}}\left[P_{2}\left(f_{2}(y)\right)-\rho\left(S_{2}\left(u, p_{2}(y)\right)+Q_{2}(t, w)\right)\right]
\end{array}\right.
$$

where $\lambda, \rho>0$ are two constants.
Proof. The conclusions follow directly from Definition 2.14 and some simple arguments.
As an immediate consequence of the above result, we obtain the following conclusion.
Lemma 3.2. Suppose that $X_{i}(i=1,2), S, T, E, F, M, N, f, g, p, d$ are the same as in the system (3). Further, let for each $i \in\{1,2\}, \eta_{i}: X_{i} \rightarrow X_{i}$ be a vector-valued mapping, $P_{i}: X_{i} \rightarrow X_{i}$ be a strictly $\eta_{i}$-accretive mapping, $M$ be a $P_{1}-\eta_{1}$-accretive mapping and $N$ be a $P_{2}-\eta_{2}$-accretive mapping. Then $(x, y) \in X_{1} \times X_{2}$ and $(u, v) \in F(x) \times F(y)$ are the solution of the system (3) if and only if

$$
\left\{\begin{array}{l}
f(x)=R_{M, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}(f(x))-\lambda S_{1}(p(x), v)\right] \\
g(y)=R_{N, \rho}^{P_{2}, \eta_{2}}\left[P_{2}(g(y))-\rho T(u, d(y))\right]
\end{array}\right.
$$

where $\lambda, \rho>0$ are two constants.
Lemma 3.3. [31] Let $(X, d)$ be a complete metric space and $T: X \rightarrow C B(X)$ be a multi-valued mapping. Then, for any $\varepsilon>0$ and for any given $x, y \in X, u \in T(x)$, there exists $v \in T(y)$ such that

$$
d(u, v) \leq(1+\varepsilon) D(T(x), T(y))
$$

where $D(.,$.$) is the Hausdorff metric on C B(X)$.

The fixed point formulation (4) and Nadler's technique [31] enable us to construct the following iterative algorithm for approximating the solution of the SGMNVI (2).

Algorithm 3.4. Let $X_{i}, F_{i}, S_{i}, T_{i}, Q_{i}, f_{i}, p_{i}(i=1,2)$ be the same as in the SGMNVI (2). Suppose that for each $i \in\{1,2\}$, $\eta_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ is a vector-valued mapping, $P_{i}: X_{i} \rightarrow X_{i}$ is a strictly $\eta_{i}$-accretive mapping and $M_{i}: X_{i} \rightarrow 2^{X_{i}}$ is a $P_{i}-\eta_{i}$-accretive mapping. For any given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{2},\left(u_{0}, v_{0}\right) \in F_{1}\left(x_{0}\right) \times F_{2}\left(y_{0}\right)$ and $\left(w_{0}, t_{0}\right) \in T_{1}\left(y_{0}\right) \times T_{2}\left(x_{0}\right)$, define the iterative sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0^{\prime}}^{\infty}\left\{\left(w_{n}, t_{n}\right)\right\}_{n=0}^{\infty} \subseteq \bigcup_{n=0}^{\infty} F_{1}\left(x_{n}\right) \times F_{2}\left(y_{n}\right)$ and $\left\{\left(w_{n}, t_{n}\right)\right\}_{n=0}^{\infty} \subseteq \bigcup_{n=0}^{\infty} T_{1}\left(y_{n}\right) \times T_{2}\left(x_{n}\right)$ in $X_{1} \times X_{2}$ in the following way:
where $n=0,1,2, \ldots ; \lambda, \rho>0$ are constants, $\alpha_{1}, \alpha_{2} \in(0,1]$ are two parameters such that $\alpha_{1}+\alpha_{2} \in(0,1]$ and $\left\{\left(e_{n}, l_{n}\right)\right\}_{n=0}^{\infty}$ and $\left\{\left(r_{n}, k_{n}\right)\right\}_{n=0}^{\infty}$ are two sequences in $X_{1} \times X_{2}$ to take into account a possible inexact computation of the resolvent operator point satisfying the following conditions:

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty}\left\|e_{n}\right\|_{1}=\lim _{n \rightarrow \infty}\left\|r_{n}\right\|_{1}=\lim _{n \rightarrow \infty}\left\|l_{n}\right\|_{2}=\lim _{n \rightarrow \infty}\left\|k_{n}\right\|_{2}=0  \tag{6}\\
\sum_{n=0}^{\infty}\left\|e_{n+1}-e_{n}\right\|_{1}<\infty, \sum_{n=0}^{\infty}\left\|r_{n+1}-r_{n}\right\|_{1}<\infty \\
\sum_{n=0}^{\infty}\left\|l_{n+1}-l_{n}\right\|_{2}<\infty, \sum_{n=0}^{\infty}\left\|k_{n+1}-k_{n}\right\|_{2}<\infty
\end{array}\right.
$$

If $q_{i}=q$ for $i=1,2, S_{1}=S, S_{2}=T, M_{1}=M, M_{2}=N, F_{1}=E, F_{2}=F, Q_{1}=Q_{2} \equiv 0, f_{1}=f, f_{2}=g, p_{1}=p$, $p_{2}=d$, and $e_{n}=r_{n}=l_{n}=k_{n}=0$, then Algorithm 3.4 collapses to the following algorithm.

Algorithm 3.5. Suppose that $X_{i}(i=1,2), S, T, E, F, f, g, p, d$ are the same as in the system (3). Let for each $i \in\{1,2\}$, $\eta_{i}: X_{1} \times X_{2} \rightarrow X_{i}$ be a vector-valued mapping, $P_{i}: X_{i} \rightarrow X_{i}$ be a strictly $\eta_{i}$-accretive mapping, $M: X_{1} \rightarrow 2^{X_{1}}$ be a $P_{1}-\eta_{1}$-accretive mapping and $N: X_{2} \rightarrow 2^{X_{2}}$ be a $P_{2}-\eta_{2}$-accretive mapping. For any given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{2}$, $u_{0} \in E\left(x_{0}\right)$ and $v_{0} \in F\left(y_{0}\right)$, define the iterative sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$ in $X_{1} \times X_{2},\left\{u_{n}\right\}_{n=0}^{\infty}$ in $X_{1}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ in $X_{2}$ in the following way:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{1}\right) x_{n}+\alpha_{1}\left\{x_{n}-f\left(x_{n}\right)+R_{M, \lambda}^{P_{1}, n_{1}}\left[P_{1}\left(f\left(x_{n}\right)\right)-\lambda S\left(p\left(x_{n}\right), v_{n}\right)\right]\right\}, \\
y_{n+1}=\left(1-\alpha_{2}\right) y_{n}+\alpha_{2}\left\{y_{n}-g\left(y_{n}\right)+R_{N, p}^{2, n_{2}}\left[P_{2}\left(g\left(y_{n}\right)\right)-\rho T\left(u_{n}, d\left(y_{n}\right)\right]\right\},\right. \\
u_{n} \in E\left(x_{n}\right) ;\left\|u_{n+1}-u_{n}\right\|_{1} \leq\left(1+(1+n)^{-1}\right) D_{1}\left(E\left(x_{n+1}\right), E\left(x_{n}\right)\right), \\
v_{n} \in F\left(y_{n}\right) ;\left\|v_{n+1}-v_{n}\right\|_{2} \leq\left(1+(1+n)^{-1}\right) D_{2}\left(F\left(y_{n+1}\right), F\left(y_{n}\right)\right),
\end{array}\right.
$$

where $n=0,1,2, \ldots ; \lambda, \rho>0$ are two constants, and $\alpha_{1}, \alpha_{2} \in(0,1]$ are two parameters the same as in Algorithm 3.4.

We are now in a position to give the main result of this section concerning the strong convergence of the sequences generated by our suggested iterative algorithm to a solution of the SGMNVI (2). For this purpose, we need to recall the following definitions.
Definition 3.6. A multi-valued mapping $T: X \rightarrow C B(X)$ is said to be $D$-Lipschitz continuous with constant $\delta$, if there exists a constant $\delta>0$ such that

$$
D(T(x), T(y)) \leq \delta\|x-y\|, \quad \forall x, y \in X .
$$

Definition 3.7. Let $X$ be a real $q$-uniformly smooth Banach space. A mapping $f: X \rightarrow X$ is said to be
(i) $(\gamma, \mu)$-relaxed cocoercive if there exist two constants $\gamma, \mu>0$ such that

$$
\left\langle f(x)-f(y), J_{q}(x-y)\right\rangle \geq-\gamma\|f(x)-f(y)\|^{q}+\mu\|x-y\|^{q}, \quad \forall x, y \in X
$$

(ii) $\delta$-strongly accretive if there exists a constant $\delta>0$ such that

$$
\left\langle f(x)-f(y), J_{q}(x-y)\right\rangle \geq \delta\|x-y\|^{q}, \quad \forall x, y \in X
$$

Definition 3.8. Let $X$ be a real $q$-uniformly smooth Banach space. Further, let $p: X \rightarrow X, S: X \times X \rightarrow X$ and $\eta: X \times X \rightarrow X$ be the mappings. $S$ is said to be
(i) $(\xi, \pi)$-relaxed $\eta$-cocoercive with respect to $p$ in the first argument if there exist two constants $\xi, \pi>0$ such that for all $x, y, u \in X$,

$$
\left\langle S(p(x), u)-S(p(y), u), J_{q}(\eta(x, y))\right\rangle \geq-\xi\|S(p(x), u)-S(p(y), u)\|^{q}+\pi\|x-y\|^{q} ;
$$

(ii) $(\varsigma, \varrho)$-relaxed $\eta$-cocoercive with respect to $p$ in the second argument if there exist two constants $\varsigma, \varrho>0$ such that for all $x, y, u \in X$,

$$
\left\langle S(u, p(x))-S(u, p(y)), J_{q}(\eta(x, y))\right\rangle \geq-\varsigma\|S(u, p(x))-S(u, p(y))\|^{q}+\varrho\|x-y\|^{q} ;
$$

(iii) $k$-strongly $\eta$-accretive with respect to $p$ in the first argument if there exists a constant $k>0$ such that

$$
\left\langle S(p(x), u)-S(p(y), u), J_{q}(\eta(x, y))\right\rangle \geq k\|x-y\|^{q}, \quad \forall x, y, u \in X ;
$$

(iv) $\gamma$-strongly $\eta$-accretive with respect to $p$ in the second argument if there exists a constant $\gamma>0$ such that

$$
\left\langle S(u, p(x))-S(u, p(y)), J_{q}(\eta(x, y))\right\rangle \geq \gamma\|x-y\|^{q}, \quad \forall x, y, u \in X ;
$$

(v) $\vartheta$-Lipschitz continuous with respect to $p$ in the first argument if there exists a constant $\vartheta>0$ such that

$$
\|S(p(x), u)-S(p(y), u)\| \leq \vartheta\|x-y\|, \quad \forall x, y, u \in X
$$

(vi) $\delta$-Lipschitz continuous with respect to $p$ in the second argument if there exists a constant $\delta>0$ such that

$$
\|S(u, p(x))-S(u, p(y))\| \leq \delta\|x-y\|, \quad \forall x, y, u \in X
$$

Definition 3.9. Let $X$ be a real $q$-uniformly smooth Banach space. A mapping $Q: X \times X \rightarrow X$ is said to be $(\theta, \mu)$-mixed Lipschitz continuous in the first and second arguments if there exist two constants $\theta, \mu>0$ such that

$$
\left\|Q(x, y)-Q\left(x^{\prime}, y^{\prime}\right)\right\| \leq \theta\left\|x-x^{\prime}\right\|+\mu\left\|y-y^{\prime}\right\|, \quad \forall x, x^{\prime}, y, y^{\prime} \in X
$$

Theorem 3.10. Let for each $i \in\{1,2\}, X_{i}$ be a $q_{i}$-uniformly smooth Banach space with $q_{i}>1, \eta_{i}: X_{i} \times X_{i} \rightarrow X_{i}$ be a $\tau_{i}$-Lipschitz continuous mapping, $P_{i}: X_{i} \rightarrow X_{i}$ be a $\theta_{i}$-strongly $\eta_{i}$-accretive and $\varrho_{i}$-Lipschitz continuous mapping, and $M_{i}: X_{i} \rightarrow 2^{X_{i}}$ be a $P_{i}-\eta_{i}$-accretive mapping. Suppose that for each $i \in\{1,2\}, f_{i}: X_{i} \rightarrow X_{i}$ is a $\left(\xi_{i}, \delta_{i}\right)$-relaxed cocoercive and $\lambda_{f_{i}}$-Lipschitz continuous mapping, and $Q_{i}: X_{j} \times X_{i} \rightarrow X_{i}$ for $j \in\{1,2\} \backslash\{i\}$ is $\left(\lambda_{Q_{i}}, \lambda_{Q_{i}}^{\prime}\right)$-mixed Lipschitz continuous in the first and second arguments. Let $S_{1}: X_{1} \times X_{2} \rightarrow X_{1}$ be $\left(\gamma_{S_{1}}, \delta_{S_{1}}\right)$-relaxed $\eta_{1}$-cocoercive and $\omega_{1}$-Lipschitz continuous with respect to $p_{1}$ in the first argument and $\omega_{2}$-Lipschitz continuous with respect to $p_{1}$ in the second argument, and $S_{2}: X_{1} \times X_{2} \rightarrow X_{2}$ be $\left(\gamma_{S_{2}}, \delta_{S_{2}}\right)$-relaxed $\eta_{2}$-cocoercive and $\pi_{2}$-Lipschitz continuous with respect to $p_{2}$ in the second argument and $\pi_{1}$-Lipschitz continuous with respect to $p_{2}$ in the first argument. Let for each $i \in\{1,2\}$, the mapping $F_{i}: X_{i} \rightarrow C B\left(X_{i}\right)$ be $D_{i}$-Lipschitz continuous with constant $\lambda_{D_{F_{i}}}$ and for each $i \in\{1,2\}$ and $j \in\{1,2\} \backslash\{i\}, T_{i}: X_{j} \rightarrow C B\left(X_{j}\right)$ be $D_{j}$-Lipschitz continuous with constant $\lambda_{D_{T_{i}}}$. If there exist two constants $\lambda, \rho>0$ such that

$$
\left\{\begin{array}{l}
1-\alpha_{1}+\alpha_{1} \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}+\frac{\alpha_{1} \tau_{1}^{q-1}}{\theta_{1}}\left(\mu_{1}+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{2}}}\right)  \tag{7}\\
+\frac{\alpha_{2} \tau_{2}^{q-1} \rho\left(\pi_{1} \lambda_{D_{F_{1}}}+\lambda_{Q_{2}} \lambda_{D_{T_{2}}}\right)}{\theta_{2}}<1 \\
1-\alpha_{2}+\alpha_{2} \sqrt{q_{2}} \sqrt{1-q_{2} \delta_{2}+\left(q_{2} \xi_{2}+c_{q_{2}}\right) \lambda_{f_{2}}^{q_{2}}}+\frac{\alpha_{2} \tau_{2}^{q-1}}{\theta_{2}}\left(\mu_{2}+\rho \lambda_{Q_{2}} \lambda_{D_{T_{1}}}\right) \\
+\frac{\alpha_{1} \tau_{1}^{q-1} \lambda\left(\omega_{2} \lambda_{D_{F_{2}}}+\lambda_{Q_{1}} \lambda_{D_{T_{1}}}\right)}{\theta_{1}}<1
\end{array}\right.
$$

where

$$
\begin{aligned}
& \mu_{1}=\sqrt[q_{1}]{\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}+q_{1} \lambda \omega_{1} \varrho_{1}^{q_{1}-1} \lambda_{f_{1}}^{q_{1}-1}+q_{1} \lambda \omega_{1} \tau_{1}^{q_{1}-1}+c_{q_{1}} \lambda \lambda_{1}^{q_{1}} \omega_{1}^{q_{1}}} \\
& \mu_{2}=\sqrt[q_{2}]{\varrho_{2}^{q_{2}} \lambda_{f_{2}}^{q_{2}}+q_{2} \rho \gamma_{S_{2}} \pi_{2}^{q_{2}}-q_{2} \rho \delta_{S_{2}}+q_{2} \rho \pi_{2} \varrho_{2}^{q_{2}-1} \lambda_{f_{2}}^{q_{2}-1}+q_{2} \rho \pi_{2} \tau_{2}^{q_{2}-1}+c_{q_{2}} \rho^{q_{2}} \pi_{2}^{q_{2}}}
\end{aligned}
$$

and for the case where $q_{i}(i=1,2)$ are even natural numbers, in addition to $(7)$, the following conditions hold:

$$
\left\{\begin{array}{l}
q_{i} \delta_{i}<1+\left(q_{i} \xi_{i}+c_{q_{i}}\right) \lambda_{f_{i}}^{q_{i}} \\
q_{1} \lambda \delta_{S_{1}}<\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}+q_{1} \lambda \omega_{1} \varrho_{1}^{q_{1}-1} \lambda_{f_{1}}^{q_{1}-1}+q_{1} \lambda \omega_{1} \tau_{1}^{q_{1}-1}+c_{q_{1}} \lambda \lambda_{1}^{q_{1}} \omega_{1}^{q_{1}} \\
q_{2} \rho \delta_{S_{2}}<\varrho_{2}^{q_{2}} \lambda_{f_{2}}^{q_{2}}+q_{2} \rho \gamma_{S_{2}} \pi_{2}^{q_{2}}+q_{2} \rho \pi_{2} \varrho_{2}^{q_{2}-1} \lambda_{f_{2}}^{q_{2}-1}+q_{2} \rho \pi_{2} \tau_{2}^{q_{2}-1}+c_{q_{2}} \rho^{q_{2}} \pi_{2}^{q_{2}}
\end{array}\right.
$$

where $c_{q_{i}}(i=1,2)$ are two constants guaranteed by Lemma 2.1, then, the iterative sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$, $\left\{\left(u_{n}, v_{n}\right)\right\}_{n=0}^{\infty}$ and $\left\{\left(w_{n}, t_{n}\right)\right\}_{n=0}^{\infty}$ generated by Algorithm 3.4 converge strongly to $(x, y),(u, v)$ and $(w, t)$, respectively, and ( $x, y, u, v, w, t)$ is a solution of the SGMNVI (2).

Proof. By using (5), Lemma 2.16 and the assumptions, it yields

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|_{1}= & \|\left(1-\alpha_{1}\right) x_{n}+\alpha_{1}\left(x_{n}-f_{1}\left(x_{n}\right)+R_{M_{1}, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}\left(f_{1}\left(x_{n}\right)\right)\right.\right. \\
& \left.\left.-\lambda\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)+Q_{1}\left(w_{n}, t_{n}\right)\right)\right]\right)+\alpha_{1} e_{n}+r_{n} \\
& -\left(1-\alpha_{1}\right) x_{n-1}-\alpha_{1}\left(x_{n-1}-f_{1}\left(x_{n-1}\right)+R_{M_{1}, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right.\right. \\
& \left.\left.-\lambda\left(S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n-1}\right)+Q_{1}\left(w_{n-1}, t_{n-1}\right)\right)\right]\right)-\alpha_{1} e_{n-1}-r_{n-1} \|_{1} \\
\leq & \left(1-\alpha_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\alpha_{1}\left(\left\|x_{n}-x_{n-1}-\left(f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right)\right\|_{1}\right. \\
& +\| R_{M_{1}, \lambda}^{P_{1} \eta_{1}}\left[P_{1}\left(f_{1}\left(x_{n}\right)\right)-\lambda\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)+Q_{1}\left(w_{n}, t_{n}\right)\right)\right] \\
& -R_{M_{1}, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}\left(f_{1}\left(x_{n-1}\right)\right)-\lambda\left(S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n-1}\right)\right.\right. \\
& \left.\left.\left.+Q_{1}\left(w_{n-1}, t_{n-1}\right)\right)\right] \|_{1}\right)+\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1} \\
\leq & \left(1-\alpha_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\alpha_{1}\left\|x_{n}-x_{n-1}-\left(f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right)\right\|_{1}  \tag{8}\\
& +\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}} \| P_{1}\left(f_{1}\left(x_{n}\right)\right)-\lambda\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)+Q_{1}\left(w_{n}, t_{n}\right)\right) \\
& -P_{1}\left(f_{1}\left(x_{n-1}\right)\right)+\lambda\left(S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n-1}\right)+Q_{1}\left(w_{n-1}, t_{n-1}\right)\right) \|_{1} \\
& +\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1} \\
\leq & \left(1-\alpha_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\alpha_{1}\left\|x_{n}-x_{n-1}-\left(f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right)\right\|_{1} \\
& +\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}}\left(\| P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)-\lambda\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)\right.\right. \\
& \left.-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right)\left\|_{1}+\lambda\right\| S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n-1}\right) \|_{1} \\
& \left.+\lambda\left\|Q_{1}\left(w_{n}, t_{n}\right)-Q_{1}\left(w_{n-1}, t_{n-1}\right)\right\|_{1}\right)+\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1} .
\end{align*}
$$

Since $f_{1}$ is $\left(\xi_{1}, \delta_{1}\right)$-relaxed cocoercive and $\lambda_{f_{1}}$-Lipschitz continuous, invoking Lemma 2.1, there exists a constant $c_{q_{1}}>0$ such that for each $n \in \mathbb{N}$,

$$
\begin{aligned}
& \left\|x_{n}-x_{n-1}-\left(f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right)\right\|_{1}^{q_{1}} \\
& \leq\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}-q_{1}\left\langle f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right), J_{q_{1}}\left(x_{n}-x_{n-1}\right)\right\rangle_{1}+c_{q_{1}}\left\|f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right\|_{1}^{q_{1}} \\
& \leq\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}-q_{1}\left(-\xi_{1}\left\|f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right\|_{1}^{q_{1}}+\delta_{1}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}\right)+c_{q_{1}}\left\|f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right\|_{1}^{q_{1}} \\
& \leq\left(1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n}-x_{n-1}-\left(f_{1}\left(x_{n}\right)-f_{1}\left(x_{n-1}\right)\right)\right\|_{1} \leq \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}\left\|x_{n}-x_{n-1}\right\|_{1} \tag{9}
\end{equation*}
$$

Owing to the fact that $S_{1}$ is $\left(\gamma_{S_{1}}, \delta_{S_{1}}\right)$-relaxed $\eta_{1}$-cocoercive and $\omega_{1}$-Lipschitz continuous with respect to $p_{1}$ in the first argument, $\eta_{1}$ is $\tau_{1}$-Lipschitz continuous, $P_{1}$ is $\varrho_{1}$-Lipschitz continuous and $f_{1}$ is $\lambda_{f_{1}}$-Lipschitz continuous, utilizing Lemma 2.1, we get

$$
\begin{aligned}
& \left\|P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)-\lambda\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right)\right\|_{1}^{q_{1}} \\
& \leq\left\|P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right\|_{1}^{q_{1}}-q_{1} \lambda\left\langle S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right),\right. \\
& \left.J_{q_{1}}\left(\eta_{1}\left(x_{n}, x_{n-1}\right)\right)\right\rangle_{1}-q_{1} \lambda\left\langle S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right. \text {, } \\
& \left.J_{q_{1}}\left(P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right)-J_{q_{1}}\left(\eta_{1}\left(x_{n}, x_{n-1}\right)\right)\right\rangle_{1} \\
& +c_{q_{1}} \lambda^{q_{1}}\left\|S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right\|_{1}^{q_{1}} \\
& \leq \varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}-q_{1} \lambda\left(-\gamma_{S_{1}}\left\|S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right\|_{1}^{q_{1}}\right. \\
& \left.+\delta_{S_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}\right)+q_{1} \lambda\left\langle S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right), J_{q_{1}}\left(\eta_{1}\left(x_{n}, x_{n-1}\right)\right)\right. \\
& \left.-J_{q_{1}}\left(P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right)\right\rangle_{1}+c_{q_{1}} \lambda^{q_{1}} \omega_{1}^{q_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}} \\
& \leq \varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}} \\
& +q_{1} \lambda\left\|S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right\|_{1}\left(\left\|J_{q_{1}}\left(\eta_{1}\left(x_{n}, x_{n-1}\right)\right)\right\|_{1}\right. \\
& \left.+\left\|J_{q_{1}}\left(P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right)\right\|_{1}\right)+c_{q_{1}} \lambda_{n}^{q_{1}} \omega_{1}^{q_{1}}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}} \\
& \leq\left(\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}+c_{q_{1}} \lambda^{q_{1}} \omega_{1}^{q_{1}}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}} \\
& +q_{1} \lambda \omega_{1}\left\|x_{n}-x_{n-1}\right\|_{1}\left(\left\|\eta_{1}\left(x_{n}, x_{n-1}\right)\right\|_{1}^{q_{1}-1}+\left\|P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)\right\|_{1}^{q_{1}-1}\right) \\
& =\left(\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}+c_{q_{1}} \lambda^{q_{1}} \omega_{1}^{q_{1}}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}} \\
& +q_{1} \lambda \omega_{1}\left\|x_{n}-x_{n-1}\right\|_{1}\left(\tau_{1}^{q_{1}-1}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}-1}+\varrho_{1}^{q_{1}-1} \lambda_{f_{1}}^{q_{1}-1}\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}-1}\right) \\
& =\left(\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma{S_{1}} \omega_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}+q_{1} \lambda \omega_{1} \varrho_{1}^{q_{1}-1} \lambda_{f_{1}}^{q_{1}-1}+q_{1} \lambda \omega_{1} \tau_{1}^{q_{1}-1}+c_{q_{1}} \lambda^{q_{1}} \omega_{1}^{q_{1}}\right)\left\|x_{n}-x_{n-1}\right\|_{1}^{q_{1}},
\end{aligned}
$$

from which we deduce that for each $n \in \mathbb{N}$,

$$
\begin{align*}
& \left\|P_{1}\left(f_{1}\left(x_{n}\right)\right)-P_{1}\left(f_{1}\left(x_{n-1}\right)\right)-\lambda_{n}\left(S_{1}\left(p_{1}\left(x_{n}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)\right)\right\|_{1}  \tag{10}\\
& \leq \mu_{1}\left\|x_{n}-x_{n-1}\right\|_{1}
\end{align*}
$$

where

$$
\mu_{1}=\sqrt[q_{1}]{\varrho_{1}^{q_{1}} \lambda_{f_{1}}^{q_{1}}+q_{1} \lambda \gamma_{S_{1}} \omega_{1}^{q_{1}}-q_{1} \lambda \delta_{S_{1}}+q_{1} \lambda \omega_{1} \varrho_{1}^{q_{1}-1} \lambda_{f_{1}}^{q_{1}-1}+q_{1} \lambda \omega_{1} \tau_{1}^{q_{1}-1}+c_{q_{1}} \lambda \lambda_{1}^{q_{1}} \omega_{1}^{q_{1}}}
$$

In virtue of the facts that $S_{1}$ is $\omega_{2}$-Lipschitz continuous with respect to $p_{1}$ in the second argument and $F_{2}$ is $D_{2}$-Lipschitz continuous with constant $\lambda_{D_{F_{2}}}$, by using (5), it follows that

$$
\begin{align*}
\left\|S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n}\right)-S_{1}\left(p_{1}\left(x_{n-1}\right), v_{n-1}\right)\right\|_{1} & \leq \omega_{2}\left\|v_{n}-v_{n-1}\right\|_{2} \\
& \leq \omega_{2}\left(1+n^{-1}\right) D_{2}\left(F_{2}\left(y_{n}\right), F_{2}\left(y_{n-1}\right)\right)  \tag{11}\\
& \leq \omega_{2} \lambda_{D_{F_{2}}}\left(1+n^{-1}\right)\left\|y_{n}-y_{n-1}\right\|_{2}
\end{align*}
$$

Taking into account that $Q_{1}$ is $\left(\lambda_{Q_{1}}, \lambda_{Q_{1}}^{\prime}\right)$-mixed Lipschitz continuous in the first and second arguments, by (5) and the facts that the mapping $T_{i}$ is $D_{j}$-Lipschitz continuous with constant $\lambda_{D_{T_{i}}}$ for $i \in\{1,2\}$ and
$j \in\{1,2\} \backslash\{i\}$, we obtain
$\left\|Q_{1}\left(w_{n}, t_{n}\right)-Q_{1}\left(w_{n-1}, t_{n-1}\right)\right\|_{1} \leq \lambda_{Q_{1}}\left\|w_{n}-w_{n-1}\right\|_{2}+\lambda_{Q_{1}}\left\|t_{n}-t_{n-1}\right\|_{1}$

$$
\begin{align*}
\leq & \lambda_{Q_{1}}\left(1+n^{-1}\right) D_{2}\left(T_{1}\left(y_{n}\right), T_{1}\left(y_{n-1}\right)\right) \\
& +\lambda_{Q_{1}}\left(1+n^{-1}\right) D_{1}\left(T_{2}\left(x_{n}\right), T_{2}\left(x_{n-1}\right)\right)  \tag{12}\\
\leq & \lambda_{Q_{1}} \lambda_{D_{T_{1}}}\left(1+n^{-1}\right)\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +\lambda_{Q_{1}} \lambda_{D_{T_{2}}}\left(1+n^{-1}\right)\left\|x_{n}-x_{n-1}\right\|_{1} .
\end{align*}
$$

Combining (8)-(12), we derive that for each $n \in \mathbb{N}$,

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|_{1} \leq & \left(1-\alpha_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\alpha_{1} \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}\left\|x_{n}-x_{n-1}\right\|_{1} \\
& +\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}}\left(\mu_{1}\left\|x_{n}-x_{n-1}\right\|_{1}+\lambda \omega_{2} \lambda_{D_{F_{2}}}\left(1+n^{-1}\right)\left\|y_{n}-y_{n-1}\right\|_{2}\right. \\
& \left.+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{1}}}\left(1+n^{-1}\right)\left\|y_{n}-y_{n-1}\right\|_{2}+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{2}}}\left(1+n^{-1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}\right) \\
& +\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1} \\
= & \left(1-\alpha_{1}\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\alpha_{1} \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}  \tag{13}\\
& +\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}}\left(\mu_{1}+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{2}}}\left(1+n^{-1}\right)\right)\left\|x_{n}-x_{n-1}\right\|_{1} \\
& +\frac{\alpha_{1} \tau_{1}^{q_{1}-1} \lambda\left(\omega_{2} \lambda_{D_{F_{2}}}+\lambda_{Q_{1}} \lambda_{D_{T_{1}}}\right)\left(1+n^{-1}\right)}{\theta_{1}}\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1} \\
= & \Lambda_{1}(n)\left\|x_{n}-x_{n-1}\right\|_{1}+\Gamma_{1}(n)\left\|y_{n}-y_{n-1}\right\|_{2}+\alpha_{1}\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|r_{n}-r_{n-1}\right\|_{1}
\end{align*}
$$

where for each $n \in \mathbb{N}$,

$$
\begin{aligned}
& \Lambda_{1}(n)=1-\alpha_{1}+\alpha_{1} \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}+\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}}\left(\mu_{1}+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{2}}}\left(1+n^{-1}\right)\right) \\
& \Gamma_{1}(n)=\frac{\alpha_{1} \tau_{1}^{q_{1}-1} \lambda\left(\omega_{2} \lambda_{D_{F_{2}}}+\lambda_{Q_{1}} \lambda_{D_{T_{1}}}\right)\left(1+n^{-1}\right)}{\theta_{1}}
\end{aligned}
$$

In a similar manner, employing (5) and the assumptions, one can obtain

$$
\begin{align*}
\left\|y_{n+1}-y_{n}\right\|_{2} \leq & \Lambda_{2}(n)\left\|x_{n}-x_{n-1}\right\|_{1}+\Gamma_{2}(n)\left\|y_{n}-y_{n-1}\right\|_{2}  \tag{14}\\
& +\alpha_{2}\left\|l_{n}-l_{n-1}\right\|_{2}+\left\|k_{n}-k_{n-1}\right\|_{2}
\end{align*}
$$

where for each $n \in \mathbb{N}$,

$$
\begin{aligned}
& \Lambda_{2}(n)=\frac{\alpha_{2} \tau_{2}^{q_{2}-1} \rho\left(\pi_{1} \lambda_{D_{F_{1}}}+\lambda_{Q_{2}} \lambda_{D_{T_{2}}}\right)\left(1+n^{-1}\right)}{\theta_{2}} \\
& \Gamma_{2}(n)=1-\alpha_{2}+\alpha_{2} \sqrt[q_{2}]{1-q_{2} \delta_{2}+\left(q_{2} \xi_{2}+c_{q_{2}}\right) \lambda_{f_{2}}^{q_{2}}}+\frac{\alpha_{2} \tau_{2}^{q_{2}-1}}{\theta_{2}}\left(\mu_{2}+\rho \lambda_{Q_{2}} \lambda_{D_{T_{1}}}\left(1+n^{-1}\right)\right), \\
& \mu_{2}=\sqrt[q_{2}]{\varrho_{2}^{q_{2}} \lambda_{f_{2}}^{q_{2}}+q_{2} \rho \gamma_{S_{2}} \pi_{2}^{q_{2}}-q_{2} \rho \delta_{S_{2}}+q_{2} \rho \pi_{2} \varrho_{2}^{q_{2}-1} \lambda_{f_{2}}^{q_{2}-1}+q_{2} \rho \pi_{2} \tau_{2}^{q_{2}-1}+c_{q_{2}} \rho^{q_{2}} \pi_{2}^{q_{2}}}
\end{aligned}
$$

Let us now define a norm $\|\cdot\|_{*}$ on $X_{1} \times X_{2}$ by

$$
\|(u, v)\|_{*}=\|u\|_{1}+\|v\|_{2}, \quad \forall(u, v) \in X_{1} \times X_{2} .
$$

It is easy to see that $\left(X_{1} \times X_{2},\|\cdot\|_{*}\right)$ is a Banach space. Then by using (13) and (14), and picking $\alpha=\alpha_{1}+\alpha_{2}$, we obtain

$$
\begin{align*}
\left\|\left(x_{n+1}, y_{n+1}\right)-\left(x_{n}, y_{n}\right)\right\|_{*}= & \left\|x_{n+1}-x_{n}\right\|_{1}+\left\|y_{n+1}-y_{n}\right\|_{2} \\
\leq & \left(\Lambda_{1}(n)+\Lambda_{2}(n)\right)\left\|x_{n}-x_{n-1}\right\|_{1}+\left(\Gamma_{1}(n)+\Gamma_{2}(n)\right)\left\|y_{n}-y_{n-1}\right\|_{2} \\
& +\left(\alpha_{1}+\alpha_{2}\right)\left(\left\|e_{n}-e_{n-1}\right\|_{1}+\left\|l_{n}-l_{n-1}\right\|_{2}\right) \\
& +\left\|r_{n}-r_{n-1}\right\|_{1}+\left\|k_{n}-k_{n-1}\right\|_{2}  \tag{15}\\
\leq & \vartheta(n)\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\|_{*}+\alpha\left\|\left(e_{n}, l_{n}\right)-\left(e_{n-1}, l_{n-1}\right)\right\|_{*} \\
& +\left\|\left(r_{n}, k_{n}\right)-\left(r_{n-1}, k_{n-1}\right)\right\|_{*,}
\end{align*}
$$

where for each $n \in \mathbb{N}, \vartheta(n)=\max \left\{\Lambda_{1}(n)+\Lambda_{2}(n), \Gamma_{1}(n)+\Gamma_{2}(n)\right\}$. In the light of the facts that $\Lambda_{i}(n) \rightarrow \Lambda_{i}$ and $\Gamma_{i}(n) \rightarrow \Gamma_{i}$, as $n \rightarrow \infty$, where

$$
\begin{aligned}
& \Lambda_{1}=1-\alpha_{1}+\alpha_{1} \sqrt[q_{1}]{1-q_{1} \delta_{1}+\left(q_{1} \xi_{1}+c_{q_{1}}\right) \lambda_{f_{1}}^{q_{1}}}+\frac{\alpha_{1} \tau_{1}^{q_{1}-1}}{\theta_{1}}\left(\mu_{1}+\lambda \lambda_{Q_{1}} \lambda_{D_{T_{2}}}\right) \\
& \Lambda_{2}=\frac{\alpha_{2} \tau_{2}^{q_{2}-1} \rho\left(\pi_{1} \lambda_{D_{F_{1}}}+\lambda_{Q_{2}} \lambda_{D_{T_{2}}}\right)}{\theta_{2}}, \Gamma_{1}=\frac{\alpha_{1} \tau_{1}^{q_{1}-1} \lambda\left(\omega_{2} \lambda_{D_{F_{2}}}+\lambda_{Q_{1}} \lambda_{D_{T_{1}}}\right)}{\theta_{1}}, \\
& \Gamma_{2}=1-\alpha_{2}+\alpha_{2} \sqrt[q_{2}]{1-q_{2} \delta_{2}+\left(q_{2} \xi_{2}+c_{q_{2}}\right) \lambda_{f_{2}}^{q_{2}}}+\frac{\alpha_{2} \tau_{2}^{q_{2}-1}}{\theta_{2}}\left(\mu_{2}+\rho \lambda_{Q_{2}} \lambda_{D_{T_{1}}}\right),
\end{aligned}
$$

we deduce that $\vartheta(n) \rightarrow \vartheta$, as $n \rightarrow \infty$, where $\vartheta=\max \left\{\Lambda_{1}+\Lambda_{2}, \Gamma_{1}+\Gamma_{2}\right\}$. Clearly, with the help of (7) we infer that $\vartheta \in(0,1)$, and so there exists $\hat{\vartheta} \in(0,1)$ (take $\left.\hat{\vartheta}=\frac{\vartheta+1}{2} \in(\vartheta, 1)\right)$ and $n_{0} \in \mathbb{N}$ such that $\vartheta(n) \leq \hat{\vartheta}$, for all $n \geq n_{0}$. Then, for all $n>n_{0}$, by (15), it follows that

$$
\begin{align*}
\left\|\left(x_{n+1}, y_{n+1}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} \leq & \hat{\vartheta}\left\|\left(x_{n}, y_{n}\right)-\left(x_{n-1}, y_{n-1}\right)\right\|_{*}+\alpha\left\|\left(e_{n}, l_{n}\right)-\left(e_{n-1}, l_{n-1}\right)\right\|_{*} \\
& +\left\|\left(r_{n}, k_{n}\right)-\left(r_{n-1}, k_{n-1}\right)\right\|_{*} \\
\leq & \hat{\vartheta}\left[\hat{\vartheta}\left\|\left(x_{n-1}, y_{n-1}\right)-\left(x_{n-2}, y_{n-2}\right)\right\|_{*}+\alpha\left\|\left(e_{n-1}, l_{n-1}\right)-\left(e_{n-2}, l_{n-2}\right)\right\|_{*}\right. \\
& \left.+\left\|\left(r_{n-1}, k_{n-1}\right)-\left(r_{n-2}, k_{n-2}\right)\right\|_{*}\right] \\
& +\alpha\left\|\left(e_{n}, l_{n}\right)-\left(e_{n-1}, l_{n-1}\right)\right\|_{*}+\left\|\left(r_{n}, k_{n}\right)-\left(r_{n-1}, k_{n-1}\right)\right\|_{*} \\
= & \hat{\vartheta}^{2}\left\|\left(x_{n-1}, y_{n-1}\right)-\left(x_{n-2}, y_{n-2}\right)\right\|_{*}+\alpha\left(\hat{\vartheta}\left\|\left(e_{n-1}, l_{n-1}\right)-\left(e_{n-2}, l_{n-2}\right)\right\|_{*}\right. \\
& \left.+\left\|\left(e_{n}, l_{n}\right)-\left(e_{n-1}, l_{n-1}\right)\right\|_{*}\right)+\hat{\vartheta}\left\|\left(r_{n-1}, k_{n-1}\right)-\left(r_{n-2}, k_{n-2}\right)\right\|_{*} \\
& +\left\|\left(r_{n}, k_{n}\right)-\left(r_{n-1}, k_{n-1}\right)\right\|_{*}  \tag{16}\\
\leq & \ldots \\
\leq & \hat{\vartheta}^{n-n_{0}}\left\|\left(x_{n_{0}+1}, y_{n_{0}+1}\right)-\left(x_{n_{0}}, y_{n_{0}}\right)\right\|_{*} \\
& +\alpha \sum_{j=1}^{n-n_{0}} \hat{\vartheta}^{j-1}\left\|\left(l_{n-(j-1)}, l_{n-(j-1)}\right)-\left(e_{n-j}, l_{n-j}\right)\right\|_{*} \\
& +\sum_{j=1}^{n-n_{0}} \hat{\vartheta}^{j-1}\left\|\left(r_{n-(j-1)}, k_{n-(j-1)}\right)-\left(r_{n-j}, k_{n-j}\right)\right\|_{*} .
\end{align*}
$$

Making use of (16), for any $m \geq n>n_{0}$, we obtain

$$
\begin{align*}
\left\|\left(x_{m}, y_{m}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} \leq & \sum_{i=n}^{m-1}\left\|\left(x_{i+1}, y_{i+1}\right)-\left(x_{i}, y_{i}\right)\right\|_{*} \\
\leq & \sum_{i=n}^{m-1} \hat{\vartheta}^{i-n_{0}}\left\|\left(x_{n_{0}+1}, y_{n_{0}+1}\right)-\left(x_{n_{0}}, y_{n_{0}}\right)\right\|_{*} \\
& +\alpha \sum_{i=n}^{m-1} \sum_{j=1}^{i-n_{0}} \hat{\vartheta}^{j-1}\left\|\left(e_{i-(j-1)}, l_{i-(j-1)}\right)-\left(e_{i-j}, l_{i-j}\right)\right\|_{*}  \tag{17}\\
& +\sum_{i=n}^{m-1} \sum_{j=1}^{i-n_{0}} \hat{\vartheta}^{j-1}\left\|\left(r_{i-(j-1)}, k_{i-(j-1)}\right)-\left(r_{i-j}, k_{i-j}\right)\right\|_{*} .
\end{align*}
$$

Since $\hat{\vartheta}<1$, (6) and (17) guarantee that $\left\|\left(x_{m}, y_{m}\right)-\left(x_{n}, y_{n}\right)\right\|_{*} \rightarrow 0$, as $n \rightarrow \infty$, and so $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$ is a Cauchy sequence in $X_{1} \times X_{2}$. In view of the completeness of $X_{1} \times X_{2}$, there exists $(x, y) \in X_{1} \times X_{2}$ such that $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$, as $n \rightarrow \infty$. By (5) and in virtue of the facts that for each $i \in\{1,2\}$, the mapping $F_{i}$ is $D_{i}$-Lipschitz continuous with constant $\lambda_{D_{F_{i}}}$, and the mapping $T_{i}$ is $D_{j}$-Lipschitz continuous with constant $\lambda_{D_{T_{i}}}$ for $j \in\{1,2\} \backslash\{i\}$, we get

$$
\begin{aligned}
& \left\|u_{n+1}-u_{n}\right\|_{1} \leq\left(1+(1+n)^{-1}\right) D_{1}\left(F_{1}\left(x_{n+1}\right), F_{1}\left(x_{n}\right)\right) \leq\left(1+(1+n)^{-1}\right) \lambda_{D_{F_{1}}}\left\|x_{n+1}-x_{n}\right\|_{1}, \\
& \left\|v_{n+1}-v_{n}\right\|_{2} \leq\left(1+(1+n)^{-1}\right) D_{2}\left(F_{2}\left(y_{n+1}\right), F_{2}\left(y_{n}\right)\right) \leq\left(1+(1+n)^{-1}\right) \lambda_{D_{F_{2}}}\left\|y_{n+1}-y_{n}\right\|_{2} \\
& \left\|w_{n+1}-w_{n}\right\|_{2} \leq\left(1+(1+n)^{-1}\right) D_{2}\left(T_{1}\left(y_{n+1}\right), T_{1}\left(y_{n}\right)\right) \leq\left(1+(1+n)^{-1}\right) \lambda_{D_{T_{1}}}\left\|y_{n+1}-y_{n}\right\|_{2} \\
& \left\|t_{n+1}-t_{n}\right\|_{1} \leq\left(1+(1+n)^{-1}\right) D_{1}\left(T_{2}\left(x_{n+1}\right), T_{2}\left(x_{n}\right)\right) \leq\left(1+(1+n)^{-1}\right) \lambda_{D_{T_{2}}}\left\|x_{n+1}-x_{n}\right\|_{1} .
\end{aligned}
$$

The above relations imply that the sequences $\left\{u_{n}\right\}_{n=0}^{\infty},\left\{t_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty},\left\{w_{n}\right\}_{n=0}^{\infty}$ are also Cauchy in $X_{1}$ and $X_{2}$, respectively. Thus, there are $u, t \in X_{1}$ and $v, w \in X_{2}$ such that $u_{n} \rightarrow u, t_{n} \rightarrow t, v_{n} \rightarrow v$ and $w_{n} \rightarrow w$, as $n \rightarrow \infty$. We now show that $u \in F_{1}(x)$. Since for each $n \geq 0, u_{n} \in F_{1}\left(x_{n}\right)$, applying (5) and considering the fact that $F_{1}$ is $D_{1}$-Lipschitz continuous with constant $\lambda_{D_{F_{1}}}$, we have

$$
\begin{aligned}
d_{1}\left(u, F_{1}(x)\right) & =\inf \left\{\|u-z\|: z \in F_{1}(x)\right\} \\
& \leq\left\|u-u_{n}\right\|+d_{1}\left(u_{n}, F_{1}(x)\right) \\
& \leq\left\|u-u_{n}\right\|+D_{1}\left(F_{1}\left(x_{n}\right), F_{1}(x)\right) \\
& \leq\left\|u-u_{n}\right\|+\lambda_{D_{F_{1}}}\left\|x_{n}-x\right\|,
\end{aligned}
$$

where $d_{1}$ is the metric induced by the norm $\|.\|_{1}$ in $X_{1}$. The right-hand side of the above inequality tends to zero, as $n \rightarrow \infty$. Since $F_{1}(x)$ is closed, we deduce that $u \in F_{1}(x)$. In a similar fashion to the preceding analysis, one can show that $v \in F_{2}(y), w \in T_{1}(y)$ and $t \in T_{2}(x)$. Owing to the facts that the mappings $R_{M_{1}, \lambda^{\prime}}^{P_{1}, \eta_{1}} R_{M_{1}, \lambda^{\prime}}^{P_{1}, \eta_{1}} P_{i}, S_{i}, Q_{i}, f_{i}$ and $p_{i}(i=1,2)$ are continuous, it follows from (5) and (8) that

$$
\left\{\begin{array}{l}
f_{1}(x)=R_{M_{1}, \lambda}^{P_{1}, \eta_{1}}\left[P_{1}\left(f_{1}(x)\right)-\lambda\left(S_{1}\left(p_{1}(x), v\right)+Q_{1}(w, t)\right)\right] \\
f_{2}(y)=R_{M_{2},, \rho}^{P_{2}, \eta_{2}}\left[P_{2}\left(f_{2}(y)\right)-\rho\left(S_{2}\left(u, p_{2}(y)\right)+Q_{2}(t, w)\right)\right]
\end{array}\right.
$$

Now, Lemma 3.1 guarantees that $(x, y, u, v, t, w)$ is a solution of the SGMNVI (2). This completes the proof.

We obtain the following corollary as a direct consequence of the above theorem immediately.
Corollary 3.11. Assume that, for each $i \in\{1,2\}, X_{i}$ is a $q_{i}$-uniformly smooth Banach space with $q_{i}>1, \eta_{i}: X_{i} \times X_{i} \rightarrow$ $X_{i}$ is a $\tau_{i}$-Lipschitz continuous mapping and $P_{i}: X_{i} \rightarrow X_{i}$ is a $\theta_{i}$-strongly $\eta_{i}$-accretive and $\varrho_{i}$-Lipschitz continuous mapping. Let $M: X_{1} \rightarrow 2^{X_{1}}$ be a $P_{1}-\eta_{1}$-accretive mapping and $N: X_{2} \rightarrow 2^{X_{2}}$ be a $P_{2}-\eta_{2}$-accretive mapping. Let $f: X_{1} \rightarrow X_{1}$ be a $\delta_{1}$-strongly accretive and $\lambda_{f}$-Lipschitz continuous mapping, $g: X_{2} \rightarrow X_{2}$ be a $\delta_{2}$-strongly accretive
and $\lambda_{g}$-Lipschitz continuous mapping. Suppose that the mapping $S: X_{1} \times X_{2} \rightarrow X_{1}$ is $\delta_{S}$-strongly $\eta_{1}$-accretive and $\lambda_{S_{p}}$-Lipschitz continuous with respect to $p$ in the first argument and $\lambda_{S_{2}}$-Lipschitz continuous with respect to $p$ in the second argument, and the mapping $T: X_{2} \times X_{2} \rightarrow X_{2}$ is $\delta_{T}$-strongly $\eta_{2}$-accretive and $\lambda_{T_{d}}$-Lipschitz continuous with respect to d in the second argument and $\lambda_{T_{1}}$ Lipschitz continuous with respect to $d$ in the first argument. Assume that the mapping $E: X_{1} \rightarrow C B\left(X_{1}\right)$ is $D_{1}$-Lipschitz continuous with constant $\lambda_{D_{E}}$ and the mapping $F: X_{2} \rightarrow C B\left(X_{2}\right)$ is $D_{2}$-Lipschitz continuous with constant $\lambda_{D_{F}}$. If there exist two constants $\lambda, \rho>0$ such that

$$
\left\{\begin{array}{l}
1-\alpha_{1}+\alpha_{1} \sqrt[q]{1-q \delta_{1}+c_{q} \lambda_{f}^{q}}+\frac{\alpha_{1} \tau_{1}^{q-1}}{\theta_{1}} \theta^{\prime}+\frac{\alpha_{2} \tau_{2}^{q-1} \rho \lambda_{T_{1}} \lambda_{D_{E}}}{\theta_{2}}<1  \tag{18}\\
1-\alpha_{2}+\alpha_{2} \sqrt[q]{1-q \delta_{2}+c_{q} \lambda_{g}^{q}}+\frac{\alpha_{2} \tau_{2}^{q-1}}{\theta_{2}} \theta^{\prime \prime}+\frac{\alpha_{1} \tau_{1}^{q-1} \lambda \lambda_{s_{2}} \lambda_{D_{F}}}{\theta_{1}}<1
\end{array}\right.
$$

where

$$
\begin{aligned}
& \theta^{\prime}=\sqrt[q]{\varrho_{1}^{q} \lambda_{f}^{q}-q \lambda \delta_{S}+q \lambda \lambda_{S_{p}} \rho_{1}^{q-1} \lambda_{f}^{q-1}+q \lambda \lambda_{S_{p}} \tau_{1}^{q-1}+c_{q} \lambda q \lambda_{S_{p}}^{q}} \\
& \theta^{\prime \prime}=\sqrt[q]{\varrho_{2}^{q} \lambda_{g}^{q}-q \rho \delta_{T}+q \rho \lambda_{T_{d}} \varrho_{2}^{q-1} \lambda_{g}^{q-1}+q \rho \lambda_{T_{d}} \tau_{2}^{q-1}+c_{q} \rho^{q} \lambda_{T_{d^{\prime}}}^{q}}
\end{aligned}
$$

and for the case where $q$ is an even natural number, in addition to (18), the following conditions hold:

$$
\left\{\begin{array}{l}
q \delta_{1}<1+c_{q} \lambda_{f^{\prime}}^{q} q \delta_{2} \leq 1+c_{q} \lambda_{g}^{q} \\
q \lambda \delta_{S}<\varrho_{1}^{q} \lambda_{f}^{q}+q \lambda \lambda_{S_{p}} \varrho_{1}^{q-1} \lambda_{f}^{q-1}+q \lambda \lambda_{S_{p}} \tau_{1}^{q-1}+c_{q} \lambda^{q} \lambda_{S_{p^{\prime}}}^{q} \\
q \rho \delta_{T}<\varrho_{2}^{q} \lambda_{g}^{q}+q \rho \lambda_{T_{d}} \varrho_{2}^{q-1} \lambda_{g}^{q-1}+q \rho \lambda_{T_{d}} \tau_{2}^{q-1}+c_{q} \rho^{q} \lambda_{T_{d^{\prime}}}^{q}
\end{array}\right.
$$

where $c_{q}$ is a constant guaranteed by Lemma 2.1. Then the iterative sequences $\left\{x_{n}\right\}_{n=0^{\prime}}^{\infty},\left\{y_{n}\right\}_{n=0^{\prime}}^{\infty}\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ generated by Algorithm 3.5 converge strongly to $x, y, u$ and $v$, respectively, and $(x, y, u, v)$ is a solution of the system (3).

## 4. Remarks on $H(.,)-.\eta$-cocoercive mappings

In the present section, the notion of $H(.,)-.\eta$-cocoercive operator and the results in related to it, introduced and studied in [3] are investigated and analyzed, and some remarks on $H(.,$.$) - \eta$-cocoercive operators are stated. We also show that one can obtain the results given in [3] using the results derived in Section 3.

Definition 4.1. [3, Definition 2.4] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. A multi-valued mapping $M: X \rightarrow 2^{X}$ is said to be $\eta$-cocoercive (or $\gamma-\eta$-cocoercive), if there exists a constant $\gamma>0$ such that

$$
\left\langle u-v, J_{q}(\eta(x, y))\right\rangle \geq \gamma\|u-v\|^{q}, \quad \forall x, y \in X, u \in M(x), v \in M(y) .
$$

Obviously, for a given vector-valued mapping $\eta: X \times X \rightarrow X$, every $\eta$-cocoercive multi-valued mapping is $\eta$-accretive, but the coverse is not in general true. The following example illustrates that for given constant $\gamma>0$ and a vector-valued mapping $\eta: X \times X \rightarrow X$, an $\eta$-accretive multi-valued mapping is not $\gamma-\eta$-cocoercive necessarily.

Example 4.2. Let $D_{n}(\mathbb{R})$ be the same as in Example 2.6 and let the mappings $M: D_{n}(\mathbb{R}) \rightarrow 2^{D_{n}(\mathbb{R})}$ and $\eta: D_{n}(\mathbb{R}) \times D_{n}(\mathbb{R}) \rightarrow D_{n}(\mathbb{R})$ be defined by

$$
M(A)= \begin{cases}\left\{E_{i j}-E_{k k}: i, j=1,2, \ldots, n\right\}, & A=E_{k k} \\ \gamma A+E_{k k}, & A \neq E_{k k},\end{cases}
$$

and

$$
\eta(A, B)=\left\{\begin{array}{lc}
Q, & A, B \neq E_{k k} \\
\mathbf{0}, & \text { otherwise }
\end{array}\right.
$$

for all $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, where $Q=\left(q_{i j}\right)$ is an $n \times n$ matrix with the entries

$$
q_{i j}= \begin{cases}\alpha_{i}\left(b_{i i}-a_{i i}\right), & i=j, \\ 0, & i \neq j\end{cases}
$$

$\alpha_{i}(i=1,2, \ldots, n), \gamma \in \mathbb{R}$ are arbitrary but fixed constants such that for each $i \in\{1,2, \ldots, n\}, \gamma<0<\alpha_{i}, \mathbf{0}$ is the zero $n \times n$ matrix, and $E_{i, j}, E_{k k}$ are the same as in Example 2.6.

Then for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R}), A \neq B \neq E_{k k}$, taking into account that $\gamma<0<\alpha_{i}$ for each $i \in\{1,2, \ldots, n\}$, it follows that

$$
\begin{align*}
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle & =\langle M(A)-M(B), \eta(A, B)\rangle \\
& =\operatorname{tr}(\gamma(A-B) Q)=\sum_{i=1}^{n}-\gamma \alpha_{i}\left(b_{i i}-a_{i i}\right)^{2}>0 \tag{19}
\end{align*}
$$

In the meanwhile, for each of the cases when $A \neq B=E_{k k}, B \neq A=E_{k k}$ and $A=B=E_{k k}$, thanks to the fact that $\eta(A, B)=0$, we deduce that

$$
\left\langle u-v, J_{2}(\eta(A, B))\right\rangle=0, \quad \forall u \in M(A), v \in M(B)
$$

Consequently, $M$ is an $\eta$-accretive mapping. Furthermore, for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, we obtain

$$
\begin{equation*}
\|A-B\|^{2}=\langle A-B, A-B\rangle=\operatorname{tr}((A-B)(A-B))=\sum_{i=1}^{n}\left(a_{i i}-b_{i i}\right)^{2} \tag{20}
\end{equation*}
$$

Letting $\varrho=\max \left\{\alpha_{i}: i=1,2, \ldots, n\right\}$ and making use of (19) and (20), for any $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in D_{n}(\mathbb{R})$, $A \neq B \neq E_{k k}$, it yields

$$
\left\langle M(A)-M(B), J_{2}(\eta(A, B))\right\rangle=\sum_{i=1}^{n}-\gamma \alpha_{i}\left(b_{i i}-a_{i i}\right)^{2} \leq-\gamma \varrho \sum_{i=1}^{n}\left(a_{i i}-b_{i i}\right)^{2}=-\gamma \varrho\|A-B\|^{2}
$$

and so $M$ is not $\mu-\eta$-cocoercive for all $\mu>-\gamma \varrho$.
Definition 4.3. [3, Definition 2.3] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. Let $A, B: X \rightarrow X$, $H: X \times X \rightarrow X, \eta: X \times X \rightarrow X$ be the mappings and $J_{q}: X \rightarrow 2^{X^{*}}$ be the generalized duality mapping. Then
(i) $H(A,$.$) is said to be \mu$ - $\eta$-cocoercive with respect to $A$ if there exists a constant $\mu>0$ such that

$$
\left\langle H(A x, u)-H(A y, u), J_{q}(\eta(x, y))\right\rangle \geq \mu\|A x-A y\|^{q}, \quad \forall x, y, u \in X
$$

(ii) $H(., B)$ is said to be $\gamma$-relaxed $\eta$-cocoercive (also referred to as $\gamma$ - $\eta$-relaxed cocoercive, see, [3]) if there exists a constant $\gamma>0$ such that

$$
\left\langle H(u, B x)-H(u, B y), J_{q}(\eta(x, y))\right\rangle \geq-\gamma\|B x-B y\|^{q}, \quad \forall x, y, u \in X
$$

(iii) $H(A,$.$) is said to be r_{1}$-Lipschitz continuous with respect to $A$ if there exists a constant $r_{1}>0$ such that

$$
\|H(A x, u)-H(A y, u)\| \leq r_{1}\|x-y\|, \quad \forall x, y, u \in X
$$

(iv) $H(., B)$ is said to be $r_{2}$-Lipschitz continuous with respect to $B$ if there exists a constant $r_{2}>0$ such that

$$
\|H(u, B x)-H(u, B y)\| \leq r_{2}\|x-y\|, \quad \forall x, y, u \in X .
$$

In related to Definition 4.3, the authors [3] presented a Matlab programme and claimed that $H(.,$.$) is$ $\frac{1}{3}-\eta$-cocoercive with respect to $A$ and $\frac{1}{2}$-relaxed $\eta$-cocoercive with respect to $B$.

Example 4.4. Let $X=\mathbb{R}^{2}$ with usual inner product, and let $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $A\left(x_{1}, x_{2}\right)=\left(x_{1}, 3 x_{2}\right)$ and $B\left(y_{1}, y_{2}\right)=\left(-y_{1},-y_{1}-y_{2}\right)$, for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. Let $H(A, B), \eta: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $H(A x, B y)=A x+B y$ and $\eta(x, y)=x-y$ for all $x, y \in \mathbb{R}^{2}$. The Hilbert space $\mathbb{R}^{2}$ is a 2-uniformly smooth Banach space due to the fact that it is finite dimensional. Then, for all $x, y, u \in \mathbb{R}^{2}$, we obtain

$$
\begin{aligned}
\left\langle H(A x, u)-H(A y, u), J_{2}(\eta(x, y))\right\rangle & =\langle A x-A y, x-y\rangle \\
& =\left\langle\left(x_{1}, 3 x_{2}\right)-\left(y_{1}, 3 y_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
& =\left\langle\left(x_{1}-y_{1}, 3\left(x_{2}-y_{2}\right)\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
& =\left(x_{1}-y_{1}\right)^{2}+3\left(x_{2}-y_{2}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\|A x-A y\|^{2}=\langle A x-A y, A x-A y\rangle & =\left\langle\left(x_{1}-y_{1}, 3\left(x_{2}-y_{2}\right)\right),\left(x_{1}-y_{1}, 3\left(x_{2}-y_{2}\right)\right)\right\rangle \\
& =\left(x_{1}-y_{1}\right)^{2}+9\left(x_{2}-y_{2}\right)^{2} \\
& \leq 3\left(x_{1}-y_{1}\right)^{2}+9\left(x_{2}-y_{2}\right)^{2} \\
& =3\left\langle H(A x, u)-H(A y, u), J_{2}(\eta(x, y))\right\rangle,
\end{aligned}
$$

which implies that

$$
\left\langle H(A x, u)-H(A y, u), J_{2}(\eta(x, y))\right\rangle \geq \frac{1}{3}\|A x-A y\|^{2},
$$

that is, $H(.,$.$) is \frac{1}{3}-\eta$-cocoercive with respect to $A$. The authors claimed that $H(.,$.$) is \frac{1}{2}$-relaxed $\eta$-cocoercive with respect to $B$. A careful checking illustrates that this fact is not true in general. In fact, in the light of Definition 4.6, $H(.,$.$) is \frac{1}{2}$-relaxed $\eta$-cocoercive with respect to $B$ if and only if

$$
\left\langle H(u, B x)-H(u, B y), J_{2}(\eta(x, y))\right\rangle \geq-\frac{1}{2}\|B x-B y\|^{2}, \quad \forall x, y, u \in \mathbb{R}^{2}
$$

In view of the definitions of the mappings $H, \eta$ and $B$, for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), u \in \mathbb{R}^{2}$, it yields

$$
\begin{aligned}
\left\langle H(u, B x)-H(u, B y), J_{2}(\eta(x, y))\right\rangle & =\langle B x-B y, x-y\rangle \\
& =\left\langle\left(y_{1}-x_{1}, y_{1}-x_{1}+y_{2}-x_{2}\right),\left(x_{1}-y_{1}, x_{2}-y_{2}\right)\right\rangle \\
& =-\left(x_{1}-y_{1}\right)^{2}-\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)-\left(x_{2}-y_{2}\right)^{2} \\
& =-\left\{\left(x_{1}-y_{1}\right)^{2}+\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+\left(x_{2}-y_{2}\right)^{2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\|B x-B y\|^{2} & =\langle B x-B y, B x-B y\rangle \\
& =\left\langle\left(y_{1}-x_{1}, y_{1}-x_{1}+y_{2}-x_{2}\right),\left(y_{1}-x_{1}, y_{1}-x_{1}+y_{2}-x_{2}\right)\right\rangle \\
& =2\left(y_{1}-x_{1}\right)^{2}+2\left(y_{1}-x_{1}\right)\left(y_{2}-x_{2}\right)+\left(y_{2}-x_{2}\right)^{2} \\
& \leq 2\left\{\left(y_{1}-x_{1}\right)^{2}+\left(y_{1}-x_{1}\right)\left(y_{2}-x_{2}\right)+\left(y_{2}-x_{2}\right)^{2}\right\} \\
& =-2\left\langle H(u, B x)-H(u, B y), J_{2}(\eta(x, y))\right\rangle,
\end{aligned}
$$

whence we deduce that

$$
\left\langle H(u, B x)-H(u, B y), J_{2}(\eta(x, y))\right\rangle \leq-\frac{1}{2}\|B x-B y\|^{2}, \quad \forall x, y, u \in \mathbb{R}^{2}
$$

The preceding inequality shows that contrary to the claim in [3], $H(.,$.$) is not \frac{1}{2}$-relaxed $\eta$-cocoercive with respect to $B$ necessarily.

Proposition 4.5. Let $X$ be a $q$-uniformly smooth Banach space with $q>1$, and let $A, B: X \rightarrow X$ and $H, \eta: X \times X \rightarrow X$ be the mappings. Suppose further that the mapping $P: X \times X \rightarrow X$ is defined by $P(x)=H(A x, B x)$, for all $x \in X$. Then, the following assertions hold:
(i) If the mapping $H(A, B)$ is $\mu-\eta$-cocoercive with respect to $A$ and $\gamma$-relaxed $\eta$-cocoercive with respect to $B$, the mapping $A$ is $\alpha$-expansive and $B$ is $\beta$-Lipschitz continuous, $\mu>\gamma$ and $\alpha>\beta$, then $P$ is $\left(\mu \alpha^{q}-\gamma \beta^{q}\right)$-strongly $\eta$-accretive and hence it is strictly $\eta$-accretive.
(ii) If $H(A, B)$ is $r_{1}$-Lipschitz continuous with respect to $A$ and $r_{2}$-Lipschitz continuous with respect to $B$, then $P$ is $\left(r_{1}+r_{2}\right)$-Lipschitz continuous.

Proof. (i) Owing to the fact that the mapping $H(A, B)$ is $\mu-\eta$-cocoercive with respect to $A$ and $\gamma$-relaxed $\eta$-cocoercive with respect to $B$, the mapping $A$ is $\alpha$-expansive and $B$ is $\beta$-Lipschitz continuous, $\mu>\gamma$ and $\alpha>\beta$, for all $x, y \in X$, we obtain

$$
\begin{aligned}
\langle P(x)-P(y), \eta(x, y)\rangle= & \langle H(A x, B x)-H(A y, B y), \eta(x, y)\rangle \\
= & \langle H(A x, B x)-H(A y, B x), \eta(x, y)\rangle \\
& +\langle H(A y, B x)-H(A y, B y), \eta(x, y)\rangle \\
\geq & \mu\|A x-A y\|^{q}-\gamma\|B x-B y\|^{q} \\
\geq & \mu \alpha^{q}\|x-y\|^{q}-\gamma \beta^{q}\|x-y\|^{q} \\
= & \left(\mu \alpha^{q}-\gamma \beta^{q}\right)\|x-y\|^{q} .
\end{aligned}
$$

Since $\mu>\gamma, \alpha>\beta$ and $q>1$, the preceding inequality guarantees that $P$ is $\left(\mu \alpha^{q}-\gamma \beta^{q}\right)$-strongly $\eta$-accretive. Now, the fact that $P$ is strictly $\eta$-accretive is straightforward.
(ii) Relying on the fact that $H(A, B)$ is $r_{1}$-Lipschitz continuous and $r_{2}$-Lipschitz continuous with respect to $A$ and $B$, respectively, it follows that for all $x, y \in X$,

$$
\begin{aligned}
\|P(x)-P(y)\|= & \|H(A x, B x)-H(A y, B y)\| \\
\leq & \|H(A x, B x)-H(A y, B x)\| \\
& +\|H(A y, B x)-H(A y, B y)\| \\
\leq & \left(r_{1}+r_{2}\right)\|x-y\|,
\end{aligned}
$$

that is, $P$ is $\left(r_{1}+r_{2}\right)$-Lipschitz continuous. This completes the proof.
Ahmad et al. [3] introduced and studied a class of accretive mappings the so-called $H(.,$.$) - \eta$-cocoercive mappings as a generalization of $P-\eta$-accretive (or $(H, \eta)$-accretive) and $H(.,$.$) -accretive mappings as follows.$

Definition 4.6. [3, Definition 2.6] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. Let $A, B: X \rightarrow X$, $H: X \times X \rightarrow X, \eta: X \times X \rightarrow X$ be the mappings. Then a multi-valued mapping $M: X \rightarrow 2^{X}$ is said to be $H(.,)-.\eta$-cocoercive with respect to the mappings $A$ and $B$ if $M$ is $\eta$-cocoercive and $(H(A, B)+\lambda M)(X)=X$, for all $\lambda>0$.

From Definition 4.6 and in the light of the mentioned arguments, it follows that every $H(.,)-.\eta$-cocoercive mapping is actually a $P-\eta$-accretive mapping. In fact, by defining the mapping $P: X \rightarrow X$ as $P(x)=$ $H(A x, B x)$, for all $x \in X$, and in view of the fact that every $\eta$-cocercive mapping is $\eta$-accretive, we deduce that the class of $H(.,)-.\eta$-cocoercive mappings coicides exactly with the class of $P-\eta$-accretive mappings and is not new. In other words, Definition 4.6 is actually the same Definition 2.5 and is not a new one.

In order to define the proximal mapping associated with the $H(.,)-.\eta$-cocoercive mappings, Ahmad et al. [3] presented the following theorem which states conditions under which the mapping $(H(A, B)+\lambda M)^{-1}$ is single-valued for every $\lambda>0$.

Theorem 4.7. [3, Theorem 2.7] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. Let $H(A, B)$ be $\mu$ -$\eta$-cocoercive with respect to $A$ and $\gamma$-relaxed $\eta$-cocoercive with respect to $B, A$ be $\alpha$-expansive, $B$ be $\beta$-Lipschit continuous, $\mu>\gamma$ and $\alpha>\beta$. Let $M$ be an $H(.,)-.\eta$-cocoercive mapping with respect to $A$ and $B$. Then the mapping $(H(A, B)+\lambda M)^{-1}$ is single-valued for every real constant $\lambda>0$.

Proof. Define $P: X \rightarrow X$ by $P(x)=H(A x, B x)$, for all $x \in X$. Thanks to the assumptions and by means of Proposition 4.5(i), we deduce that $P$ is a strictly $\eta$-accretive mapping. Furthermore, $M$ is a $P-\eta$-accretive mapping. We note that all the conditions of Lemma 2.1 hold. In accordance with Lemma 2.1, the mapping $(P+\lambda)^{-1}=(H(A, B)+\lambda)^{-1}$ is single-valued for every $\lambda>0$. This gives the desired result.

Based on Theorem 4.7, the authors [3] defined the proximal mapping $R_{\lambda, M}^{H(.,)-\eta}$ associated with the $H(.,)-$. $\eta$-cocoercive mapping $M$ as follows.

Definition 4.8. [3, Definition 2.8] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. Let $H(A, B)$ be $\mu-\eta$-cocoercive with respect to $A$ and $\gamma$-relaxed $\eta$-cocoercive with respect to $B$. Suppose that $A$ is $\alpha$-expansive, $B$ is $\beta$-Lipschitz continuous and $\mu>\gamma, \alpha>\beta$. Let $M$ be an $H(.,)-.\eta$-cocoercive mapping with respect to $A$ and $B$. Then the proximal mapping $R_{\lambda, M}^{H(.,)-\eta}: X \rightarrow X$ is defined by

$$
R_{\lambda, M}^{H(, .,)-\eta}(u)=(H(A, B)+\lambda M)^{-1}(u), \quad \forall u \in X .
$$

Remark 4.9. (i) In Theorem 4.7, the necessary and sufficient conditions for the mapping $(H(., .)+\lambda M)^{-1}$ to be single-valued for every $\lambda>0$, are stated. In the light of the mentioned theorem, and by comparing it with Definition 4.8, it should be pointed out that the $\tau$-Lipschitz continuity condition of the mapping $\eta: X \times X \rightarrow X$, mentioned in the context of Definition 2.8 of [3] is extra and must be deleted, as we have done in Definition 4.8.
(ii) By defining $P: X \rightarrow X$ as $P(x)=H(A x, B x)$, for all $x \in X$, in virtue of the assumptions of Definition 4.8 and by using Proposition 4.5(i), $P$ is a strictly $\eta$-accretive mapping and $M$ is a $P-\eta$-accretive mapping. Regarding to Definition 2.14, for any constant $\lambda>0$, the $P-\eta$-resolvent operator $R_{M, \lambda}^{P, \eta}: X \rightarrow X$ associated with $P, \eta, M$ and $\lambda$, for any $x \in X$ is defined as follows:

$$
R_{M, \lambda}^{P, \eta}(u)=R_{\lambda, M}^{H(., .)-\eta}(u)=(P+\lambda M)^{-1}(u)=(H(A, B)+\lambda M)^{-1}(u), \quad \forall u \in X
$$

that is, Definition 4.8 is actually the same Definition 2.14 and is not a new one.
In Theorem 2.9 of [3], the authors proved the Lipschitz continuity of the resolvent operator $R_{\lambda, M}^{H(.,)-\eta}$ and calculated its Lipschitz constant under some appropriate conditions as follows.

Theorem 4.10. [3, Theorem 2.9] Let $X$ be a $q$-uniformly smooth Banach space with $q>1$. Let $H(A, B)$ be $\mu-\eta$ cocoercive with respect to $A, \gamma$-relaxed $\eta$-cocoercive with respect to $B, A$ be $\alpha$-expansive, $B$ be $\beta$-Lipschitz continuous, $\eta$ be $\tau$-Lipschitz continuous and $\mu>\gamma, \alpha>\beta$. Let $M$ be an $H(.,)-.\eta$-cocoercive mapping with respect to $A$ and $B$. Then the resolvent operator $R_{\lambda, M}^{H(.,)-\eta}: X \rightarrow X$ is $\frac{\tau^{q-1}}{\mu \alpha^{q-\gamma} \beta^{q}}$ Lipschitz continuous, that is,

$$
\begin{equation*}
\left\|R_{\lambda, M}^{H(, .)-\eta}(u)-R_{\lambda, M}^{H(., .)-\eta}(v)\right\| \leq \frac{\tau^{q-1}}{\mu \alpha^{q}-\gamma \beta^{q}}\|u-v\|, \quad \forall u \in X . \tag{21}
\end{equation*}
$$

Proof. Let $P: X \rightarrow X$ be defined by $P(x)=H(A x, B x)$, for all $x \in X$. By utilizing the assumptions and Proposition 4.5(i), we conclude that $P$ is $\left(\mu \alpha^{q}-\gamma \beta^{q}\right)$-strongly $\eta$-accretive. Furthermore, $M$ is a $P-\eta$-accretive mapping. Then all the conditions of Lemma 2.16 hold. Therefore, by picking $\theta=\mu \alpha^{q}-\gamma \beta^{q}$, Lemma 2.16 implies that the resolvent operator $R_{M, \lambda}^{P, \eta}=R_{\lambda, M}^{H(., .)-\eta}: X \rightarrow X$ is $\frac{\tau^{q-1}}{\theta}$-Lipschitz continuous, i.e., (21) holds. The proof is finished.

Let $X_{1}$ and $X_{2}$ be two $q$-uniformly smooth Banach spaces with $q>1$ and let $A_{1}, B_{1}: X_{1} \rightarrow X_{1}$, $A_{2}, B_{2}: X_{2} \rightarrow X_{2}, H_{1}, \eta_{1}: X_{1} \times X_{1} \rightarrow X_{1}$ and $H_{2}, \eta_{2}: X_{2} \times X_{2} \rightarrow X_{2}$ be the mappings. Recently, Ahmad et al. [3] considered and studied the system (4) when $M$ and $N$ are $H_{1}\left(A_{1}, B_{1}\right)$ - $\eta_{1}$-cocoercive and $H_{2}\left(A_{2}, B_{2}\right)-\eta_{2}$-cocoercive mappings, respectively. With the goal of constructing an iterative algorithm for approximating a solution of the system (4) involving $H_{i}\left(A_{i}, B_{i}\right)-\eta_{i}$-cocoercive mappings ( $i=1,2$ ), they presented a characterization of its solution as follows.

Lemma 4.11. [3, Lemma 3.1] Let $X_{1}$ and $X_{2}$ be two $q$-uniformly smooth Banach spaces with $q>1$. Let $f, p, A_{1}, B_{1}$ : $X_{1} \rightarrow X_{1}, g, d, A_{2}, B_{2}: X_{2} \rightarrow X_{2}, S: X_{1} \times X_{2} \rightarrow X_{1}, T: X_{1} \times X_{2} \rightarrow X_{2}, H_{1}, \eta_{1}: X_{1} \times X_{1} \rightarrow X_{1}$ and $H_{2}, \eta_{2}: X_{2} \times X_{2} \rightarrow X_{2}$ be the mappings. Let, for each $i \in\{1,2\}, H_{i}\left(A_{i}, B_{i}\right)$ be $\mu_{i}$ - $\eta_{i}$-cocoercive with respect to $A_{i}$ and $\gamma_{i}$-relaxed $\eta_{i}$-cocoercive with respect to $B_{i}$, $A_{i}$ be $\alpha_{i}$-expansive, $B_{i}$ be $\beta_{i}$-Lipschitz continuous, $\mu_{i}>\gamma_{i}$ and $\alpha_{i}>\beta_{i}$. Let $E: X_{1} \rightarrow C B\left(X_{1}\right), F: X_{2} \rightarrow C B\left(X_{2}\right), M: X_{1} \rightarrow 2^{X_{1}}$ and $N: X_{2} \rightarrow 2^{X_{2}}$ be the multi-valued mappings such that $M$ is an $H_{1}\left(A_{1}, B_{1}\right)-\eta_{1}$-cocoercive mapping and $N: X_{2} \rightarrow 2^{X_{2}}$ is an $H_{2}\left(A_{2}, B_{2}\right)$ - $\eta_{2}$-cocoercive mapping. Then, $(x, y, u, v) \in X_{1} \times X_{2} \times E(x) \times E(y)$ is a solution of the system (4) (involving $H_{i}(.,)-.\eta_{i}$-cocoercive mappings) if and only if $(x, y, u, v)$ satisfies

$$
\left\{\begin{array}{l}
f(x)=R_{\lambda, M}^{H_{1}(\ldots)-\eta_{1}}\left[H_{1}\left(A_{1}(f(x)), B_{1}(f(x))\right)-\lambda S(p(x), v)\right], \\
g(y)=R_{\rho, N}^{H_{2}(\ldots,)-\eta_{2}}\left[H_{2}\left(A_{2}(g(y)), B_{2}(g(y))\right)-\rho T(u, d(y))\right],
\end{array}\right.
$$

where $\lambda, \rho>0$ are two constants.
Proof. Assume that for each $i \in\{1,2\}, P_{i}: X_{i} \rightarrow X_{i}$ is defined by $P_{i}(x)=H_{i}\left(A_{i} x, B_{i} x\right)$, for all $x \in X_{i}$. The assumptions and Proposition 4.5(i) imply that $P_{i}$ is a strictly $\eta_{i}$-accretive for $i=1,2, M$ is a $P_{1}-\eta_{1}$-accretive mapping and $N$ is a $P_{2}-\eta_{2}$-accretive mapping. Then, all the conditions of Lemma 3.2 hold, and so the assertion follows by Lemma 3.2 immediately.

In the light of Remark 4.9, it is worth mentioning that the $\tau_{1}$-Lipschitz continuity and $\tau_{2}$-Lipschitz continuity conditions of the mappings $\eta_{1}$ and $\eta_{2}$, respectively, mentioned in the context of Lemma 3.1 of [3] are extra and must be deleted, as we have done in the context of Lemma 4.11. In view of the proof of Lemma 4.11, it must be remarked that contrary to the claim of the authors in [3], the characterization of the solution for the system (4) involving $H_{i}(.,)-.\eta_{i}$-cocoercive mappings ( $i=1,2$ ), presented in Lemma 4.11 is actually the same characterization of the solution for the system (4) involving $P_{i}-\eta_{i}$-accretive mappings presented in Lemma 3.2, and is not a new one.

Utilizing Lemma 4.11, Ahmad et al. [3] suggested an iterative algorithm for solving the system (4) involving $H_{i}(.,)-.\eta_{i}$-cocoercive mappings $(i=1,2)$ as follows.
Algorithm 4.12. [3, Algorithm 3.3] Let $X_{1}, X_{2}, f, g, S, T, p, d, A_{1}, B_{1}, A_{2}, B_{2}, H_{1}, H_{2}, \eta_{1}, \eta_{2}, E, F, M$ and $N$ be the same as in Lemma 4.11. For any given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{2}, u_{0} \in E\left(x_{0}\right), v_{0} \in F\left(y_{0}\right)$, compute the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}$, $\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ by the following iterative schemes:

$$
\begin{align*}
& x_{n+1}=\left(1-t_{1}\right) x_{n}+t_{1}\left[x_{n}-f\left(x_{n}\right)+R_{\lambda, M}^{H_{1}(\ldots .)-\eta_{1}}\left[H_{1}\left(A_{1}\left(f\left(x_{n}\right)\right), B_{1}\left(f\left(x_{n}\right)\right)\right)-\lambda S\left(p\left(x_{n}\right), v_{n}\right)\right]\right],  \tag{22}\\
& y_{n+1}=\left(1-t_{2}\right) y_{n}+t_{2}\left[y_{n}-g\left(y_{n}\right)+R_{\rho, N}^{H_{2}(\ldots)-\eta_{2}}\left[H_{2}\left(A_{2}\left(g\left(y_{n}\right)\right), B_{2}\left(g\left(y_{n}\right)\right)\right)-\rho T\left(u_{n}, d\left(y_{n}\right)\right)\right]\right], \tag{23}
\end{align*}
$$

where $t_{1}, t_{2} \in(0,1]$ are two parameters and $\lambda, \rho>0$ are two constants, $n=0,1,2, \ldots$ and we choose $u_{n+1} \in E\left(x_{n}\right)$, $v_{n+1} \in F\left(y_{n+1}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|u_{n+1}-u_{n}\right\| \leq D\left(E\left(x_{n+1}\right), E\left(x_{n}\right)\right)  \tag{24}\\
\left\|v_{n+1}-v_{n}\right\| \leq D\left(F\left(y_{n+1}\right), F\left(y_{n}\right)\right) .
\end{array}\right.
$$

By a careful reading Algorithm 4.12, we found that the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty},\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ generated by Algorithm 4.12 are not well defined necessarily. In fact, for any given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{1}$, $u_{0} \in E\left(x_{0}\right), v_{0} \in F\left(y_{0}\right)$, the authors computed $x_{1}$ and $y_{1}$ by means of the iterative schemes (22) and (23), respectively, and then they claimed that one can choose $u_{1} \in E\left(x_{1}\right)$ and $v_{1} \in F\left(y_{1}\right)$ such that the following relations hold:

$$
\left\{\begin{array}{l}
\left\|u_{1}-u_{0}\right\| \leq D\left(E\left(x_{1}\right), E\left(x_{0}\right)\right),  \tag{25}\\
\left\|v_{1}-v_{0}\right\| \leq D\left(F\left(y_{1}\right), F\left(y_{0}\right)\right) .
\end{array}\right.
$$

In the light of Lemma 3.3, if $X$ is a metric space and $T: X \rightarrow C B(X)$ is a multi-valued mapping, then for any $\varepsilon>0$ and for any given $x, y \in X, u \in T(x)$, there exists $v \in T(y)$ such that

$$
d(u, v) \leq(1+\varepsilon) D(T(x), T(y))
$$

However, for any given $x, y \in X, u \in T(x)$, there may not be a point $v \in T(y)$ such that $d(u, v) \leq D(T(x), T(y))$. In support of this fact, the following example is provided.
Example 4.13. Consider $X=l^{\infty}(\mathbb{Z})=\left\{z=\left\{z_{n}\right\}_{n=-\infty}^{\infty}\left|\sup _{n \in \mathbb{Z}}\right| z_{n} \mid<\infty, z_{n} \in \mathbb{C}\right\}$, the Banach space consisting of all bounded complex sequences $z=\left\{z_{n}\right\}_{n=-\infty}^{\infty}$ with the supremum norm $\|z\|_{\infty}=\sup _{n \in \mathbb{Z}}\left|z_{n}\right|$. Any element $z=\left\{z_{n}\right\}_{n=-\infty}^{\infty}=\left\{x_{n}+i y_{n}\right\}_{n=-\infty}^{\infty} \in l^{\infty}(\mathbb{Z})$ can be written as follows:

$$
\begin{aligned}
z= & \sum_{\sigma \in\{ \pm 1, \pm 3, \ldots\}}\left[\left(\ldots, 0, \ldots, 0, x_{2 \sigma-1}+i y_{2 \sigma-1}, 0, x_{2 \sigma+1}+i y_{2 \sigma+1}, 0, \ldots\right)\right. \\
& \left.+\left(\ldots, 0, \ldots, 0, x_{2 \sigma}+i y_{2 \sigma}, 0, x_{2 \sigma+2}+i y_{2 \sigma+2}, 0, \ldots\right)\right] \\
= & \sum_{\sigma \in\{ \pm 1, \pm 3, \ldots\}}\left[\frac{y_{2 \sigma-1}+y_{2 \sigma+1}-i\left(x_{2 \sigma-1}+x_{2 \sigma+1}\right)}{2} \omega_{2 \sigma-1,2 \sigma+1}\right. \\
& +\frac{y_{2 \sigma-1}-y_{2 \sigma+1}-i\left(x_{2 \sigma-1}-x_{2 \sigma+1}\right)}{2} \omega_{2 \sigma-1,2 \sigma+1}^{\prime}+\frac{y_{2 \sigma}+y_{2 \sigma+2}-i\left(x_{2 \sigma}+x_{2 \sigma+2}\right)}{2} \omega_{2 \sigma, 2 \sigma+2} \\
& \left.+\frac{y_{2 \sigma}-y_{2 \sigma+2}-i\left(x_{2 \sigma}-x_{2 \sigma+2}\right)}{2} \omega_{2 \sigma, 2 \sigma+2}^{\prime}\right],
\end{aligned}
$$

where for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}, \omega_{2 \sigma-1,2 \sigma+1}=\left(\ldots, 0, \ldots, 0, i_{2 \sigma-1}, 0, i_{2 \sigma+1}, 0, \ldots\right), i$ in the $(2 \sigma-1)$ th and $(2 \sigma+1)$ th positions and 0 's elsewhere, $\omega_{2 \sigma-1,2 \sigma+1}^{\prime}=\left(\ldots, 0, \ldots, 0, i_{2 \sigma-1}, 0,-i_{2 \sigma+1}, 0, \ldots\right), i$ and $-i$ at the $(2 \sigma-1)$ th and ( $2 \sigma+$ 1)th coordinates, and all other coordinates are zero, $\omega_{2 \sigma, 2 \sigma+2}=\left(\ldots, 0, \ldots, 0, i_{2 \sigma}, 0, i_{2 \sigma+2}, 0, \ldots\right), i$ at the (2 $2 \sigma$ )th and $(2 \sigma+2)$ th places, respectively, and 0 's everywhere else, and $\omega_{2 \sigma, 2 \sigma+2}^{\prime}=\left(\ldots, 0, \ldots, 0, i_{2 \sigma}, 0,-i_{2 \sigma+2}, 0, \ldots\right), i$ and $-i$ at the $(2 \sigma)$ th and $(2 \sigma+2)$ th coordinates, respectively, and all other coordinates are zero. Therefore, the set

$$
\mathfrak{B}=\left\{\omega_{2 \sigma-1,2 \sigma+1}, \omega_{2 \sigma-1,2 \sigma+1}^{\prime}, \omega_{2 \sigma, 2 \sigma+2}, \omega_{2 \sigma, 2 \sigma+2}^{\prime}: \sigma= \pm 1, \pm 3, \ldots\right\}
$$

spans the Banach space $l^{\infty}(\mathbb{Z})$. It is easy to show that the set $\mathfrak{B}$ is linearly independent and so it is a Schauder basis for the Banach space $l^{\infty}(\mathbb{Z})$. Define the multi-valued mapping $T: X \rightarrow C B(X)$ by

$$
T(x)= \begin{cases}\left\{\left\{\frac{\xi}{\beta^{n^{p}!n^{9}!+2} \sqrt{n^{\prime}!}} i\right\}_{n=-\infty}^{\infty}, \omega_{2 \sigma-1,2 \sigma+1^{\prime}}^{\prime}, \omega_{2 \sigma, 2 \sigma+2}: \sigma= \pm 1, \pm 3, \ldots\right\}, & x \neq \omega_{2 r-1,2 r+1}, \\ \left\{\omega_{2 \sigma-1,2 \sigma+1}, \omega_{2 \sigma, 2 \sigma+2}^{\prime}: \sigma= \pm 1, \pm 3, \ldots\right\}, & x=\omega_{2 r-1,2 r+1},\end{cases}
$$

where $\xi \in[-1,0)$ and $\beta>1$ are arbitrary but fixed real numbers, $p, q$ and $\gamma$ are arbitrary but fixed even natural numbers, and $r \in\{ \pm 1, \pm 3, \ldots\}$ is chosen arbitrarily but fixed. Take $\omega_{2 r-1,2 r+1} \neq x \in X$ arbitrarily, $y=\omega_{2 r-1,2 r+1}$ and $u=\left\{\frac{\xi}{\beta^{p}!n^{9!+2} \sqrt{n^{\eta}!}}\right\}_{n=-\infty}^{\infty}$. If $a=\left\{\frac{\xi}{\beta^{n^{p}!}!\sqrt[n^{9}!2]{n^{v!}}} i\right\}_{n=-\infty}^{\infty}$, then in view of the fact that $\xi<0$, for any $\sigma \in\{ \pm 1, \pm 3, \ldots\}$, it yields

$$
\begin{aligned}
& d\left(a, \omega_{2 \sigma-1,2 \sigma+1}\right)=\left\|\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q}!+2]{n^{\gamma}}!} i\right\}_{n=-\infty}^{\infty}-\omega_{2 \sigma-1,2 \sigma+1}\right\|_{\infty} \\
& =\sup \left\{\left|\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q}+2]{n^{\gamma}!}}\right|,\left|\frac{\xi}{\beta^{(2 \sigma-1)^{p!}!} \sqrt[(2 \sigma-1)^{q}+2]{(2 \sigma-1)^{\gamma}!}}-1\right|,\right. \\
& \left.\left|\frac{\xi}{\beta^{(2 \sigma+1)^{p!}!(2 \sigma+1)^{!}!+2} \sqrt{(2 \sigma+1)^{\gamma!}}}-1\right|: n \in \mathbb{Z}, n \neq 2 \sigma-1,2 \sigma+1\right\} \\
& = \begin{cases}\left|\frac{\xi}{\beta^{(2 \sigma-1)^{p!}!(2 \sigma-1)^{!}!+2} \sqrt{(2 \sigma-1)^{v!}}}-1\right|, & \text { if } \sigma \in\{2 m+1 \mid m \in \mathbb{N} \cup\{0\}\}, \\
\left\lvert\, \frac{\xi}{\beta^{(2 \sigma+1)^{p!(2 \sigma+1)^{9!+2}} \sqrt{(2 \sigma+1)^{r!}}}-1 \mid,} \begin{array}{ll}
\text { if } \sigma \in\{-(2 m+1) \mid m \in \mathbb{N} \cup\{0\}\},
\end{array}\right.\end{cases} \\
& = \begin{cases}1-\frac{\xi}{\beta^{2(2 \sigma-1)^{p}!(2 \sigma-1)^{9}!+2} \sqrt{(2 \sigma-1)^{\gamma!}}}, & \text { if } \sigma \in\{2 m+1 \mid m \in \mathbb{N} \cup\{0\}\}, \\
1-\frac{\xi}{\beta^{2(2 \sigma+1)^{p!}!(2 \sigma+1)^{9}!+2} \sqrt{(2 \sigma+1)^{7}!}}, & \text { if } \sigma \in\{-(2 m+1) \mid m \in \mathbb{N} \cup\{0\}\},\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& d\left(a, \omega_{2 \sigma, 2 \sigma+2}^{\prime}\right)=\left\|\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{\varphi}!+2]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}-\omega_{2 \sigma, 2 \sigma+2}^{\prime}\right\|_{\infty} \\
& =\sup \left\{\left|\frac{\xi}{\beta^{n^{p!}!} \sqrt[n^{9}!+2]{n^{\gamma}!}}\right|,\left|\frac{\xi}{\beta^{(2 \sigma)^{p!}!(2 \sigma)^{q!+2}} \sqrt{(2 \sigma)^{\gamma}!}}-1\right|,\right. \\
& \left.\left|\frac{\xi}{\beta^{(2 \sigma+2)^{p!}!(2 \sigma+2)^{9}!+2} \sqrt{(2 \sigma+2)^{\gamma}!}}+1\right|: n \in \mathbb{Z}, n \neq 2 \sigma, 2 \sigma+2\right\} \\
& =\left|\frac{\xi}{\beta^{(2 \sigma)^{p!}!} \sqrt[(2 \sigma)^{q}!+2]{(2 \sigma)^{\gamma}!}}-1\right|=1-\frac{\xi}{\beta^{(2 \sigma)^{p!}!\left(2 \sigma^{q}!+2\right.} \sqrt{(2 \sigma)^{\gamma}!}} .
\end{aligned}
$$

Since $\xi \in[-1,0)$, we infer that

$$
d(a, T(y))=\inf _{b \in T(y)} d(a, b) \quad=\inf \left\{1-\frac{\xi}{\beta^{(2 \sigma+\mu)^{p}!(2 \sigma+\mu)^{9}++2} \sqrt{(2 \sigma+\mu)^{\gamma!}!}}: \mu=0, \pm 1 ; \sigma= \pm 1, \pm 3, \ldots\right\}=1
$$

For the case when $a=\omega_{2 s-1,2 s+1}^{\prime}$ for some $s \in\{ \pm 1, \pm 3, \ldots\}$, then for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}$, we obtain

$$
d\left(a, \omega_{2 \sigma-1,2 \sigma+1}\right)=\left\{\begin{array}{ll}
\left\|\omega_{2 s-1,2 s+1}^{\prime}-\omega_{2 s-1,2 s+1}\right\|_{\infty}, & \sigma=s \\
\left\|\omega_{2 s-1,2 s+1}^{\prime}-\omega_{2 \sigma-1,2 \sigma+1}\right\|_{\infty}, & \sigma \neq s,
\end{array}= \begin{cases}2, & \sigma=s \\
1, & \sigma \neq s\end{cases}\right.
$$

and $d\left(a, \omega_{2 \sigma, 2 \sigma+2}^{\prime}\right)=\left\|\omega_{2 s-1,2 s+1}^{\prime}-\omega_{2 \sigma, 2 \sigma+2}^{\prime}\right\|_{\infty}=1$. Thus, $d(a, T(y))=\inf _{b \in T(y)} d(a, b)=1$.
If $a=\omega_{2 t, 2 t+2}$ for some $t \in\{ \pm 1, \pm 3, \ldots\}$, in virtue of the facts that for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}$,

$$
d\left(a, \omega_{2 \sigma-1,2 \sigma+1}\right)=\left\|\omega_{2 t, 2 t+2}-\omega_{2 \sigma-1,2 \sigma+1}\right\|_{\infty}=1
$$

and

$$
d\left(a, \omega_{2 \sigma, 2 \sigma+2}^{\prime}\right)=\left\{\begin{array}{ll}
\left\|\omega_{2 t, 2 t+2}-\omega_{2 t, 2 t+2}^{\prime}\right\|_{\infty}, & \sigma=t \\
\left\|\omega_{2 t, 2 t+2}-\omega_{2 \sigma, 2 \sigma+2}^{\prime}\right\|_{\infty}, & \sigma \neq t,
\end{array}= \begin{cases}2, & \sigma=t \\
1, & \sigma \neq t\end{cases}\right.
$$

we deduce that $d(a, T(y))=\inf _{b \in T(y)} d(a, b)=1$. Consequently, $\sup _{a \in T(x)} d(a, T(y))=1$.
If $b=\omega_{2 k-1,2 k+1}$ for some $k \in\{ \pm 1, \pm 3, \ldots\}$, due to the fact that $\xi \in[-1,0)$, it follows that

$$
\begin{aligned}
& d\left(\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{9}+2]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}, \omega_{2 k-1,2 k+1}\right) \\
& =\left\|\left\{\frac{\xi}{\beta^{n^{p!}!} \sqrt[n^{9}!+2]{n^{\gamma}!}}\right\}_{n=-\infty}^{\infty}-\omega_{2 k-1,2 k+1}\right\|_{\infty} \\
& =\sup \left\{\left|\frac{\xi}{\beta^{n^{p!}!n^{q!+2}} \sqrt[n^{\gamma}!]{ }}\right|,\left|\frac{\xi}{\beta^{(2 k-1)^{p!}!(2 k-1)^{q!+2}} \sqrt{(2 k-1)^{\gamma!}}}-1\right|,\right. \\
& \left.\left|\frac{\xi}{\beta^{(2 k+1)^{p!}!(2 k+1)^{9}++2} \sqrt{(2 k+1)^{\gamma}!}}-1\right|: n \in \mathbb{Z}, n \neq 2 k-1,2 k+1\right\} \\
& = \begin{cases}\left|\frac{\xi}{\beta^{(2 k-1)^{p!}!(2 k-1)^{9}!+2} \sqrt{(2 k-1)^{r!}!}}-1\right|, & \text { if } k \in\{2 m+1 \mid m \in \mathbb{N} \cup\{0\}\}, \\
\left|\frac{\beta^{(2 k+1)^{p!}!(2 k+1)^{9!+2}} \sqrt{(2 k+1)^{r!}}}{}-1\right|, & \text { if } k \in\{-(2 m+1) \mid m \in \mathbb{N} \cup\{0\}\},\end{cases} \\
& = \begin{cases}1-\frac{\xi}{\beta^{(2 k-1)^{p!}!(2 k-1)^{9}!+2} \sqrt{(2 k-1)^{y!}!}}, & \text { if } k \in\{2 m+1 \mid m \in \mathbb{N} \cup\{0\}\}, \\
1-\frac{\xi}{\beta^{(2 k+1)^{p}!(2 k+1)^{!}!+2} \sqrt{(2 k+1)^{r!}}}, & \text { if } k \in\{-(2 m+1) \mid m \in \mathbb{N} \cup\{0\}\},\end{cases}
\end{aligned}
$$

and for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}$,

$$
d\left(\omega_{2 \sigma-1,2 \sigma+1}^{\prime}, \omega_{2 k-1,2 k+1}\right)=\left\{\begin{array}{ll}
\left\|\omega_{2 k-1,2 k+1}^{\prime}-\omega_{2 k-1,2 k+1}\right\|_{\infty}, & \sigma=k, \\
\left\|\omega_{2 \sigma-1,2 \sigma+1}^{\prime}-\omega_{2 k-1,2 k+1}\right\|_{\infty}, & \sigma \neq k,
\end{array}= \begin{cases}2, & \sigma=k \\
1, & \sigma \neq k\end{cases}\right.
$$

and

$$
d\left(\omega_{2 \sigma, 2 \sigma+2}, \omega_{2 k-1,2 k+1}\right)=\left\|\sigma_{2 \sigma, 2 \sigma+2}-\sigma_{2 k-1,2 k+1}\right\|_{\infty}=1 .
$$

In the light of these facts and considering the fact that $\xi<0$, we conclude that

$$
d(T(x), b)=\inf _{a \in T(x)} d(a, b)=1
$$

In the case where $b=\omega_{2 j, 2 j+2}^{\prime}$ for some $j \in\{ \pm 1, \pm 3, \ldots\}$, owing to the fact that $\xi \in[-1,0)$, we get

$$
\begin{aligned}
d\left(\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q}+2]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}, \omega_{2 j, 2 j+2}^{\prime}\right)= & \left\|\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q}!+2]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}-\omega_{2 j, 2 j+2}^{\prime}\right\|_{\infty} \\
= & \sup \left\{\left|\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q}!+2]{n^{\gamma}!}}\right|,\left|\frac{\xi}{\beta^{(2 j)^{p}!}(2)^{!}++2} \sqrt{(2 j)^{\gamma!}}-1\right|,\right. \\
& \left.\left|\frac{\xi}{\beta^{(2 j+2)^{p!}!(2 j+2)^{9!+2}} \sqrt{(2 j+2)^{\gamma!}}}+1\right|: n \in \mathbb{Z}, n \neq 2 j, 2 j+2\right\} \\
= & \left|\frac{\xi}{\beta^{(2 j)^{p!}!(2)^{q!+2}} \sqrt{(2 j)^{\gamma}!}}-1\right|=1-\frac{\xi}{\beta^{(2 j)^{p!}!(2)^{q}!+2} \sqrt{(2 j)^{\gamma!}!}},
\end{aligned}
$$

and for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}$,

$$
d\left(\omega_{2 \sigma-1,2 \sigma+1}^{\prime}, \omega_{2 j, 2 j+2}^{\prime}\right)=\left\|\omega_{2 \sigma-1,2 \sigma+1}^{\prime}-\omega_{2 j, 2 j+2}^{\prime}\right\|_{\infty}=1
$$

and

$$
d\left(\omega_{2 \sigma, 2 \sigma+2}, \omega_{2 j, 2 j+2}^{\prime}\right)=\left\{\begin{array}{ll}
\left\|\omega_{2 j, 2 j+2}-\omega_{2 j, 2 j+2}^{\prime}\right\|_{\infty}, & \sigma=j, \\
\left\|\omega_{2 \sigma, 2 \sigma+2}-\omega_{2 j, 2 j+2}^{\prime}\right\|_{\infty}, & \sigma \neq j,
\end{array}= \begin{cases}2, & \sigma=j, \\
1, & \sigma \neq j\end{cases}\right.
$$

Since $\xi<0$, we conclude that $d(T(x), b)=\inf _{a \in T(x)} d(a, b)=1$. Accordingly, $\sup _{b \in T(y)} d(T(x), b)=1$, and so

$$
D(T(x), T(y))=\max \left\{\sup _{a \in T(x)} d(a, T(y)), \sup _{b \in T(y)} d(T(x), b)\right\}=1
$$

Taking into account that for each $\sigma \in\{ \pm 1, \pm 3, \ldots\}$,

$$
\begin{aligned}
& \left\|\left\{\frac{\xi}{\beta^{n^{p}!}!\sqrt[n^{9}+2]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}-\omega_{2 \sigma-1,2 \sigma+1}\right\|_{\infty} \\
& = \begin{cases}1-\frac{\xi}{\beta^{(2 \sigma-1)^{p}!}\left(\frac{2 \sigma-1)^{9!+2}}{} \sqrt{(2 \sigma-1)^{v!}!}\right.}>1, & \text { if } \sigma \in\{2 m+1 \mid m \in \mathbb{N} \cup\{0\}\}, \\
1-\frac{\xi}{\beta^{2(2 \sigma 1)^{p}!}!\left(2 \sigma+19^{9!+2}\right.} \sqrt{(2 \sigma+1)^{\gamma!}!} & \text { if } \sigma \in\{-(2 m+1) \mid m \in \mathbb{N} \cup\{0\}\},\end{cases}
\end{aligned}
$$

and

$$
\left\|\left\{\frac{\xi}{\beta^{n^{p}!} \sqrt[n^{q!+2}]{n^{\gamma}!}} i\right\}_{n=-\infty}^{\infty}-\omega_{2 \sigma, 2 \sigma+2}^{\prime}\right\|_{\infty}=1-\frac{\xi}{\beta^{(2 \sigma)^{p!}!(2 \sigma)^{q}!+2} \sqrt{(2 \sigma)^{\gamma}!}}>1,
$$

because $\xi \in[-1,0)$, it follows that for any $v \in T(y), d(u, v)=\|u-v\|_{\infty}>D(T(x), T(y))$.

It is worthwhile to stress that if $T(y)$ is compact then such a point $v$ does exist. In fact, if $T: X \rightarrow C(X)$, where $C(X)$ is the family of all the nonempty compact subsets of $X$, then for any given $x, y \in X, u \in T(x)$, there exists $v \in T(y)$ such that $d(u, v) \leq D(T(x), T(y))$. In virtue of the above mentioned arguments, Algorithm 4.12 is not well-defined necessarily. We now present the correct version of Algorithm 4.12, only by editing (24) as follows.

Algorithm 4.14. Let $X_{1}, X_{2}, f, g, p, d, S, T, A_{1}, B_{1}, A_{2}, B_{2}, H_{1}, H_{2}, \eta_{1}, \eta_{2}, E, F, M$ and $N$ be the same as in Lemma 4.11. For any given $\left(x_{0}, y_{0}\right) \in X_{1} \times X_{2}, u_{0} \in E\left(x_{0}\right), v_{0} \in F\left(y_{0}\right)$, define the sequences $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty}\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ in the following way:

$$
\begin{aligned}
& x_{n+1}=\left(1-t_{1}\right) x_{n}+t_{1}\left[x_{n}-f\left(x_{n}\right)+R_{\lambda, M}^{H_{1}(. .,)-\eta_{1}}\left[H_{1}\left(A_{1}\left(f\left(x_{n}\right)\right), B_{1}\left(f\left(x_{n}\right)\right)\right)-\lambda S\left(p\left(x_{n}\right), v_{n}\right)\right]\right] \\
& y_{n+1}=\left(1-t_{2}\right) y_{n}+t_{2}\left[y_{n}-g\left(y_{n}\right)+R_{\rho, N}^{H_{2}(.,)-\eta_{2}}\left[H_{2}\left(A_{2}\left(g\left(y_{n}\right)\right), B_{2}\left(g\left(y_{n}\right)\right)\right)-\rho T\left(u_{n}, d\left(y_{n}\right)\right)\right]\right]
\end{aligned}
$$

where $t_{1}, t_{2} \in(0,1]$ are two parameters and $\lambda, \rho>0$ are two constants, $n=0,1,2, \ldots$ and we choose $u_{n+1} \in E\left(x_{n}\right)$, $v_{n+1} \in F\left(y_{n+1}\right)$ such that

$$
\left\{\begin{array}{l}
\left\|u_{n+1}-u_{n}\right\| \leq\left(1+(1+n)^{-1}\right) D\left(E\left(x_{n+1}, E\left(x_{n}\right)\right)\right. \\
\left\|v_{n+1}-v_{n}\right\| \leq\left(1+(1+n)^{-1}\right) D\left(F\left(y_{n+1}, F\left(y_{n}\right)\right)\right.
\end{array}\right.
$$

By defining $P_{i}: X_{i} \rightarrow X_{i}$ as $P_{i}(x)=H_{i}\left(A_{i} x, B_{i} x\right)$, for $i=1,2$, and for all $x \in X_{i}$, and in the light of the conditions of Lemma 4.11, Proposition 4.5 implies that for $i=1,2, P_{i}$ is a strictly $\eta_{i}$-accretive mapping, and $M$ and $N$ are $P_{1}-\eta_{1}$-accretive and $P_{2}-\eta_{2}$-accretive mappings, respectively. Then, by letting $\alpha_{i}=t_{i}$, for $i=1$, 2, we observe that Algorithm 4.14 is actually the same Algorithm 3.5 and is not a new one.

In Theorem 3.4 of [3], the authors studied the convergence analysis of Algorithm 4.12 under some certain conditions. Taking into account that Algorithm 4.12 is not in general well defined, and Algorithm 4.14 is the correct version of Algorithm 4.12, we infer that the statement of [3, Theorem 3.4] is not true necessarily. In the following its correct version is provided.

Theorem 4.15. Let $X_{1}$ and $X_{2}$ be two $q$-uniformly smooth Banach spaces with $q>1$. Let $A_{1}, B_{1}, p: X_{1} \rightarrow X_{1}$, $A_{2}, B_{2}, d: X_{2} \rightarrow X_{2}, H_{1}: X_{1} \times X_{2} \rightarrow X_{1}, H_{2}: X_{2} \times X_{1} \rightarrow X_{2}$ be the mappings such that $H_{1}\left(A_{1}, B_{1}\right)$ is $\eta_{1}$-cocoercive with respect to $A_{1}$ with constant $\mu_{1}$ and relaxed $\eta_{1}$-cocoercive with respect to $B_{1}$ with constant $\gamma_{1}, A_{1}$ is $\alpha_{1}$-expansive, $B_{1}$ is $\beta_{1}$-Lipschitz continuous, $\alpha_{1}>\beta_{1}$ and $\mu_{1}>\gamma_{1} ; H_{2}\left(A_{2}, B_{2}\right)$ is $\eta_{2}$-cocoercive with respect to $A_{2}$ with constant $\mu_{2}$ and relaxed $\eta_{2}$-cocoercive with respect to $B_{2}$ with constant $\gamma_{2}, A_{2}$ is $\alpha_{2}$-expansive, $B_{2}$ is $\beta_{2}$-Lipschitz continuous, $\alpha_{2}>\beta_{2}$ and $\mu_{2}>\gamma_{2}$. Assume that $\eta_{1}: X_{1} \times X_{1} \rightarrow X_{1}$ is $\tau_{1}$-Lipschitz continuous, $\eta_{2}: X_{2} \times X_{2} \rightarrow X_{2}$ is $\tau_{2}$-Lipschitz continuous, $f: X_{1} \rightarrow X_{1}$ is strongly accretive with constant $\delta_{1}$ and $\lambda_{f}$-Lipschitz continuous and $g: X_{2} \rightarrow X_{2}$ is strongly accretive with constant $\delta_{2}$ and $\lambda_{g}$-Lipschitz continuous. Let $S: X_{1} \times X_{2} \rightarrow X_{1}$ be strongly $\eta_{1}$-accretive with respect to $p$ with constant $\lambda_{S}$ and $\lambda_{S_{p}}$-Lipschitz continuous with respect to $p$ in the first argument and $\lambda_{S_{2}}$-Lipschitz continuous in the second argument. Suppose that $T: X_{1} \times X_{2} \rightarrow X_{2}$ is strongly $\eta_{2}$-accretive with constant $\delta_{T}$ with respect to $d$ and $\lambda_{T_{d}}$-Lipschitz continuous with respect to $d$ in the second argument, and $\lambda_{T_{1}}$-Lipschitz continuous in the first argument. Let $E: X_{1} \rightarrow C B\left(X_{1}\right)$ be D-Lipschitz continuous with constant $\lambda_{D_{E}}$ and $F: X_{2} \rightarrow C B\left(X_{2}\right)$ be D-Lipschitz continuous with constant $\lambda_{D_{F}}$. Let $H_{1}\left(A_{1}, B_{1}\right)$ be $r_{1}$-Lipschitz continuous with respect to $A_{1}$ and $r_{2}$-Lipschitz continuous with respect to $B_{1}$, and $H_{2}\left(A_{2}, B_{2}\right)$ be $r_{3}$-Lipschitz continuous with respect to $A_{2}$ and $r_{4^{-}}$ Lipschitz continuous with respect to $B_{2}$. Suppose that $M: X_{1} \rightarrow 2^{X_{1}}$ is $H_{1}\left(A_{1}, B_{1}\right)-\eta_{1}$-cocoercive and $N: X_{2} \rightarrow 2^{X_{2}}$ is $H_{2}\left(A_{2}, B_{2}\right)-\eta_{2}$-cocoercive. If there exist positive constants $\rho$ and $\lambda$ such that

$$
\begin{align*}
& 1-t_{1}+t_{1} \sqrt[q]{1-q \delta_{1}+c_{q} \lambda_{f}^{q}}+\frac{t_{1} \tau_{1}^{q-1}}{\mu_{1} \alpha_{1}^{q}-\gamma_{1} \beta_{1}^{q}} \theta^{\prime}+\frac{t_{2} \tau_{2}^{q-1} \rho \lambda_{T_{1}} \lambda_{D_{E}}}{\mu_{2} \alpha_{2}^{q}-\gamma_{2} \beta_{2}^{q}}<1  \tag{26}\\
& 1-t_{2}+t_{2} \sqrt[q]{1-q \delta_{2}+c_{q} \lambda_{g}^{q}}+\frac{t_{2} \tau_{2}^{q-1}}{\mu_{2} \alpha_{2}^{q}-\gamma_{2} \beta_{2}^{q}} \theta^{\prime \prime}+\frac{t_{1} \tau_{1}^{q-1} \lambda \lambda_{S_{2}} \lambda_{D_{F}}}{\mu_{1} \alpha_{1}^{q}-\gamma_{1} \beta_{1}^{q}}<1 \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
& \theta^{\prime}=\sqrt[q]{\left(r_{1}+r_{2}\right)^{q} \lambda_{f}^{q}-q \lambda \delta_{S}+q \lambda \lambda_{S_{p}}\left(r_{1}+r_{2}\right)^{q-1} \lambda_{f}^{q-1}+q \lambda \lambda_{S_{p}} \tau_{1}^{q-1}+c_{q} \lambda_{q} \lambda_{S_{p^{\prime}}}^{q}} \\
& \theta^{\prime \prime}=\sqrt[q]{\left(r_{3}+r_{4}\right)^{q} \lambda_{g}^{q}-q \rho \delta_{T}+q \rho \lambda_{T_{d}}\left(r_{3}+r_{4}\right)^{q-1} \lambda_{g}^{q-1}+q \rho \lambda_{T_{d}} \tau_{2}^{q-1}+c_{q} \rho^{q} \lambda_{T_{d^{\prime}}}^{q}}
\end{aligned}
$$

where in the case when $q$ is an even natural number, in addition to (26) and (27), the following conditions hold:

$$
\begin{align*}
& q \delta_{1}<1+c_{q} \lambda_{f^{\prime}}^{q}, q \delta_{2} \leq 1+c_{q} \lambda_{g}^{q}  \tag{28}\\
& q \lambda \delta_{S}<\left(r_{1}+r_{2}\right)^{q} \lambda_{f}^{q}+q \lambda \lambda_{S_{p}}\left(r_{1}+r_{2}\right)^{q-1} \lambda_{f}^{q-1}+q \lambda \lambda_{S_{p}} \tau_{2}^{q-1}+c_{q} \lambda^{q} \lambda_{S_{p^{\prime}}}^{q}  \tag{29}\\
& q \rho \delta_{T}<\left(r_{3}+r_{4}\right)^{q} \lambda_{g}^{q}+q \rho \lambda_{T_{d}}\left(r_{3}+r_{4}\right)^{q-1} \lambda_{g}^{q-1}+q \rho \lambda_{T_{d}} \tau_{2}^{q-1}+c_{q} \rho^{q} \lambda_{T_{d^{\prime}}}^{q} \tag{30}
\end{align*}
$$

where $c_{q}$ is a constant guaranteed by Lemma 2.1. Then, the iterative sequences $\left\{x_{n}\right\}_{n=0^{\prime}}^{\infty},\left\{y_{n}\right\}_{n=0^{\prime}}^{\infty}\left\{u_{n}\right\}_{n=0}^{\infty}$ and $\left\{v_{n}\right\}_{n=0}^{\infty}$ generated by Algorithm 4.14 converge strongly to $x, y, u$ and $v$, respectively, and $(x, y, u, v)$ is a solution of the system (4) (involving $H_{i}(.,)-.\eta_{i}$-cocoercive mappings $(i=1,2)$ ).

Proof. Let us define $P_{i}: X_{i} \rightarrow X_{i}$ as $P_{i}(x)=H_{i}\left(A_{i} x, B_{i} x\right)$, for each $i \in\{1,2\}$ and $x \in X_{i}$. From the assumptions and Proposition 4.5, it follows that for each $i \in\{1,2\}$, the mapping $P_{i}$ is $\left(\mu_{i} \alpha_{i}^{q}-\gamma_{i} \beta_{i}^{q}\right)$-strongly $\eta_{i}$-accretive, $P_{1}$ is $\left(r_{1}+r_{2}\right)$-Lipschitz continuous and $P_{2}$ is $\left(r_{3}+r_{4}\right)$-Lipschitz continuous. Furthermore, $M$ and $N$ are $P_{1}-\eta_{1}$-accretive and $P_{2}-\eta_{2}$-accretive mappings, respectively. Taking $\varrho_{1}=r_{1}+r_{2}, \varrho_{2}=r_{3}+r_{4}, \theta_{i}=\mu_{i} \alpha_{i}^{q}-\gamma_{i} \beta_{i}^{q}$ and $\alpha_{i}=t_{i}$, for each $i \in\{1,2\}$, we note that all the conditions of Corollary 3.11 hold. Now, the statement follows by utilizing the statement of Corollary 3.11 immediately.

It should be pointed out that if $q$ is an even natural number, then the positive constants $\rho$ and $\lambda$, in addition to (5), must be also satisfied (28)-(30), as we have added the mentioned conditions to the conditions of Theorem 4.15. At the same time, there are some mistakes in (3.4) of [3]. In fact, in (3.4) of [3], $\lambda_{f^{q}}, \lambda_{g^{q}}$ and $\tau^{q_{1}}$ must be replaced by $\lambda_{f}^{q}, \lambda_{g}^{q}$ and $\tau_{1}^{q-1}$, respectively, as we have done in (26) and (27).

Acknowledgment. The authors are thankful to the referees for their valuable suggestions and comments to improve the paper.

## References

[1] R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-Co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc. 38(4)(2015) 1481-1506.
[2] R. Ahmad, M. Dilshad, M. Akram, Resolvent operator technique for solving a system of generalized variational-like inclusions in Banach sapces, Filomat 26(5)(2012) 897-908.
[3] R. Ahmad, M. Dilshad, M. Akram, Resolvent operator technique for solving a system of generalized variational-like inclusions in Banach spaces, Filomat. 26(5)(2012) 897-908.
[4] Q.H. Ansari, J. Balooee, J.-C. Yao, Iterative algorithms for systems of extended regularized nonconvex variational inequalities and fixed point problems, Applicable Analysis, 93(5)(2014) 972-993.
[5] Q.H. Ansari, C.S. Lalitha, M. Monica, Generalized Convexities, Nonsmooth Variational Inequalities and Nonsmooth Optimization. CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2014.
[6] A. Auslender, M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer-Verlag, New York, 2003.
[7] C. Baiocchi, A. Capelo, Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, New York, 1984.
[8] J. Balooee, Iterative algorithm with mixed errors for solving a new system of generalized nonlinear variational-like inclusions and fixed point problems in Banach spaces, Chin. Ann. Math. 34B(4)(2013) 593-622.
[9] A. Bensoussan, J.L. Lions, Applications of Variational Inequalities to Stochastic Control, North-Holland, Amsterfam, 1982.
[10] S. Carl, V.K. Le, D. Montreanu, Nonsmooth Variational Problems and their Inequalities: Comparison Principles and Applications. Springer-Verlag, New York, 2007.
[11] L.-C. Ceng, Q. Yuan, Variational inequalities, variational inclusions and common fixed point problems in Banach spaces, Filomat 34(9) (2020) 2939--2951.
[12] C.-E. Chidume, K.-R. Kazmi and H. Zegeye, Iterative approximation of a solution of a general variational-like inclusion in Banach spaces, Internat. J. Math. Math. Sci. 22(2004) 1159-1168.
[13] J. Diestel, Geometry of Banach space-selected topics, in "Lecture Notes in Mathematics" Vol. 485, Springer-Verlag, New York/Berlin, 1975.
[14] F. Facchinei, J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II, Comprehensive Study in Mathematics, Springer-Verlag, New York, 2003.
[15] Y.-P. Fang, N.-J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17(2004) 647-653.
[16] Y.-P. Fang, N.-J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145(2003) 795-803.
[17] Y.-P. Fang, N.-J. Huang, H-monotone operators and system of variational inclusions, Commun. Appl. Nonlinear Anal. 11(1)(2004) 93-101.
[18] Y.-P. Fang, N.-J. Huang, Iterative algorithm for a system of variational inclusions involving $H$-accretive operators in Banach spaces, Acta Math. Hungar. 108(3)(2005) 183-195.
[19] Y.P. Fang, N.J. Huang, H.B. Thompson, A new system of variational inclusions with ( $H, \eta$ )-monotone operators in Hilbert spaces, Comput. Math. Appl. 49(2005) 365-374.
[20] F. Giannessi, A. Maugeri, Variational Analysis and Applications, Springer, New York, 2005.
[21] D. J. Guo, Nonlinear Functional Analysis, second ed., Shandong Science and Technology Publishing Press, Shandong, 2001.
[22] O. Hanner, On the uniform convexity of $L^{p}$ and $l^{p}$, Ark. Mat. 3(1956) 239-244.
[23] N.J. Huang, Y.P. Fang, Fixed point theorems and a new system of multi-valued generalized othere complementarity problems, Positivity 7(2003) 257-265.
[24] N.J. Huang, Y.P. Fang, A new class of general variational inclusions involving maximal $\eta$-monotone mappings, Publ. Math. Debrecen 62(1-2)(2003) 83-98.
[25] N.J. Huang, Y.P. Fang, Generalized m-accretive mappings in Banach spaces, J. Sichuan. Univ. 38(4)(2001) 591-592.
[26] N.J. Huang, Y.P. Fang, Y. J. Cho, Perturbed three-step approximation processes with errors for a class of general implicit variational inclusions, J. Nonlinear Convex Anal. 4(2003) 301-308.
[27] K.-R. Kazmi, F.-A. Khan, Iterative approximation of a unique solution of a system of variational-like inclusions in real $q$-uniformly smooth Banach spaces, Nonlinear Anal. (TMA) 67(2007) 917-929.
[28] H.Y. Lan, J.H. Kim, Y.J. Cho, On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327(2007) 481-493.
[29] X.B. Li, S. Rezapour, J.-C. Yao, S.H. Zakeri, Generalized contractions and hybrid approximate proximal method for vector optimization problems, J. Nonlinear Convex Anal. 21(2) (2020) 495-517.
[30] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II, Springer-Verlag, New York/Berlin, 1979.
[31] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30(1969) 475-488.
[32] J. Peng, D. Zhu, A new system of generalized mixed quasi-variational inclusions with ( $H, \eta$ )-monotone operators, J. Math. Anal. Appl. 327(2007) 175-187.
[33] J.-W. Peng, D.-L. Zhu, A system of variational inclusions with P- $\eta$-accretive operators, J. Comput. Appl. Math. 216(2008) 198-209.
[34] D.R. Sahu, J.-C. Yao, M. Verma, K.K. Shukla, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems, Optimization $70(1)(2021) 75-100$.
[35] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces, Numer. Algorithms 86(12) (2021) 1--30.
[36] R.U. Verma, General system of $(A, \eta)$-monotone variational inclusion problems based on generalized hybrid iterative algorithm, Nonlinear Anal. Hybrid systems 1(2007) 326-335.
[37] F.-Q. Xia, N.-J. Huang, Variational inclusions with a general H-monotone operator in Banach spaces, Comput. Math. Appl. 54(2007) 24-30.
[38] H.-K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16(12)(1991) 1127-1138.
[39] Y.-Z. Zou, N.-J. Huang, A new system of variational inclusions involving H(.,.)-accretive operator in Banach spaces, Appl. Math. Comput. 212(1)(2009) 135-144.


[^0]:    2020 Mathematics Subject Classification. Primary 47H05; Secondary 47H06, 47H09, 47J22, 47J25, 49J40, 47J20, 46C50
    Keywords. Generalized multi-valued nonlinear variational inclusions, $P-\eta$-accretive mapping, $H(.,)-.\eta$-cocoercive mapping, Iterative algorithm, $P-\eta$-proximal-point mapping, Convergence analysis

    Received: 18 January 2022; Accepted: 14 September 2022
    Communicated by Naseer Shahzad
    Email addresses: javad.balooee@gmail.com (Javad Balooee), yaojc@mail.cmu.edu.tw (Jen-Chih Yao)

