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Abstract. In this manuscript, we give the definition of Riemannian concircular structure manifolds. Some
basic properties and integrability condition of such manifolds are established. It is proved that a Riemannian
concircular structure manifold is semisymmetric if and only if it is concircularly flat. We also prove that the
Riemannian metric of a semisymmetric Riemannian concircular structure manifold is a generalized soliton.
In this sequel, we show that a conformally flat Riemannian concircular structure manifold is a quasi-Einstein
manifold and its scalar curvature satisfies the partial differential equation △r = ∂2r

∂t2 + α(n− 1) ∂r
∂t . To validate

the existence of Riemannian concircular structure manifolds, we present some non-trivial examples. In
this series, we show that a quasi-Einstein manifold with a divergence free concircular curvature tensor is a
Riemannian concircular structure manifold.

1. Introduction

Let (M, 1) be an n-dimensional Riemannian manifold. To study the properties of Riemannian manifolds,
the vector fields (likes, torse-forming, torqued, concircular, recurrent, parallel vector fields, etc.) play an
important role, and therefore they attract the researchers to work in this area. In 1963, Tashiro [30] classified
the Riemannian manifolds with concircular, special concircular, nonisometric concircular, nonisometric
conformal and nonaffine projective vector fields. Mihai and Mihai [22] studied the properties of Riemannian
manifolds with torse-forming and exterior concurrent vector fields. Chen [13] explored the properties of
concircular vector field and established some results of Ricci solitons. He also studied the properties of
torqued and parallel vector fields in [14] and [15], respectively, with his co-authors. The Riemannian
manifolds with different vector fields have been studied by several authors. For instance, we refer [6], [16],
[20], [21], [23], [30], [34], [35] and their references. In this manuscript, we start our study with torse-forming
vector field in Riemannian setting and prove that it is a concircular one. We also introduce a new class of
Riemannian manifold, named as Riemannian concircular structure (briefly, (RCS)n-)manifold.

The study of symmetric space is a very keen and interesting research field of differential geometry.
Semisymmetric space (R(ϑ1, ϑ2) · R = 0) [29] is the generalization of locally symmetric space (∇R = 0),
and it has been studied by several geometers. Here R denotes the non-vanishing curvature tensor of the
Riemannian manifold M, ∇ is Levi-Civita connection of the Riemannian metric 1 and R(ϑ1, ϑ2) acts as a
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derivation on R for all vector fields ϑ1 and ϑ2 on M. If the non-vanishing Ricci tensor S of M satisfies the
curvature condition R(ϑ1, ϑ2) · S = 0, then M is called a Ricci semisymmetric. Remark that the class of Ricci
semisymmetric manifold is included in the class of Ricci symmetric manifold (∇S = 0), but the converse
part is not true in general. Every semisymmetric manifold is Ricci semisymmetric, but its converse part is
not true (in general). The properties of symmetric spaces (for example, locally symmetric, semisymmetric,
Ricci semisymmetric, etc.) have been studied by several authors in Riemannian and semi-Riemannian
setting. We refer [2], [3], [11], [19], [23], [28] and their references for more details.

In 1987, Koiso [18] introduced the notion of quasi-Einstein metric, as a generalization of Kähler-Einstein
metric, on Fano manifolds. Since then, the properties of quasi-Einstein metrics have been studied by many
academicians. The work of Chave and Valent [12] on quasi-Einstein metrics, motivates Chaki and Maity
[7] to study the properties of Ricci tensor S of an n-dimensional Riemannian manifold M that satisfies the
relation

S = a1 + bu ⊗ u, (1)

where a and b are non-zero smooth functions on M and u is a 1-form. If the non-vanishing Ricci tensor
S of M satisfies equation (1), then M is said to be a quasi-Einstein manifold (briefly, (QE)n-manifold) [7].
Particularly, M together with b = 0 and a = b = 0 reduces to the Einstein manifold and Ricci flat manifold,
respectively. In [7], Chaki and Maity considered the following assumptions:

• a and b are constants and the generator of (QE)n-manifold is recurrent,

• a + b = 0, ϑ4 =
1
2a1rad a and ∇ϑ1ϑ4 = −ϑ1 + A(ϑ1)ϑ4, where A is a dual 1-form of ϑ4

for (QE)n-manifolds, and they proved that in both the cases (QE)n-manifolds are conformally conservative.
In this manuscript, we are going to study the properties of (QE)n-manifolds in general setting and therefore
our work will be the generalization of Chaki and Maity work [7]. We also give some clue for selection of
the smooth functions a and b.

We arrange our work in the following manner. In Section 2, we give the definition of Riemannian
concircular structure manifold and prove its some basic properties. We also establish that the (RCS)n-
manifold is integrable. Section 3 deals with the study of semisymmetric (RCS)n-manifolds. The properties
of conformally flat (RCS)n-manifolds are studied in Section 4. We construct some non-trivial examples to
prove the existence of (RCS)n-manifolds in Section 5.

2. Riemannian manifolds and torse-forming vector field

This section is dedicated to study the properties of Riemannian manifolds endowed with a torse-forming
vector field.

Let M be an n-dimensional Riemannian manifold endowed with a Riemannian metric 1. The curvature
tensor R of a Riemannian manifold M satisfies

(divR)(ϑ1, ϑ2)ϑ3 = (∇ϑ1 S)(ϑ2, ϑ3) − (∇ϑ2 S)(ϑ1, ϑ3), ∀ϑ1, ϑ2, ϑ3 ∈ X(M), (2)

where div stands for divergence and X(M) is the collection of all smooth vector fields of M. If M has a
divergence free Riemann curvature tensor R then divR = 0 and vice-versa. The Ricci tensor S of M is said to be
of Codazzi type if its covariant derivative is symmetric, that is, (∇ϑ1 S)(ϑ2, ϑ3) = (∇ϑ2 S)(ϑ1, ϑ3), ∀ ϑ1, ϑ2, ϑ3 ∈

X(M). Thus from equation (2), we remark that the curvature tensor of M is divergence free if and only if S
is of Codazzi type. For more details, we refer to [26].

The notion of torse-forming vector field on Riemannian spaces was introduced by Yano [35], and its
properties have been studied by several academicians in Riemannian and semi-Riemannian setting (see,
[6], [20], [21], [22], [23]). A smooth vector field ξ defined on M is said to be a torse-forming vector field [35]
if

(∇ϑ1 u)(ϑ2) = α1(ϑ1, ϑ2) + π(ϑ1)u(ϑ2), ∀ ϑ1, ϑ2 ∈ X(M), (3)
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where u(·) = 1(·, ξ) is a 1-form associated with ξ and π is a 1-form. If 1-form π is closed on M, then ξ is said
to be a concircular vector field [16, 34]. As a particular, the torse-forming vector field ξ on M reduces to

∗ torqued vector field [14] if π(ξ) = 0,

∗ concircular vector field (in Fialkow’s sense) [13, 16] if π = 0,

∗ concircular vector field (in Yano’s sense) [34] if the 1-form π is closed,

∗ recurrent vector field [27] if α = 0,

∗ concurrent vector field [15] if π = 0, and α = 1,

∗ parallel vector field [15, 16] if π = 0, and α = 0.

These vectors are capable to address several issues of science and technology, especially they play a
peculiar role in geometry and physics, therefore the study of geometric structures with these vectors attract
researchers. In this manuscript, we classify the Riemannian manifolds with concircular vector field (in
Yano’s sense).

Let M admit a unit torse-forming vector field ξ, that is, 1(ξ, ξ) = 1 =⇒ 1(∇ϑ1ξ, ξ) = 0. Set ϑ2 = ξ in
equation (3), we find

αu(ϑ1) + π(ϑ1) = 0, (4)

since u(ξ) = 1 and 1(∇ϑ1 u)(ξ) = 0. Using equation (4) in equation (3), we obtain

(∇ϑ1 u)(ϑ2) = α{1(ϑ1, ϑ2) − u(ϑ1)u(ϑ2)}, (5)

which implies that

∇ϑ1ξ = α{ϑ1 − u(ϑ1)ξ}, (6)

where α is a non-zero scalar and ∇ϑ1α = 1(ϑ1,Dα) = ϑ1(α) = µu(ϑ1) for some smooth fuction µ on M. Here
D is used for gradient operator of 1. From equation (5), it is obvious that the 1-form u is closed. Taking
covariant derivative of equation (4) alongϑ2 and using the factϑ1(α) = µu(ϑ1) and equation (5), we conclude
that π is also closed. Hence, the unit torse-forming vector field ξ defined in (3) is a unit concircular vector
field on M in Yano sense. The smooth function α on M is known as the potential function of the concircular
vector field. Equation ϑ1(α) = µu(ϑ1) gives that ξ(α) = µ =⇒ ξ(ξ(α)) = ξ(µ). Again ϑ1(α) = µu(ϑ1) infers
that Dα = µξ. The covariant derivative of Dα = µξ along ϑ1 gives

∇ϑ1 Dα = ϑ1(µ)ξ + µα(ϑ1 − u(ϑ1)ξ). (7)

Let us consider an orthonormal frame field on M and then contracting the above equation over ϑ1, we lead
to

△α = ξ(ξ(α)) + α(n − 1)ξ(α),

where △ stands for the Laplace operator of 1. A smooth functionΨ on M is said to be harmonic if and only
if △Ψ = 0. Suppose ξ = ∂

∂t on M, then the above equation takes the form

△α =
∂
∂t

(
∂α
∂t
+

n − 1
2

α2

)
. (8)

Thus, we conclude the following:

Theorem 2.1. If an n-dimensional Riemannian manifold M admits a unit concircular vector field ξ, then the potential
function α of ξ satisfies the partial differential equation (8).
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From equation (8), we can also state:

Proposition 2.2. The potential function α of a unit concircular vector field ξ on an n-dimensional Riemannian
manifold is harmonic if and only if ∂α∂t +

n−1
2 α

2 = constant.

Remark 2.3. Equation (8) gives a clue to evaluate the potential function α of the concircular vector field ξ on M.

Now, taking inner product of equation (7) with ϑ2, we get

1(∇ϑ1 Dα, ϑ2) = Hess1(α)(ϑ1, ϑ2) = ϑ1(µ)u(ϑ2) + µα(1(ϑ1, ϑ2) − u(ϑ1)u(ϑ2)), (9)

where Hess1 is the Hessian operator of 1 and Hess1(α)(ϑ1, ϑ2) = ϑ1ϑ2(α)−dα(∇ϑ1ϑ2) for the exterior derivative
d. We know that Hess1(α) is symmetric, therefore from equation (9) we have

ϑ2(µ)u(ϑ1) = ϑ1(µ)u(ϑ2),

which gives ϑ1(µ) = σu(ϑ1), where σ = ξ(µ). Thus, we state the following:

Lemma 2.4. Let an n-dimensional Riemannian manifold admit a unit concircular vector field ξ. Then Dµ = σξ.

Let the Riemannian manifold M admit a (1, 1) tensor field ϕ such that

αϕϑ1 = ∇ϑ1ξ, α , 0,

which gives

ϕϑ1 = ϑ1 − u(ϑ1)ξ, (10)

where equation (6) is used. Operatingϕ on either side of equation (10), and then following (10) and u(ξ) = 1,
we obtain

ϕ2 = I − u ⊗ ξ.

In view of equation (10), we have

1(ϕϑ1, ϕϑ2) = 1(ϑ1, ϑ2) − u(ϑ1)u(ϑ2), u(ϑ2) = 1(ϑ2, ξ).

Remark that 1(ϕϑ1, ϕϑ2) = 1(ϕϑ1, ϑ2) = 1(ϑ1, ϕϑ2), ∀ ϑ1, ϑ2 ∈ X(M). Thus, we conclude that if M admits a
unit concircular vector field ξ, a (1, 1) tenosr field ϕ and a 1-form u, then we have

ϕ2 = I − u ⊗ ξ, u(ξ) = 1, 1(ϕ ·, ϕ ·) = 1(· , ·) − u ⊗ u. (11)

By considering all above facts, we give the following definition.

Definition 2.5. Let the data (ϕ, ξ,u, 1) satisfy (11) on an n-dimensional Riemannian manifold M. Then M equipped
with (ϕ, ξ,u, 1) is said to be a Riemannian concircular structure manifold (briefly, (RCS)n-manifold), and the structure
(ϕ, ξ,u, 1) is said to be a Riemannian concircular structure on M.

Now, we prove some basic results of (RCS)n-manifolds in the following:

Proposition 2.6. An n-dimensional (RCS)n-manifold satisfies
(i) ϕξ = 0,
(ii) u(ϕϑ1) = 0,
(iii) rank (ϕ) = n − 1,
(iv) (∇ϑ1ϕ)(ϑ2) = α[2u(ϑ1)u(ϑ2)ξ − 1(ϑ1, ϑ2)ξ − u(ϑ2)ϑ1], ∀ ϑ1, ϑ2 ∈ X(M).
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Proof. Setting ϑ1 = ξ in equation (10) and then following (11), we immediately get (i). From (11), we have
ϕ2ϑ1 = ϑ1 − u(ϑ1)ξ. Again replacing ϑ1 with ϕϑ1 in (10), we find ϕ2ϑ1 = ϕϑ1 − u(ϕϑ1)ξ. The last two
equations together with (10) give (ii). Since ϕξ = 0 implies that rank(ϕ) < dimM. If possible, we suppose
that ϕϑ1 = 0 =⇒ ϑ1 = u(ϑ1)ξ, since equation (10) is used. The Rank-Nullity Theorem (for a homogeous
system of equations Aϑ1 = 0 in n unknowns, rank(A) + nullity(A) = n) prove (iii). The covariant derivative
of (10) gives (iv). This completes the proof.

Proposition 2.7. Every (RCS)n-manifold satisfies the following identities.
(i) R(ϑ1, ϑ2)ξ = (α2 + µ){u(ϑ1)ϑ2 − u(ϑ2)ϑ1},
(ii) R(ξ, ϑ1)ϑ2 = (α2 + µ){u(ϑ2)ϑ1 − 1(ϑ1, ϑ2)ξ},
(iii) u(R(ϑ1, ϑ2)ϑ3) = (α2 + µ){u(ϑ2)1(ϑ1, ϑ3) − u(ϑ1)1(ϑ2, ϑ3)},
(iv) S(ϑ1, ξ) = −(n − 1)(α2 + µ)u(ϑ1)⇐⇒ Qξ = −(n − 1)(α2 + µ)ξ
for all ϑ1, ϑ2, ϑ3 ∈ X(M) and (α2 + µ) , 0.

Proof. The covariant derivative of equation (6) along the vector field ϑ2 gives

∇ϑ2∇ϑ1ξ = ϑ2(α){ϑ1 − u(ϑ1)ξ} + α{∇ϑ2ϑ1 − α(1(ϑ1, ϑ2) − u(ϑ1)u(ϑ2))ξ
−u(∇ϑ2ϑ1)ξ − αu(ϑ1)(ϑ2 − u(ϑ2)ξ)},

where equations (5) and (6) are used. This equation together with curvature identity R(ϑ1, ϑ2)ξ =
[∇ϑ1 ,∇ϑ2 ]ξ − ∇[ϑ1,ϑ2]ξ gives

R(ϑ1, ϑ2)ξ = ϑ1(α){ϑ2 − u(ϑ2)ξ} − ϑ2(α){ϑ1 − u(ϑ1)ξ} + α2
{u(ϑ1)ϑ2 − u(ϑ2)ϑ1}.

By hypothesis ϑ1(α) = µu(ϑ1), the above equation states assertion (i) of Proposition 2.7. The other assertions
can be proved by simple straightforward calculations.

Proposition 2.8. In an (RCS)n-manifold, we have

1. ′R(ϑ1, ϑ2, ϕϑ3, ϑ4) − ′R(ϑ1, ϑ2, ϑ3, ϕϑ4) = (α2 + µ){u(ϑ3)[u(ϑ2)1(ϑ1, ϑ4)
− u(ϑ1)1(ϑ2, ϑ4)] + u(ϑ4)[u(ϑ2)1(ϑ1, ϑ3) − u(ϑ1)1(ϑ2, ϑ3)]},

2. ′R(ϑ1, ϑ2, ϕϑ3, ϕϑ4) = ′R(ϕϑ1, ϕϑ2, ϑ3, ϑ4),
3. ′R(ϕϑ1, ϕϑ2, ϕϑ3, ϕϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) − (α2 + µ){u(ϑ4)[u(ϑ1)1(ϑ2, ϑ3)
− u(ϑ2)1(ϑ1, ϑ3)] + u(ϑ3)[u(ϑ2)1(ϑ1, ϑ4) − u(ϑ1)1(ϑ2, ϑ4)]},

4. ′R(ϕϑ1, ϑ2, ϑ3, ϕϑ4) − ′R(ϑ1, ϕϑ2, ϕϑ3, ϑ4) = (α2 + µ){u(ϑ1)u(ϑ3)1(ϑ2, ϑ4)
− u(ϑ2)u(ϑ3)1(ϑ1, ϑ4)},

5. S(ϕϑ1, ϕϑ2) = S(ϑ1, ϑ2) + (n − 1)(α2 + µ)u(ϑ1)u(ϑ2),

for all ϑ1, ϑ2, ϑ3, ϑ4 ∈ X(M). Here ′R(ϑ1, ϑ2, ϑ3, ϑ4) = 1(R(ϑ1, ϑ2)ϑ3, ϑ4).

Proof. From equation (10) and Proposition 2.7, we have

′R(ϑ1, ϑ2, ϑ3, ϕϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) − (α2 + µ)u(ϑ4){u(ϑ2)1(ϑ1, ϑ3) − u(ϑ1)1(ϑ2, ϑ3)}

and

′R(ϑ1, ϑ2, ϕϑ3, ϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) + (α2 + µ)u(ϑ3){u(ϑ2)1(ϑ1, ϑ4) − u(ϑ1)1(ϑ2, ϑ4)},

where ′R(ϑ1, ϑ2, ϑ3, ϑ4) = 1(R(ϑ1, ϑ2)ϑ3, ϑ4). The last two equations deduce assertion (1) of Proposition
2.8. The assertion (2) of Proposition 2.8 can be obtained by straightforward calculations after considering
equation (10) and Proposition 2.7. We have,

′R(ϕϑ1, ϕϑ2, ϑ3, ϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) + (α2 + µ){u(ϑ4)[u(ϑ1)1(ϑ2, ϑ3)
−u(ϑ2)1(ϑ1, ϑ3)] + u(ϑ3)[u(ϑ2)1(ϑ1, ϑ4) − u(ϑ1)1(ϑ2, ϑ4)]}. (12)
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Replacing ϑ1 and ϑ2 with ϕϑ1 and ϕϑ2 in the assertion (2) of Proposition 2.8 and then following equations
(10), (12) and Proposition 2.6, we obtain assertion (3). Next, equation (10) and Proposition 2.7 infer that

′R(ϕϑ1, ϑ2, ϑ3, ϕϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) + (α2 + µ){u(ϑ4)u(ϑ1)1(ϑ2, ϑ3)
−u(ϑ2)u(ϑ4)1(ϑ1, ϑ3) − u(ϑ3)u(ϑ1)1(ϑ2, ϑ4) + u(ϑ1)u(ϑ2)u(ϑ3)u(ϑ4)}

and
′R(ϑ1, ϕϑ2, ϕϑ3, ϑ4) = ′R(ϑ1, ϑ2, ϑ3, ϑ4) + (α2 + µ){u(ϑ2)u(ϑ3)1(ϑ1, ϑ4)

−u(ϑ2)u(ϑ4)1(ϑ1, ϑ3) − u(ϑ3)u(ϑ1)1(ϑ2, ϑ4) + u(ϑ1)u(ϑ2)u(ϑ3)u(ϑ4)}.

From the last two equations, we immediately get assertion (4). Assertion (5) is obvious from equation (10)
and Proposition 2.7. Hence, the proof of Proposition 2.8 is completed.

Theorem 2.9. Every (RCS)n-manifold is integrable.

Proof. Let an n-dimensional Riemannian manifold M be an (RCS)n-manifold. In 1951, Nijenhuis [25] found
that when a (1, 1) tensor field ϕ is given in a manifold M, then the relation

Nϕ(ϑ1, ϑ2) = [ϕϑ1, ϕϑ2] − ϕ[ϕϑ1, ϑ2] − ϕ[ϑ1, ϕϑ2] + ϕ2[ϑ1, ϑ2] (13)

holds for any vector fields ϑ1 and ϑ2 of M [17, 32]. Here Nϕ denotes the Nijenhuis tensor of ϕ and [·, ·]
represents the Lie bracket, and it is defined as:

[ϑ1, ϑ2] f = ϑ1ϑ2( f ) − ϑ2ϑ1( f )

for some smooth function f on M. We have

[ϕϑ1, ϕϑ2] = ∇ϕϑ1ϕϑ2 − ∇ϕϑ2ϕϑ1

= (∇ϕϑ1ϕ)(ϑ2) + ϕ(∇ϕϑ1ϑ2) − (∇ϕϑ2ϕ)(ϑ1) − ϕ(∇ϕϑ2ϑ1),

ϕ[ϕϑ1, ϑ2] = ϕ(∇ϕϑ1ϑ2) − ϕ(∇ϑ2ϕ)(ϑ1) − ϕ2(∇ϑ2ϑ1),

ϕ[ϑ1, ϕϑ2] = −ϕ(∇ϕϑ2ϑ1) + ϕ(∇ϑ1ϕ)(ϑ2) + ϕ2(∇ϑ1ϑ2).

In view of above equations, equation (13) consider the following form

Nϕ(ϑ1, ϑ2) = (∇ϕϑ1ϕ)(ϑ2) − (∇ϕϑ2ϕ)(ϑ1) + ϕ{(∇ϑ2ϕ)(ϑ1) − (∇ϑ1ϕ)(ϑ2)}.

This equation together with equation (10), Proposition (2.6) and Proposition (2.7) declares that Nϕ = 0.
Hence, the structure (ϕ, ξ,u, 1) on M is integrable. This proves our Theorem 2.9.

3. Semisymmetric (RCS)n-manifolds

This section deals with the study of semisymmetric (RCS)n-manifolds.

Theorem 3.1. An n-dimensional Riemannian concircular structure manifold is semisymmetric if and only if it is
concircularly flat.

Proof. Let M be an n-dimensional (RCS)n-manifold. We have

(R(ϑ1, ϑ2) · R)(ϑ3, ϑ4)ϑ5 = R(ϑ1, ϑ2)R(ϑ3, ϑ4)ϑ5 − R(R(ϑ1, ϑ2)ϑ3, ϑ4)ϑ5

−R(ϑ3,R(ϑ1, ϑ2)ϑ4)ϑ5 − R(ϑ3, ϑ4)R(ϑ1, ϑ2)ϑ5, (14)

where R(ϑ1, ϑ2) acts on R as a curvature derivation. If possible, we suppose that M is semisymmetric, that,
R · R = 0. Then the above equation becomes

R(ϑ1, ϑ2)R(ϑ3, ϑ4)ϑ5 − R(R(ϑ1, ϑ2)ϑ3, ϑ4)ϑ5

−R(ϑ3,R(ϑ1, ϑ2)ϑ4)ϑ5 − R(ϑ3, ϑ4)R(ϑ1, ϑ2)ϑ5 = 0.
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Setting ϑ1 = ϑ5 = ξ in the above equation and then following Proposition 2.7, we find

R(ϑ3, ϑ4)ϑ2 = (α2 + µ){1(ϑ2, ϑ3)ϑ4 − 1(ϑ2, ϑ4)ϑ3}, (15)

which shows that M is a space form. The contraction of (15) over ϑ3 gives

S(ϑ4, ϑ2) = −(n − 1)(α2 + µ)1(ϑ4, ϑ2), (16)

which after contraction over ϑ4 and ϑ2 assumes the form

r = −n(n − 1)(α2 + µ). (17)

In 1940, Yano [34] defined a transformation, named as concircular transformation, which preserve the
geodesic circles. It is proved that the concircular curvature tensor C [5, 19, 24, 34, 36] defined on M as:

C(ϑ1, ϑ2)ϑ3 = R(ϑ1, ϑ2)ϑ3 −
r

n(n − 1)
{1(ϑ2, ϑ3)ϑ1 − 1(ϑ1, ϑ3)ϑ2}, ∀ϑ1, ϑ2, ϑ3 ∈ X(M) (18)

is unaltered under the concircular transformation. M is said to be concircularly flat if and only if C = 0.
From equations (15), (17) and (18), we notice that the manifold M under consideration is concircularly flat.
Conversely, we suppose that M is concircularly flat, then from equation (18) we get

R(ϑ1, ϑ2)ϑ3 =
r

n(n − 1)
{1(ϑ2, ϑ3)ϑ1 − 1(ϑ1, ϑ3)ϑ2}. (19)

From equations (14) and (19), we infer that R · R = 0. That is, the concircularly flat manifold M is
semisymmetric. This completes the proof.

It is well-known that every semisymmetric Riemannian manifold is Ricci semisymmetric (R(ϑ1, ϑ2) · S = 0),
but the converse is not true in general. This fact together with Theorem 3.1 affirm the following:

Corollary 3.2. An (RCS)n-manifold is Ricci semisymmetric if and only if it is an Einstein manifold.

From equation (6), we have

Lξ1 = 2α{1 − u ⊗ u},

which, in consequence of equation (16), gives

1
2
Lξ1 + β1S = β21 + β3u ⊗ u,

where β1 =
α

2(n−1)(α2+µ) , β2 =
α
2 and β3 = −α are smooth functions on M and Lξ stands for the Lie derivative

operator of 1 along ξ.
Recently, Blaga and Chen [4] introduced the notion of generalized solitons on Riemannian manifolds. A
Riemannian metric 1 of M is said to be a generalized soliton [4] if

1
2
Lξ1 + β · S = γ · 1 + δ · η ⊗ η,

where β, γ, δ are smooth functions on M and η is the dual 1-form of ξ. Thus, the above two equations state
the following:

Corollary 3.3. Every semisymmetric (RCS)n-manifold admits a generalized soliton.

Remark 3.4. Corollary 3.3 proves the existence of generalized solitons on Riemannian manifolds.
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In 1918, Hermann Weyl [31] introduced the notion of conformal curvature tensor C̆, which measures the
curvature of a semi-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses
the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann
curvature tensor in that it does not convey information on how the volume of body changes, but rather
only how the shape of the body is distorted by tidal force. The mathematical expression of the conformal
curvature tensor on a Riemannian manifold M is given by

C̆(ϑ1, ϑ2)ϑ3 = R(ϑ1, ϑ2)ϑ3 +
r

(n − 1)(n − 2)
{1(ϑ2, ϑ3)ϑ1 − 1(ϑ1, ϑ3)ϑ2}

−
1

n − 2
{S(ϑ2, ϑ3)ϑ1 − S(ϑ1, ϑ3)ϑ2 + 1(ϑ2, ϑ3)Qϑ1 − 1(ϑ1, ϑ3)Qϑ2}, (20)

where dimM = n and ϑ1, ϑ2, ϑ3 ∈ X(M). We assume that the (RCS)n-manifold M is semisymmetric, then we
obtain equations (15)-(17). The straightforward calculations after considering equations (15)-(17) and (20)
infer that M is conformally flat. Thus, we can declare our finding as:

Theorem 3.5. Every semisymmetric (RCS)n-manifold is conformally flat.

4. Conformally flat (RCS)n-manifolds

This section is concerned with the study of an n-dimensional conformally flat (RCS)n-manifold with
n ≥ 3.

A Riemannian manifold M of dimension n is said to be conformally flat if and only if C̆ = 0. In this
section, we suppose that the (RCS)n-manifold is conformally flat, then equation (20) reduces to

R(ϑ1, ϑ2)ϑ3 =
1

n − 2
[S(ϑ2, ϑ3)ϑ1 − S(ϑ1, ϑ3)ϑ2 + 1(ϑ2, ϑ3)Qϑ1 − 1(ϑ1, ϑ3)Qϑ2]

−
r

(n − 1)(n − 2)
{1(ϑ2, ϑ3)ϑ1 − 1(ϑ1, ϑ3)ϑ2}.

Putting ϑ1 = ϑ3 = ξ in the above equation and then the forthcoming equation together with Proposition 2.7
gives

Qϑ2 =
( r

n − 1
+ α2 + µ

)
ϑ2 −

( r
n − 1

+ n(α2 + µ)
)

u(ϑ2)ξ, (21)

which deduces that M is a quasi-Einstein manifold with associated scalars a = r
n−1 + α

2 + µ and b =
−

(
r

n−1 + n(α2 + µ)
)
. This implies that a + b = −(n − 1)(α2 + µ) , 0. Thus, we state our results as:

Theorem 4.1. Every conformally flat (RCS)n-manifold is a quasi-Einstein with a + b , 0.

It is well-known that every three-dimensional Riemannian manifold M is conformally flat. Thus, we can
state the following:

Corollary 4.2. A three-dimensional (RCS)3-manifold is a quasi-Einstein manifold.

Differentiating equation (21) covariantly with respect to ϑ1 and then considering equations (4) and (5), we
lead to

(∇ϑ1 Q)(ϑ2) = ϑ1(a)ϑ2 + ϑ1(b)u(ϑ2)ξ + bαu(ϑ2)ϑ1 − 2bαu(ϑ1)u(ϑ2)ξ + bα1(ϑ1, ϑ2)ξ, (22)

which gives ϑ1(r) = nϑ1(a) + ϑ1(b). Also, we have

ϑ1(a) =
ϑ1(r)
n − 1

+ (2αµ + σ)u(ϑ1), ϑ1(b) = −
ϑ1(r)
n − 1

− n(2αµ + σ)u(ϑ1), (23)
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where Lemma 2.4 and equation (21) have been used. Since the (RCS)n-manifold M with n ≥ 4 is conformally
flat, then it will possesses a divergence free conformal curvature tensor. Form equation (20) we have

(divC̆)(ϑ1, ϑ2)ϑ3 =
n − 3
n − 2

{(∇ϑ1 S)(ϑ2, ϑ3) − (∇ϑ2 S)(ϑ1, ϑ3)}

−
n − 3

2(n − 1)(n − 2)
{dr(ϑ1)1(ϑ2, ϑ3) − dr(ϑ2)1(ϑ1, ϑ3)} = 0. (24)

In consequence of equations (22) and (23), equation (24) assumes the form

1
2(n − 1)

{ϑ1(r)1(ϑ2, ϑ3) − ϑ2(r)1(ϑ1, ϑ3)} −
1

n − 1
{ϑ1(r)u(ϑ2) − ϑ2(r)u(ϑ1)}u(ϑ3)

+(2αµ + σ − bα){u(ϑ1)1(ϑ2, ϑ3) − u(ϑ2)1(ϑ1, ϑ3)} = 0.

Putting ξ in lieu of ϑ3 in the above equation and then using (11), we obtain

ϑ1(r)u(ϑ2) = ϑ2(r)u(ϑ1) =⇒ ϑ1(r) = ξ(r)u(ϑ1)⇐⇒ Dr = ξ(r)ξ.

The covariant derivative of the above equation gives

∇ϑ1 Dr = ϑ1(ξ(r))ξ + ξ(r)∇ϑ1ξ.

The contraction of the above equation along ϑ1 infers that

△r = ξ(ξ(r)) + α(n − 1)ξ(r).

Let us take ξ = ∂
∂t , the above equation reduces to

△r =
∂2r
∂t2 + α(n − 1)

∂r
∂t
. (25)

This states the following:

Theorem 4.3. Every conformally flat (RCS)n-manifold of dimension n > 3 satisfies the partial differential equation
(25).

Corollary 4.4. The scalar curvature of an n-dimensional conformally flat (RCS)n-manifold with n > 3 is harmonic
if and only if ∂

2r
∂t2 + α(n − 1) ∂r

∂t = 0.

5. Existence of Riemannian concircular structure manifolds

In this section, we prove the existence of Riemannian concircular structure manifolds.
Let us consider an orthonormal frame field on M and then contracting equation (1), we lead to

r = na + b, (26)

where r is the scalar curvature of M.
Suppose that (QE)n-manifold M has a divergence free Riemann curvature tensor R and ξ is a unit vector

such that 1(ϑ1, ξ) = u(ϑ1), ∀ ϑ1 ∈ X(M). Then from equation (2) we have

(∇ϑ1 S)(ϑ2, ϑ3) − (∇ϑ2 S)(ϑ1, ϑ3) = 0. (27)

The contraction of this equation over ϑ2 and ϑ3 shows that r = constant, and hence equation (26) gives
nϑ1(a) = −ϑ1(b). Taking covariant derivative of equation (1) along ϑ1, we get

(∇ϑ1 S)(ϑ2, ϑ3) = ϑ1(a)1(ϑ2, ϑ3) + ϑ1(b)u(ϑ2)u(ϑ3)
+b{(∇ϑ1 u)(ϑ2)u(ϑ3) + u(ϑ2)(∇ϑ1 u)(ϑ3)}, (28)
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where ϑ1(a) = 1(ϑ1,Da), D denotes the gradient operator of 1. Equations (27) and (28) give

b
[
u(ϑ3){(∇ϑ1 u)(ϑ2) − (∇ϑ2 u)(ϑ1)} + u(ϑ2)(∇ϑ1 u)(ϑ3) − u(ϑ1)(∇ϑ2 u)(ϑ3)

]
+ϑ1(a)1(ϑ2, ϑ3) − ϑ2(a)1(ϑ1, ϑ3) + u(ϑ3){ϑ1(b)u(ϑ2) − ϑ2(b)u(ϑ1)} = 0. (29)

Changing ϑ3 with ξ in the above equation and then considering the facts nϑ1(a) = −ϑ1(b), u(ξ) = 1 and
(∇ϑ1 u)(ξ) = 0, we lead

(n − 1)ϑ1(a)u(ϑ2) − (n − 1)ϑ2(a)u(ϑ1) + b{(∇ϑ2 u)(ϑ1) − (∇ϑ1 u)(ϑ2)} = 0. (30)

Again setting ϑ2 = ξ in the above equation, we get

(n − 1){ϑ1(a) − ξ(a)u(ϑ1)} + b(∇ξu)(ϑ1) = 0
⇐⇒ b∇ξξ = −(n − 1){Da − ξ(a)ξ}. (31)

This infers that the vector field ξ is geodesic (∇ξξ = 0) if and only if the gradient of scalar a (or b or both a
and b) is pointwise collinear with the vector field ξ of M. Next, we consider an orthonormal frame field on
M and then contracting equation (29) over ϑ2 and ϑ3, we assume the following form

ϑ1(a) − nξ(a)u(ϑ1) + b{(∇ξu)(ϑ1) + u(ϑ1)divξ} = 0, (32)

since (∇ϑ1 u)(ξ) = 0 and the scalar curvature of M is constant. Putting ϑ1 = ξ in the above equation, we infer

b divξ = (n − 1)ξ(a). (33)

In view of (33), equation (32) reduces to

b(∇ξu)(ϑ1) = −ϑ1(a) + ξ(a)u(ϑ1). (34)

From equations (31) and (34), we conclude that

ϑ1(a) = ξ(a)u(ϑ1), ∇ξξ = 0, (∇ξu)(ϑ1) = 0. (35)

Using (35) in (30), we obtain

(∇ϑ1 u)(ϑ1) = 0, (36)

since b , 0. This infers that the 1-form u is closed. In consequence of equations (35) and (36), equation (29)
becomes

ξ(a){u(ϑ1)1(ϑ2, ϑ3) − u(ϑ2)1(ϑ1, ϑ3)} + b{u(ϑ2)(∇ϑ1 u)(ϑ3) − u(ϑ1)(∇ϑ2 u)(ϑ3)} = 0.

Setting ϑ1 = ξ in the above equation and recalling the equation 1(ξ, ξ) = 1, we obtain

(∇ϑ2 u)(ϑ3) = α{1(ϑ2, ϑ3) − u(ϑ2)u(ϑ3)}, (37)

where α = − ξ(b)
nb , 0. Equation (37) infers that the unit vector field ξ of M is a concircular vector field. Next

we suppose that M admits a (1, 1) tensor field ϕ such that ϕϑ1 =
1
α∇ϑ1ξ, then we notice that the structure

(ϕ, ξ,u, 1) of M satisfies ϕ2 = I − u ⊗ ξ, 1(ξ, ξ) = 1 and 1(ϕ ·, ϕ ·) = 1(· , ·) − u ⊗ u. Thus, we can state the
following:

Theorem 5.1. An n-dimensional quasi-Einstein manifold M with divergence free Riemann curvature tensor is a
Riemannian concircular structure manifold.

From equation (35) we have Da = ξ(a)ξ, which gives

∇ϑ1 Da = ϑ1(ξ(a))ξ + ξ(a)α(ϑ1 − u(ϑ1)ξ).

The contraction of above equation over ϑ1 gives

△a = ξ(ξ(a)) + (n − 1)αξ(a). (38)

This equation suggests us to select the values of a (or b or both a and b). Thus we state the following:
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Proposition 5.2. Let an n-dimensional quasi-Einstein manifold admit the divergence free Riemann curvature tensor.
Then the associated scalar a of (QE)n-manifold is governed by the partial differential equation (38).

Let us suppose that the Riemannian manifold M be a (QE)n-manifold. If the concircular curvature tensor
C of M is divergence free, then divC = 0. Differentiating equation (18) covariantly along the vector field ϑ4,
we have

(∇ϑ4 C)(ϑ1, ϑ2)ϑ3 = (∇ϑ4 R)(ϑ1, ϑ2)ϑ3 −
ϑ4(r)

n(n − 1)
{1(ϑ2, ϑ3)ϑ1 − 1(ϑ1, ϑ3)ϑ2}. (39)

Taking an orthonormal frame field on M and then contracting the above equation over ϑ4, we find

(div C)(ϑ1, ϑ2)ϑ3 = (div R)(ϑ1, ϑ2)ϑ3 −
1

n(n − 1)
{ϑ1(r)1(ϑ2, ϑ3) − ϑ2(r)1(ϑ1, ϑ3)}.

By the hypothesis that the concircular curvature tensor of M is divergence free, then from equations (2) and
(39) we reach to

(∇ϑ1 S)(ϑ2, ϑ3) − (∇ϑ2 S)(ϑ1, ϑ3) =
1

n(n − 1)
{ϑ1(r)1(ϑ2, ϑ3) − ϑ2(r)1(ϑ1, ϑ3)}.

Again, consider an orthonormal frame field on M and then contracting the above equation over ϑ2 and ϑ3,
we obtain

ϑ1(r) = 0⇐⇒ r = constant,

where identity (divQ)(ϑ1) = 1
2ϑ1(r) is used. The last two equations inform that the Ricci tensor S of M is

of Codazzi type, that is, (∇ϑ1 S)(ϑ2, ϑ3) = (∇ϑ2 S)(ϑ1, ϑ3). This result together with Theorem 5.1 state the
following:

Corollary 5.3. Let M be an n-dimensional quasi-Einstein manifold with n ≥ 3. If the concircular curvature tensor
of M is divergence free, then M is a Riemannian concircular structure manifold.

Example 5.4. Three-dimensional Riemannian concircular structure manifold.

Let M3 = {(x, y, z)|x, y, z ∈ R and z , 0} be a differentiable manifold of dimension 3, where R is a real space.
If θ1 = e− f (z) ∂

∂x , θ2 = e− f (z) ∂
∂y and θ3 =

∂
∂z are the vector fields of M3, then at each point of M3 they form a

basis of the tangent space of M3. Here we consider that f (z) is a non-vanishing smooth function of z and
f ′(z) , 0. Suppose that the associated metric 1 of M3 is defined by 1 = e2 f (z)

{dx ⊗ dx + dy ⊗ dy} + dz ⊗ dz and

1i j = δi j =

{
1 for i = j
0 for i , j ,

where i, j = 1, 2, 3. Since the metric 1 is a Riemannian metric, thus M3 equipped with 1 is a three-
dimensional Riemannian manifold. Let u be a 1-form associated with the unit vector field ξ = θ3 such
that 1(ϑ1, θ3) = u(ϑ1). Then we have ∇θiθ3 = f ′(z){θi − 1(θi, ξ)ξ} for i = 1, 2, 3, where ∇ is the Levi-Civita
connection of the metric 1. This infers that (M3, 1) admits a concircular vector fieldξ. Suppose thatϕ is a (1, 1)
tensor field on M3 such that ϕ(θ1) = θ1, ϕ(θ2) = θ2, ϕ(θ3) = 0 and f ′(z)ϕθi = ∇θiθ3, then by straightforward
calculations we notice that the relations ϕ2 = I − u ⊗ θ3, 1(θ3, θ3) = 1 and 1(ϕ ·, ϕ ·) = 1(·, ·) − u ⊗ u for
all θi, i = 1, 2, 3 hold on M3. Here I represents the identity transformation. Hence, we conclude that M3

endowed with the structure (ϕ, θ3,u, 1) is a three-dimensional Riemannian concircular structure manifold.

Example 5.5. Four-dimensional Riemannian concircular structure manifold.
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Let R be a real space and M4 = {(x1, x2, x3, x4)|x1, x2, x3, x4
∈ R and x4 , 0} is a differentiable manifold of

dimension 4. Also, let Υ1 = ∂x1 , Υ2 = ∂x2 , Υ3 = ∂x3 and Υ4 = ∂x4 + αx1∂x1 + αx2∂x2 + αx3∂x3 be the vector
fields of M4, where α is a non-zero scalar and ∂xi denotes the partial derivative along xi for i = 1, 2, 3, 4.
Then {Υ1,Υ2,Υ3,Υ4} forms a basis of the tangent space at each point of M4. According to the fundamental
theory of Riemannian geometry, there exists a Levi-Civita connection ∇ of the Riemannian metric 1, where
1 = 1i jdxi

⊗ dx j = (1 + α){dx1
⊗ dx1 + dx2

⊗ dx2 + dx3
⊗ dx3

} + dx4
⊗ dx4 and 1i j = δi j for all i, j = 1, 2, 3, 4.

The non-vanishing components of Lie bracket are [Υi,Υ4] = αΥi, where i = 1, 2, 3. The Koszul’s formula
together with above informations infer that ∇ΥiΥ4 = αΥi, for i = 1, 2, 3 and ∇Υ4Υ4 = 0. This shows that Υ4
satisfies the relation ∇ΥiΥ4 = α{Υi − 1(Υi,Υ4)Υ4}, i ∈ {1, 2, 3, 4}, and hence it is a concircular vector field on
M4. Let M4 admit a (1, 1) tensor field ϕ such that ϕΥi = Υi, ϕΥ4 = 0 and αϕΥi = ∇ΥiΥ4 for i = 1, 2, 3, 4. Then
we observe that the relations ϕ2 = I − u ⊗ Υ4, 1(Υ4,Υ4) = 1 and 1(ϕ ·, ϕ ·) = 1(·, ·) − u ⊗ u for θi, i = 1, 2, 3, 4
hold on M4. Here u denotes the 1-form associated with the unit vector field Υ4, that is, u(Υi) = 1(Υi,Υ4),
1 ≤ i ≤ 4. Thus, the manifold M4 equipped with structure (ϕ,Υ4,u, 1) is a four-dimensional Riemannian
concircular structure manifold.

Example 5.6. Yano [33] defined a semi-symmetric metric connection ∇̃ on an n-dimensional Riemannian manifold
M as

∇̃ϑ1ϑ2 = ∇ϑ1ϑ2 + u(ϑ2)ϑ1 − 1(ϑ1, ϑ2)ξ,

and studied its some properties. Here u, ∇, 1 and ξ denote the 1-form, Levi-Civita connection of the Riemannian
metric 1 and the vector field such that u(·) = 1(·, ξ). Since then, the properties of semi-symmetric metric connection
on different structures have been explored by several geometers. A linear connection ∇̃ on M is said to be a semi-
symmetric metric ξ-connection [8–10] if ∇̃ϑ1ξ = 0 =⇒ ∇ϑ1ξ = α{ϑ1 − u(ϑ1)ξ}, where α = −1. This shows that
the Riemannian manifold M endowed with a semi-symmetric metric ξ-connection admits a concircular vector field
ξ. Suppose αϕ = ∇ξ and 1(ξ, ξ)=1, then it is obvious that the structure (ϕ, ξ,u, 1) is a Riemannian concircular
structure on M. Hence, M equipped with (ϕ, ξ,u, 1) is an (RCS)n-manifold.

Example 5.7. In [1], Bahadir and Chaubey introduced the notion of generalized symmetric metric connection in
semi-Riemannian setting. A linear connection ∇̄ on a Riemannian manifold M is said to be a generalized symmetric
metric connection [1] if

∇̄ϑ1ϑ2 = ∇ϑ1ϑ2 + ψ1{u(ϑ2)ϑ1 − 1(ϑ1, ϑ2)ξ} + ψ2{u(ϑ2)ϕϑ1 − 1(ϕϑ1, ϑ2)ξ},

where ψ1 and ψ2 are smooth functions on M. If we choose ψ2 = 0 in the above equation, then the generalized
symmetric metric connection reduces to the generalized semi-symmetric metric connection. Let us suppose that the
generalized symmetric metric connection be a ξ-connection (∇̄ξ = 0) andψ2 = 0. Then we get∇ϑ1ξ = α{ϑ1−u(ϑ1)ξ},
where α = −ψ1 , 0. Let us assume that αϕ = ∇ξ and 1(ξ, ξ) = 1, then we notice that the structure (ϕ, ξ,u, 1)
satisfies equation (11) and hence it is a Riemannian concircular structure and the corresponding manifold M becomes
(RCS)n-manifold.
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