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Abstract. Given a unital C∗-algebra A, let Mm×n(A) be the set of all m×n matrices algebra over A and
(
Mn(A)

)
1

be the closed unit ball of Mn×n(A). Let x =
(
a b
0 c

)
∈

(
Mm+n(A)

)
1

be determined by a ∈Mm×m(A), b ∈Mm×n(A)

and c ∈ Mn×n(A). Some characterizations are given such that the above upper triangular matrix x is an
extreme point of

(
Mm+n(A)

)
1

and Xm,n(A) respectively, where Xm,n(A) is the subset of
(
Mm+n(A)

)
1

consisting
of all upper triangular matrices.

1. Introduction

Throughout this paper, N is the set consisting of all natural numbers, C is the complex field, A is a
nonzero unital C∗-algebra [6], and Mm×n(A) is the set of all m×n matrices algebra over A, which is simplified
to Mn(A) whenever m = n. Let (A)1 and

(
Mn(A)

)
1

be the closed unit ball of A and Mn(A), respectively. The
identity of Mn(A) is denoted simply by 1 for all n ∈ N. When A = C, we use the notation Cm×n instead of
Mm×n(C).

Given m,n ∈N, let Xm,n(A) be the subset of
(
Mm+n(A)

)
1

consisting of all upper triangular matrices. More
precisely, x ∈ Xm,n(A) if and only if ∥x∥ ≤ 1, and x has the form

x =
(

a b
0 c

)
, (1)

where a ∈Mm(A), b ∈Mm×n(A) and c ∈Mn(A).
Recall that an element v in a convex set V is said to be an extreme point of V if for every y, z ∈ V and

t ∈ (0, 1), v = ty+ (1− t)z implies v = y = z. It is well-known that v is an extreme point of V if and only if for
every y, z ∈ V, v = 1

2 (y + z) implies v = y = z. Clearly, the closed unit ball (A)1 of a C∗-algebra A is a convex
set. To ensure the existence of an extreme point of (A)1, it is necessary that A has a unit [6, Proposition 1.4.7].
So, all the C∗-algebras considered in this paper are assumed to be unital.

A useful characterization of the extreme points reads as follows.
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Lemma 1.1. (cf. [5, Theorem 1], [6, Proposition 1.4.7]) Let A be a unital C∗-algebra. Then the extreme points of
(A)1 are precisely those elements v of A for which

(1 − vv∗)A(1 − v∗v) = 0. (2)

Remark 1.2. (1) Let v ∈ A be such that (2) is satisfied. Due to

v∗(1 − vv∗)v(1 − v∗v) = 0,

it can be concluded that v∗v is a projection, i.e., v is a partial isometry, whence ∥v∥ ≤ 1. So, every element v
of A satisfying (2) will be contained in (A)1 automatically.

(2) Let U(A) be the set of all unitary elements in A. Obviously, (2) is satisfied for every v ∈ U(A).
Thus, every element ofU(A) is an extreme point of (A)1. Furthermore, if x is an extreme point of (A)1 and
u ∈ U(A), then both ux and xu are extreme points of (A)1. It follows that x is an extreme point of (A)1 if and
only if uxu∗ is an extreme point of (A)1.

(3) It is well-known that every square matrix has its Schur triangular form [2, P. 5]. That is, for every
x ∈ Cn×n, there exists a unitary u ∈ Cn×n such that uxu∗ is an upper triangular matrix. So, to deal with
the extreme points of (Cn×n)1, it needs only to consider the upper triangular matrices. Likewise, it seems
interesting to deal with the extreme points given by upper triangular matrices over a unital C∗-algebra.
However, as far as we know, little has been done in the literature on the extreme points of

(
Mm+n(A)

)
1

and
Xm,n(A) by choosing elements in Xm,n(A).

Based on Lemma 1.1 and the motivation described in Remark 1.2, we provide some direct characteri-
zations of the extreme points in Section 2. Specifically, we will show that there exist a unital C∗-algebra A
and non-zero elements a, b, c ∈ A such that x given by (1) is an extreme point of

(
M2(A)

)
1

(see Theorem 2.6).

In Section 3, we study the extreme points of
(
Mm+n(A)

)
1

furthermore. In the case that x given by (1) is

an extreme point of
(
Mm+n(A)

)
1
, some necessary and sufficient conditions are investigated under which

b = 0, c = 0 and a = 0, respectively; see Theorems 3.2 and 3.6, and Proposition 3.8. Some specific unital
C∗-algebras are considered; see Corollary 3.3, Proposition 3.4, Theorem 3.5 and Corollary 3.7. In Section 4,
we focus on the study of the extreme points of Xm,n(A). Some new results in this direction are obtained; see
Proposition 4.1, Theorems 4.5 and 4.6, and Corollary 4.7.

2. Some direct characterizations of the extreme points

In this section, we provide some direct characterizations of the extreme points. We first give two
definitions as follows.

Let A be a unital C∗-algebra. Recall that A is said to be finite [4, 7] if for every element v ∈ A, vv∗ = 1
implies v∗v = 1, and A is said to be stably finite if Mn(A) is finite for all n ≥ 1. It is notable that there exists
a finite but not stably finite C∗-algebra [4]. However, if A is a finite von Neumann algebra, then A is stably
finite [7, Proposition 2.6.1] (see also [7, Theorem 2.5.4]).

Proposition 2.1. Suppose that A is a finite von Neumann algebra and v ∈ (A)1. Then v is an extreme point of (A)1
if and only if v is a unitary element of A.

Proof. ⇐=. See Remark 1.2 (2).
=⇒. Suppose v ∈ (A)1 is given such that (2) is satisfied. According to Remark 1.2 (1), v is a partial

isometry, hence vv∗ ∼ v∗v. Since A is a finite von Neumann algebra, by [7, Proposition 2.4.2] we have
1 − vv∗ ∼ 1 − v∗v. Thus, from [8, Lemma 5.2.5] we can conclude that there exists a unitary element u ∈ A
such that u(1 − v∗v)u∗ = 1 − vv∗. This together with (2) gives

1 − vv∗ = (1 − vv∗)2 = (1 − vv∗)u(1 − v∗v)u∗ = 0.

Therefore, v is a unitary element by the finiteness of A.
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A similar result can be obtained for commutative C∗-algebras.

Proposition 2.2. Suppose that A is a unital commutative C∗-algebra. Then for every v ∈ A, v is an extreme point of
(A)1 if and only if v ∈ U(A).

Proof. The proof of the sufficiency is the same as that of Proposition 2.1. Assume that (2) is satisfied. Since
A is commutative and v is a partial isometry, we have

1 − vv∗ = (1 − vv∗)(1 − v∗v) · 1 = (1 − vv∗) · 1 · (1 − v∗v) = 0.

This shows that v ∈ U(A).

Remark 2.3. For a characterization of an extreme point to be a unitary in a general C∗-algebra, the reader is
referred to [1].

Our next result concerns the extreme points of the form (1).

Proposition 2.4. Let A be a unital C∗-algebra, and let x ∈ Xm,n(A) be given by (1) such that a ∈Mm(A), b ∈Mm×n(A)
and c ∈Mn(A). Then x is an extreme point of

(
Mm+n(A)

)
1

if and only if the following conditions are all satisfied:[
1 − (aa∗ + bb∗)

]
Mm(A)(1 − a∗a) = 0, (3)[

1 − (aa∗ + bb∗)
]
Mm(A)a∗b = 0, (4)[

1 − (aa∗ + bb∗)
]
Mm×n(A)b∗a = 0, (5)[

1 − (aa∗ + bb∗)
]
Mm×n(A)

[
1 − (b∗b + c∗c)

]
= 0, (6)

(1 − cc∗)Mn×m(A)(1 − a∗a) = 0, (1 − cc∗)Mn×m(A)a∗b = 0, (7)

(1 − cc∗)Mn(A)b∗a = 0, (1 − cc∗)Mn(A)
[
1 − (b∗b + c∗c)

]
= 0, (8)

bc∗Mn×m(A)(1 − a∗a) = 0, bc∗Mn×m(A)a∗b = 0, (9)

bc∗Mn(A)b∗a = 0, bc∗Mn(A)
[
1 − (b∗b + c∗c)

]
= 0, (10)

cb∗Mm(A)(1 − a∗a) = 0, cb∗Mm(A)a∗b = 0, (11)

cb∗Mm×n(A)b∗a = 0, cb∗Mm×n(A)
[
1 − (b∗b + c∗c)

]
= 0. (12)

Proof. Direct computation yields

1 − xx∗ =
(

1 − (aa∗ + bb∗) −bc∗

−cb∗ 1 − cc∗

)
, (13)

1 − x∗x =
(

1 − a∗a −a∗b
−b∗a 1 − (b∗b + c∗c)

)
. (14)

Utilizing Lemma 1.1 we see that x is an extreme point of
(
Mm+n(A)

)
1

if and only if

(1 − xx∗)Mm+n(A)(1 − x∗x) = 0. (15)

Substituting (13) and (14) into (15) yields the equivalence of (15) with (3)–(12).

An application of the preceding proposition is as follows.

Proposition 2.5. Let A be a unital C∗-algebra, and let x be given by (1). Then x is an extreme point of
(
Mm+n(A)

)
1

if and only if for every λi ∈ C with |λi| = 1 (i = 1, 2, 3), the element(
λ1a λ2b
0 λ3c

)
is an extreme point of

(
Mm+n(A)

)
1
.
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Proof. Let λi ∈ C be given such that |λi| = 1 (i = 1, 2, 3). Clearly, equations (3)–(12) are satisfied for a, b and c
if and only if these equations are satisfied for λ1a, λ2b and λ3c.

We end this section by another application of Proposition 2.4.

Theorem 2.6. There exist a unital C∗-algebra A and non-zero elements a, b, c ∈ A such that x given by (1) is an
extreme point of

(
M2(A)

)
1
.

Proof. Let H be the separable Hilbert space ℓ2(N) and {en : n ∈ N} be its usual orthonormal basis. Put
A = B(H), the set of all bounded linear operator on H. Let a be the unilateral shift characterized by
aen = en+1 for all n ∈ N. Choose b = 1 − aa∗ and c = a∗. Then b is a projection whose range is spanned by e1.
Consequently, a, b and c are all nonzero, and

aa∗ + bb∗ = cc∗ = 1, bc∗ = cb∗ = 0,

which lead clearly to (3)–(12).

3. Some special cases of the extreme points of
(
Mm+n(A)

)
1

Suppose that A is a unital C∗-algebra, and x ∈ Xm,n(A) is given by (1) such that a ∈ Mm(A), b ∈ Mm×n(A)
and c ∈ Mn(A). When x is an extreme point of

(
Mm+n(A)

)
1
, by Remark 1.2 (1), x is a partial isometry, so

according to (13) and (14), we have

aa∗ + bb∗ ≤ 1, b∗b + c∗c ≤ 1. (16)

In what follows, we investigate conditions under which b = 0, c = 0 and a = 0, respectively. To this end, we
need a lemma as follows.

Lemma 3.1. [6, Proposition 1.4.5] Let x and a be elements of a C∗-algebra A satisfying x∗x ≤ a. Then for every
α ∈ (0, 1

2 ), there exists u ∈ A with ∥u∥ ≤
∥∥∥a

1
2−α

∥∥∥ such that x = uaα.

3.1. Characterizations of b = 0

Theorem 3.2. Suppose that A is a unital C∗-algebra, and x given by (1) is an extreme point of
(
Mm+n(A)

)
1
. Then

the following statements are all equivalent:

(i) b = 0;

(ii)
(
a 0
0 c

)
is an extreme point of

(
Mm+n(A)

)
1
;

(iii) a and c are extreme points of
(
Mm(A)

)
1

and
(
Mn(A)

)
1

respectively such that

(1 − aa∗)Mm×n(A)(1 − c∗c) = 0, (1 − cc∗)Mn×m(A)(1 − a∗a) = 0; (17)

(iv) a∗a + bb∗ ≤ 1 and b∗b + cc∗ ≤ 1.

Proof. The implication of (i)=⇒(ii) is clear.
(ii)=⇒(i). Let

y =
(
a −b
0 c

)
, z =

(
a 0
0 c

)
. (18)

By assumption z is an extreme point of
(
Mm+n(A)

)
1
, so we have z ∈

(
Mm+n(A)

)
1
. It follows from Proposi-

tion 2.5 that y is also an extreme point of
(
Mm+n(A)

)
1
. Therefore, x, y, z ∈

(
Mm+n(A)

)
1

and z = 1
2 (x+ y), which

gives x = y = z, hence b = 0.
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(ii)⇐⇒(iii). Let z be defined by (18). By (3)–(12) with b = 0 therein, we know that z is an extreme point
of

(
Mm+n(A)

)
1

if and only if (17) as well as

(1 − aa∗)Mm(A)(1 − a∗a) = 0 and (1 − cc∗)Mn(A)(1 − c∗c) = 0

are satisfied. The latter two equations are exactly the characterizations of a and c to be the extreme points
of

(
Mm(A)

)
1

and
(
Mn(A)

)
1
, respectively (see Lemma 1.1).

(i)=⇒(iv). Since b = 0, we have max{∥a∥, ∥c∥} = ∥x∥ ≤ 1, hence

a∗a + bb∗ = a∗a ≤ 1, b∗b + cc∗ = cc∗ ≤ 1.

(iv)=⇒(i). By assumption we have bb∗ ≤ 1 − a∗a, so according to Lemma 3.1 there exists u ∈Mm(A) such
that

(bb∗)
1
2 = u(1 − a∗a)

1
3 .

Taking ∗-operation, we arrive at

(bb∗)
1
2 = (1 − a∗a)

1
3 u∗. (19)

Note that the first equation in (7) implies that

(1 − cc∗)Mn×m(A)(1 − a∗a)
1
3 = 0,

so we may use (19) to obtain

(1 − cc∗)Mn×m(A)(bb∗)
1
2 = 0,

which clearly gives

(1 − cc∗)Mn×m(A)bb∗ = 0.

It follows that

(1 − cc∗)b∗b [(1 − cc∗)b∗b]∗ = 0,

and thus

(1 − cc∗)b∗b = 0,

which leads furthermore to

(1 − cc∗)b∗ [(1 − cc∗)b∗]∗ = 0.

Consequently, (1 − cc∗)b∗ = 0 and thus

b(1 − cc∗) = 0. (20)

Similarly, there exists v ∈Mn(A) such that

(b∗b)
1
2 = (1 − cc∗)

1
3 v∗.

The equation above together with (20) yields b(b∗b)
1
2 = 0, which leads furthermore to (b∗b)

3
2 = 0, therefore

b = 0.
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The equivalence of items (i) and (iv) in the preceding theorem together with (16) gives a corollary
immediately as follows.

Corollary 3.3. Let a, b and c be elements of a unital commutative C∗-algebra A. Suppose that x given by (1) is an
extreme point of

(
M2(A)

)
1
, then b = 0.

Inspired by (16) and Corollary 3.3, we give a new characterization of the commutativity as follows.

Proposition 3.4. Let A be a unital C∗-algebra such that for all a, b ∈ A, the inequality aa∗ + bb∗ ≤ 1 implies
a∗a + bb∗ ≤ 1, then A is commutative.

Proof. Given every b ∈ (A)1 and u ∈ U(A), put a = (1 − bb∗)
1
2 u∗. Then clearly aa∗ + bb∗ = 1, whence

u(1 − bb∗)u∗ + bb∗ = a∗a + bb∗ ≤ 1,

which gives bb∗ ≤ u(bb∗)u∗. Replacing u with u∗, we arrive at bb∗ ≤ u∗(bb∗)u, hence u(bb∗)u∗ ≤ bb∗. Conse-
quently, u(bb∗)u∗ = bb∗ and thus u(bb∗) = (bb∗)u.

Now, let A+ denote the set of all positive elements in A. For every x ∈ A+ \ {0}, put b =
(

x
∥x∥

) 1
2 . Then for

every u ∈ U(A), from the equation u(bb∗) = (bb∗)u we obtain ux = xu, which ensures the commutativity of
A, since every unital C∗-algebra A is spanned by A+ andU(A), respectively.

Theorem 3.5. Suppose that A is a finite von Neumann algebra and x given by (1) is an extreme point of
(
Mm+n(A)

)
1
,

then b = 0.

Proof. By assumption Mk(A) is a finite von Neumann algebra for all k ≥ 1, so Proposition 2.1 indicates that
x is a unitary element of

(
Mm+n(A)

)
1
. Thus, 1 = xx∗. Combining this equation with (13) yields bc∗ = 0 and

1 = cc∗, which yield b = 0, since by the finiteness of Mn(A) we have c∗c = 1.

3.2. Characterizations of c = 0
Theorem 3.6. Let A be a unital C∗-algebra, and let x given by (1) be an extreme point of

(
Mm+n(A)

)
1
. Then c = 0 if

and only if

a∗a = 1, b∗b = 1, b∗a = 0. (21)

Proof. Assume that c = 0. Then it follows from (7) and (8) that

Mn×m(A)(1 − a∗a) = 0, b∗a = 0, b∗b = 1.

Let z1, z2, . . . , zm ∈Mn×m(A) be defined by

z1 =


1 0 0 · · · 0 0
0 0 0 · · · 0 0
...
...
...

...
...

0 0 0 · · · 0 0

 , z2 =


0 1 0 · · · 0 0
0 0 0 · · · 0 0
...
...
...

...
...

0 0 0 · · · 0 0

 , . . . ,

zm−1 =


0 0 0 · · · 1 0
0 0 0 · · · 0 0
...
...
...

...
...

0 0 0 · · · 0 0

 , zm =


0 0 0 · · · 0 1
0 0 0 · · · 0 0
...
...
...

...
...

0 0 0 · · · 0 0

 .
In virtue of zi(1 − a∗a) = 0 for i = 1, 2, · · · ,m, we arrive at a∗a = 1. This shows the validity of (21).

Conversely, assume that (21) is satisfied. Combining (21) with the second equation in (8) and the second
equation in (10), we obtain

(1 − cc∗)c∗c = 0, bc∗c∗c = 0.

Thus, c∗c∗c = b∗bc∗c∗c = 0, hence c∗c = (1 − cc∗)c∗c = 0. This shows that c = 0.
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Corollary 3.7. There exist a unital C∗-algebra A and an element x given by (1) with c = 0 such that x is an extreme
point of

(
M2(A)

)
1
.

Proof. For n ∈ N with n ≥ 2, the Cuntz algebra On ([3, Section 1], [9, Section 5]) is the universal C∗-algebra

generated by isometries si(1 ≤ i ≤ n) such that
n∑

i=1
sis∗i = 1. Let A = On. Choose any i, j ∈ {1, 2, · · · ,n} with

i , j, put a = si and b = s j. Then (21) is satisfied for such a pair of a and b, hence the element x given by (1)
with c = 0 is an extreme point of

(
M2(A)

)
1
.

3.3. Characterizations of a = 0
The following propositions can be obtained by using the same method employed in the proof of

Theorem 3.6 and Corollary 3.7.

Proposition 3.8. Let x given by (1) be an extreme point of
(
Mm+n(A)

)
1
. Then a = 0 if and only if bb∗ = 1, cc∗ = 1

and cb∗ = 0.

Proposition 3.9. There exist a unital C∗-algebra A and an element x given by (1) with a = 0 such that x is an extreme
point of

(
M2(A)

)
1
.

4. Characterizations of the extreme points of Xm,n(A)

Given m,n ∈ N, Xm,n(A) is obviously a convex subset of
(
Mm+n(A)

)
1
, which however is not invariant

under the ∗-operation. Due to the latter property of Xm,n(A), some new phenomena may happen in dealing
with the extreme points of Xm,n(A). Our first result in this direction is as follows.

Proposition 4.1. For every unital C∗-algebra A and n ∈N, there exists x given by (1) with m = n such that x is an
extreme point of Xn,n(A), whereas neither a nor c is an extreme point of

(
Mn(A)

)
1
.

Proof. Given y, z ∈Mn(A), let s =
(
y 1
0 z

)
and t =

(
y 1
0 0

)
. Since t =

(
1 0
0 0

)
s, we have

1 + ∥y∥2 = 1 + ∥yy∗∥ = ∥1 + yy∗∥ = ∥tt∗∥ = ∥t∥2 ≤ ∥s∥2.

Similarly, 1 + ∥z∥2 ≤ ∥s∥2. It follows that ∥s∥ ≤ 1 if and only if y = z = 0. Due to this observation and the fact

that 1 is an extreme point of
(
Mn(A)

)
1
, we see that

(
0 1
0 0

)
is an extreme point of Xn,n(A).

In the rest of this section, we study the extreme points of Xm,n(A) under the restriction that a and c are
extreme points of

(
Mm(A)

)
1

and
(
Mn(A)

)
1
, respectively. For this, we provide a useful lemma as follows.

Lemma 4.2. Suppose that A is a unital C∗-algebra. Let a ∈Mm(A), b ∈Mm×n(A) and c ∈Mn(A) be such that both a
and c are nonzero partial isometries. Suppose that x given by (1) satisfies ∥x∥ ≤ 1, then b = (1 − aa∗)b(1 − c∗c).

Proof. A simple computation shows that

xx∗ =
(

aa∗ + bb∗ bc∗

cb∗ cc∗

)
. (22)

So, if we put s =
(
0 0
0 1

)
xx∗, then we have

1 ≥ ∥ss∗∥ = ∥cb∗bc∗ + cc∗∥.
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Since cc∗ is a nonzero projection and e ≜ cb∗bc∗ is a positive element satisfying cc∗ · e · cc∗ = e, the inequality
above implies that e = 0, or equivalently, bc∗ = 0. Furthermore, from (22) we can obtain

1 ≥ ∥xx∗∥ ≥ ∥aa∗ + bb∗∥ ≥ ∥aa∗(aa∗ + bb∗)aa∗∥
= ∥aa∗ + (aa∗b)(aa∗b)∗∥,

hence aa∗b = 0. It follows that

b = (1 − aa∗)b = (1 − aa∗)b(1 − c∗c).

Hence, b has the form as desired.

A direct application of the preceding lemma is as follows.

Corollary 4.3. Let A be a unital C∗-algebra. Suppose that a ∈Mm(A) and c ∈Mn(A) are nonzero partial isometries
such that (1 − aa∗)Mm×n(A)(1 − c∗c) = 0. Then for every b ∈ Mm×n(A) \ {0}, the element x given by (1) satisfies
∥x∥ > 1.

We provide an additional lemma for the sake of completeness.

Lemma 4.4. Suppose that A is a unital C∗-algebra. Let x be given by (1) such that both a ∈Mm(A) and c ∈Mn(A) are
partial isometries, and at least one of a and c is nonzero. Then ∥x∥ = max{1, ∥b∥} for every b ∈ (1−aa∗)Mm×n(A)(1−c∗c).

Proof. By the assumptions on a, b and c, we have

∥x∥2 =∥xx∗∥ =
∥∥∥diag(aa∗ + bb∗, cc∗)

∥∥∥
=max

{
max{∥aa∗∥, ∥bb∗∥}, ∥cc∗∥

}
= max{1, ∥b∥}2.

Thereby showing that ∥x∥ = max{1, ∥b∥}, as desired.

Our first main result of this section reads as follows.

Theorem 4.5. Suppose that A is a unital C∗-algebra. Let x be given by (1) such that a and c are extreme points of(
Mm(A)

)
1

and
(
Mn(A)

)
1

respectively, and (1 − aa∗)Mm×n(A)(1 − c∗c) , {0}. Then x is an extreme point of Xm,n(A) if
and only if b is an extreme point of the closed unit ball of (1 − aa∗)Mm×n(A)(1 − c∗c).

Proof. For simplicity, we denote (1− aa∗)Mm×n(A)(1− c∗c) and its closed unit ball by B and (B)1, respectively.
Suppose that

y =
(

a1 b1
0 c1

)
, z =

(
a2 b2
0 c2

)
are given in Xm,n(A) such that x = 1

2 (y + z). Then a = 1
2 (a1 + a2), c = 1

2 (c1 + c2), and

max
{
∥ai∥, ∥bi∥, ∥ci∥

}
≤ max{∥y∥, ∥z∥} ≤ 1

for i = 1, 2, which lead to a1 = a2 = a, c1 = c2 = c, and b1, b2 ∈ (B)1 by Lemma 4.2. Then the desired conclusion
is immediate from Lemma 4.4.

Our second main result of this section reads as follows.

Theorem 4.6. Suppose that A is a unital C∗-algebra. Let x be given by (1) with b = 0. Then x is an extreme point of
Xm,n(A) if and only if the following conditions are both satisfied:

(i) a and c are extreme points of
(
Mm(A)

)
1

and
(
Mn(A)

)
1
, respectively;

(ii) (1 − aa∗)Mm×n(A)(1 − c∗c) = 0.
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Proof. Let Y be the C∗-subalgebra of Mm+n(A) defined by Y =Mm(A)⊕Mn(A), and let (Y)1 be the closed unit
ball of Y. Obviously, we have

(Y)1 ⊆ Xm,n(A) ⊆
(
Mm+n(A)

)
1
.

By Lemma 1.1, it is easy to verify that x =
(
a 0
0 c

)
is an extreme point of (Y)1 if and only if

(1 − aa∗)Mm(A)(1 − a∗a) = 0, (1 − cc∗)Mn(A)(1 − c∗c) = 0,

or equivalently, a and c are extreme points of
(
Mm(A)

)
1

and
(
Mn(A)

)
1
, respectively.

Assume that x is an extreme point of Xm,n(A), then apparently x is an extreme point of (Y)1, hence a
and c are extreme points of

(
Mm(A)

)
1

and
(
Mn(A)

)
1
, respectively. In particular, both a and c are nonzero

isometries (see Remark 1.2 (1)). Suppose that (1− aa∗)Mm×n(A)(1− c∗c) , {0}. Then there exists w ∈Mm×n(A)
such that

0 < ∥w∥ < 1, (1 − aa∗)w(1 − c∗c) = w. (23)

Let

y =
(

a w
0 c

)
, z =

(
a −w
0 c

)
.

In virtue of (23) and Lemma 4.4, we have

∥y∥ = ∥z∥ = max{1, ∥w∥} = 1.

It follows that x = 1
2 (y + z) with y, z ∈ (Y)1 such that x , y, which contradicts the fact that x is an extreme

point of (Y)1. This shows that (1 − aa∗)Mm×n(A)(1 − c∗c) = 0.
Conversely, suppose that conditions (i) and (ii) are satisfied. Let

y =
(

a1 b1
0 c1

)
, z =

(
a2 b2
0 c2

)
be chosen in (Y)1 such that x = 1

2 (y + z). Then a = 1
2 (a1 + a2), c = 1

2 (c1 + c2), and

max
{
∥a1∥, ∥c1∥, ∥a2∥, ∥c2∥

}
≤ max{∥y∥, ∥z∥} ≤ 1,

which yield a1 = a2 = a and c1 = c2 = c. Hence, we may combine ∥y∥ ≤ 1 and ∥z∥ ≤ 1 with Corollary 4.3
to conclude that b1 = b2 = 0, and thus y = z = x. This completes the proof that x is an extreme point of
Xm,n(A).

Corollary 4.7. There exist a unital C∗-algebra A and an element x given by (1) with b = 0 such that x is an extreme
point of X1,1(A), whereas x fails to be an extreme point of

(
M2(A)

)
1
.

Proof. Let A be the Cuntz algebra O3 generated by isometries s1, s2 and s3 such that
3∑

i=1
sis∗i = 1. Put a = s∗1

and c = s2. Then aa∗ = c∗c = 1 and (1 − cc∗)(1 − a∗a) = s3s∗3 , 0. Therefore, conditions (i) and (ii) stated in
Theorem 4.6 are satisfied, whereas the second equation in (17) fails to be true for m = n = 1. Thus, the
element x given by (1) with b = 0 and a, c be chosen as above meets the demanding.
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