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Abstract. Motivated by the Arhangel’skii “s-Lindelöf cardinal function” definition, Kočinac, Konca,
Bonanzinga, Maesano and Singh defined and studied the set covering properties. In this paper, we study
some set versions of compact-type properties and give partial solution to a problem posed by Singh in [11].

1. Introduction

In [1], Arhangel’skii defined a cardinal function sL from s-Lindelöf space X such that sL(X) = ω. A space
X is said to be s-Lindelöf if for each subset A of X and each open cover U of A by sets open in X, there
is a countable set V ⊂ U such that A ⊂

⋃
V. Motivated by this definition, Kočinac and Konca [8, 10]

introduced new types of selective covering properties called set-covering properties. Later on, Kočinac,
Konca and Singh [9, 10, 12] studied set star covering properties viz. set star-Menger, set star Hurewicz
etc. using the star operator. Singh in [11] studied set starcompact and set strongly starcompact properties.
Bonanzinga and Maesano in [3] studied the set K -starcompact spaces and other set covering properties.
Recently a number of papers on set covering properties of Menger, Hurewicz, starcompact etc. have been
published (see also [3]).

In this paper we study set starcompactness, set strongly starcompactness (see Definition 1.5), set strongly
1-starcompactness (see Definition 2.1), set K -starcompactness (see Definition 2.9) and investigate their
relationship with other set covering properties. Note that recently Bonanzinga and Maesano showed that
set strongly 1-starcompactness is equivalent to strongly 1-starcompactness [3, Proposition 1.3] and that set
K -starcompactness is equivalent toK -starcompactness [3, Proposition 1.2]. Also we give a partial solution
to the following question posed by Singh [11]:

Problem 1.1. ([11]) Is the product of a set starcompact and a compact space a set starcompact space?

Throughout this paper we use standard topological terminology and notations as in [5]. By “a space”
we mean “a topological space”,N denotes the set of natural numbers and an open coverU of a subset A of
X means elements ofU are open in X and A ⊂ ∪U = ∪{U : U ∈ U}. The cardinality of a set A is denoted by
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|A|. Let ω denote the first infinite ordinal, ω1 the first uncountable ordinal, c the cardinality of the set of real
numbers. As usual a cardinal is an initial ordinal and an ordinal is the set of smaller ordinals. A cardinal
is often viewed as a space with the usual order topology. If A is a subset of a space X andU is a collection
of subsets of X, then the star of A with respect toU is the set St(A,U) = ∪{U ∈ U : U ∩ A , ∅}. We usually
write St(x,U) = St({x},U). If P is a collection of subsets of X, we write

⋃
P := ∪{P : P ∈ P}.

Recall that a space X is Menger if for each sequence {Un : n ∈ ω} of open covers of X, there is a sequence
{Vn : n ∈ ω} such that for each n ∈ ω, Vn is a finite subset ofUn and {∪Vn : n ∈ ω} is an open cover of X.
The following set star versions of the Menger property were introduced by Kočinac et al. in [9]. (Recently,
relative versions of “selective” star-Menger properties were considered in [2].)

Definition 1.2. ([9]) A space X is said to have:

1. set star-Menger property if for each nonempty subset A of X and each sequence (Un : n ∈ ω) of
collection of open sets in X such that A ⊂ ∪Un, there is a sequence (Vn : n ∈ ω) such that for each
n ∈ ω,Vn is a finite subset ofUn and A ⊂

⋃
St(∪Vn,Un).

2. set strongly star-Menger property if for each nonempty subset A of X and each sequence (Un : n ∈ ω)
of collection of open sets in X such that A ⊂ ∪Un, there is a sequence (Fn : n ∈ ω) of finite subsets of
A such that A ⊂

⋃
St(Fn,Un).

From the definitions, it is clear that every set strongly star-Menger space is set star-Menger space.
Further the following theorem shows that the class of set strongly star-Menger spaces is sufficiently large.

Theorem 1.3. ([9]) Every Menger space is set strongly star-Menger.

Proof. Let X be a Menger space. Let A be any nonempty subset of X and (Un : n ∈ N) be a sequence of
collections of open sets in X such that A ⊂ ∪Un. Since closed subsets of Menger spaces are Menger, then A
is Menger. Therefore there exists a sequence (Vn : n ∈ N) such that for each n ∈ N,Vn is a finite subset of
Un and A ⊂

⋃
n∈N(∪Vn). Choose xV ∈ A ∩ V for each V ∈ Vn. For each n ∈N, let Fn = {xV : V ∈ Vn}. Then

each Fn is a finite subset of A and A ⊂ A ⊂ ∪n∈NSt(Fn,Un).

However the converse of the above theorem does not hold. Kočinac et al. [9] gave an example of a
Tychonoff set strongly star-Menger space which is not Menger space.

Definition 1.4. ([4]) A space X is said to be:

1. 1-starcompact if for each open coverU of X, there is a finite subsetV ofU such that X = St(∪V,U).
2. strongly 1-starcompact if for each open cover U of X, there is a finite subset F of X such that

X = St(F,U).

Obviously every strongly 1-starcompact space is 1-starcompact space.

Definition 1.5. ([9, 11]) A space X is said to be:

1. set starcompact if for each nonempty subset A of X and each collectionU of open sets in X such that
A ⊂
⋃
U, there is a finite subsetV ofU such that A = St(∪V,U)

⋂
A.

2. set strongly star compact if for each nonempty subset A of X and for each collectionU of open sets of
X such that A ⊂

⋃
U, there is a finite subset F of A such that A = St(F,U)

⋂
A.

From the definitions, it is clear that every set strongly starcompact space is strongly 1-starcompact space
and set starcompact space. And every set starcomapct space is 1-starcomapct.
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2. On set starcompact and set strongly starcompact spaces

The following set version of strongly 1-starcompactness is in fact equivalent to strongly 1-starcompactness
(see [3, Proposition 1.3], where different terminology is used).

Definition 2.1. A space X is said to be set strongly 1-starcompact if for each nonempty subset A of X
and for each collection U of open sets of X such that A ⊂

⋃
U, there is a finite subset F of X such that

A = St(F,U)
⋂

A.

Clearly every set strongly starcompact space is set strongly 1-starcompact (equivalently, strongly 1-
starcompact).

We have the following diagram from the definitions which gives relationships between some of the star
covering properties.

set strongly 1-starcompact // 1-starcompact

set strongly starcompact

OO

��

// set starcompact

OO

��
Menger // set strongly star-Menger // set star-Menger

However converse of the above implications may not be true as shown in the following examples. We
also refer the reader to [9, 11] to see the current state of knowledge about these relationships.

Example 2.2. There exists a T1 set strongly 1-starcompact (equivalently, strongly 1-starcompact) space
which is not set strongly starcompact.

Proof. Let X = A ∪ B, where A = {aα : α < c} is any set with |A| = c and B is any finite set with |B| ≥ 3 such
that any element of B is not in A. Topologize X as follows: for each aα ∈ A and each finite subset F of B,
{aα} ∪ (B \ F) is a basic open neighborhood of aα and each element of B is isolated.

First we show that X is set strongly 1-starcompact. Let C be any nonempty subset of X and U be any
open cover of C. If C ⊂ A. Then for each aα ∈ C, there exists Uα ∈ U such that aα ∈ Uα. Then for each aα ∈ C,
we can find a finite set Fα such that {aα} ∪ (B \ Fα) ⊆ Uα. Then C ⊂ St(B,U) and B is a finite subset of X.
Now if C ⊂ B. Since B is finite, we have nothing to prove. Hence X is set strongly 1-starcompact.

In [11], it is showed that X is not set strongly starcompact.

It is not difficult to see that every countably compact space is set strongly 1-starcompact (equivalently,
strongly 1-starcompact). In [3, Proposition 2.2] the authors show that for Hausdorff spaces set strongly
starcompactness, strongly 1-starcompactness and countable compactness are equivalent properties. Such
an equivalence is not true for T1 spaces (see [4, Example 2.3.7]). (Note that in [3] there is a misprint in the
statement of the definition of “relatively* SSC”: the authors write that the set “F is a finite subset of A”
instead of “F is a finite subset of A”.)

Example 2.3. There exists a Tychonoff set strongly star-Menger space (hence set star-Menger space) which
is not set strongly 1-starcompact (equivalently, strongly 1-starcompact).

Proof. Let

X = ([0, ω] × [0, ω]) \ {⟨ω,ω⟩}

be the subspace of the product space [0, ω] × [0, ω]. Then X is a Tychonoff space.
Since X is countable, it is a Menger space. Since every Menger space is set strongly star-Menger, we

have that X is set strongly star-Menger.
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Next we show that X is not set strongly 1-starcompact. Let A = {⟨n, ω⟩ : n ∈ ω} and for each n ∈ ω, let

Un = {n} × [n, ω].

Consider the open coverU = {Un : n ∈ ω} of A = A. Let F be any finite subset of X. Then there exists n1 ∈ ω
such that Un∩F = ∅ for each n > n1. Let a = ⟨m, ω⟩with m > n1. But Um is the only element ofU containing
⟨m, ω⟩. Thus a = ⟨m, ω⟩ < St(F,U) which shows that X is not set strongly 1-starcompact. This completes the
proof.

Since set strongly 1-starcompactness and strongly 1-starcompact properties are equivalent, we have the
following two examples:

Example 2.4. ([4, Example 2.3.8]) There exists a Hausdorff 1-starcompact space which is not set strongly
1-starcompact.

Example 2.5. ([4, Example 2.3.7]) There exists a T1 set strongly 1-starcompact space which is not countably
compact.

Recall that a space X is metacompact if each open cover of X has a point finite refinement.

Theorem 2.6. ([4]) Strongly 1-starcompact metacompact spaces are compact.

Since compact ⇒ countably compact ⇒ set strongly starcompact ⇒ set strongly 1-starcompact ⇔
strongly 1-starcompact, thus Theorem 2.6 leads to the following theorem.

Theorem 2.7. If X is a metacompact space, then the following are equivalent:

1. X is compact;
2. X is countably compact;
3. X is set strongly starcompact;
4. X is set strongly 1-starcompact.

Ikenaga [6] gave the concept of K -starcompact spaces and later Song [13, 14] concentrated on the basic
topological properties of this space.

Definition 2.8. A space X is said to beK -starcompact if for every open coverU of the space X, there exists
a compact subset K of X such that St(K,U) = X.

In [3] Bonanzinga and Maesano introduced the following set version ofK -starcompactness and showed
that it is equivalent toK -starcompactness [3, Proposition 1.2].

Definition 2.9. A space X is said to be set K -starcompact if for each nonempty subset A of X and for each
collectionU of open sets of X such that A ⊂

⋃
U, there is a compact subset K of X such that A ⊂ St(K,U).

Note that a Hausdorff K -starcompact (equivalently, set K -starcompact) space need not be set star-
compact [3, Example 3.3] and a set starcompact (hence 1-starcompact) space need not be K -starcompact
(equivalently, setK -starcompact) space.



S. Mittal et al. / Filomat 36:19 (2022), 6473–6479 6477

3. Topological properties

In this section, we study the topological properties of the considered set covering properties. Recall that
the set strongly 1-starcompactness (equiv., strongly 1-starcompactness) and setK -starcompactness (equiv.,
K -starcompactness) are not hereditary properties. Next we show that these properties are preserved by
clopen subspaces.

Theorem 3.1. A clopen subspace of a set strongly 1-starcompact (equiv., strongly 1-starcompact) space is also set
strongly 1-starcompact (equiv., strongly 1-starcompact) space.

Proof. Let X be set strongly 1-starcompact space and A ⊂ X be a clopen subset of X. Let B be any subset of A
andU be any collection of open sets in (A, τA) such that ClA(B) ⊂

⋃
U. Since A is open, thenU is a collection

of open sets in X and since A is closed, we have ClA(B) = ClX(B). Then by set strongly 1-starcompactness of
X, there exists a finite subset F of X such that B ⊂ St(F,U) and since U is collection of open sets in A, we
have St(F,U) = St(G,U), where G = F ∩ A. Hence A is also set strongly 1-starcompact.

Theorem 3.2. A clopen subspace of a set K -starcompact (equiv., K -starcompact) space is also set K -starcompact
(equiv.,K -starcompact) space.

Now we consider the Alexandroff duplicate A(X) = X × {0, 1} of a space X. The basic neighborhoods of
a point ⟨x, 0⟩ ∈ X × {0} is of the form (U × {0})

⋃
(U × {1} \ {⟨x, 1⟩}), where U is any neighborhood of x ∈ X

and each point ⟨x, 1⟩ ∈ X × {1} is isolated point.

Example 3.3. There exists a Tychonoff set strongly 1-starcompact (equiv., strongly 1-starcompact) space X
such that A(X) is not set strongly 1-starcompact (equiv., strongly 1-starcompact).

Proof. Let X be the same space X as in the proof of Example 2.2. Thus X is set strongly 1-starcompact. Let
A = {⟨α, 1⟩ : α < c}. Then A is a clopen subset of A(X) with |A| = c and each point of A is isolated which
clearly shows that A is not set strongly 1-starcompact. Hence A(X) is not set strongly 1-starcompact since
every clopen subset of set strongly 1-starcompact space is set strongly 1-starcompact.

Recall that the extent of a topological space X, e(X) is the supremum of cardinalities of all closed discrete
subsets of X. Singh showed that any space whose Alexandroff duplicate space is set starcompact has finite
extent. We show some similar result for set strongly 1-starcompact space and setK -starcompact spaces.

Theorem 3.4. 1If X is a T1-space and A(X) is a set strongly 1-starcompact (equiv., strongly 1-starcompact) space.
Then e(X) < ω.

Proof. Suppose that e(X) ≥ ω. Then there exists a discrete closed subset B of X such that |B| ≥ ω. Hence
B × {1} is a clopen subset of A(X) and every point of B × {1} is an isolated point. Clearly B × {1} is not set
strongly 1-starcompact. By Theorem 3.1, every clopen subset of a set strongly 1-starcompact space is set
strongly 1-starcompact, hence A(X) is not set strongly 1-starcompact.

Theorem 3.5. If X is a T1-space and A(X) is a setK -starcompact (equiv.,K -starcompact) space, then e(X) < ω.

Theorem 3.6. Let X be a space such that the Alexandroff duplicate A(X) of X is set strongly 1-starcompact (equiv.,
strongly 1-starcompact). Then X is also set strongly 1-starcompact (equiv., strongly 1-starcompact).

Proof. Let B be any nonempty subset of X and U be any open cover of B. Let C = B × {0} and A(U) =
{U × {0, 1} : U ∈ U}. Then A(U) is an open cover of C. Since A(X) is set strongly 1-starcompact, there is a
finite subset F of A(X) such that C = B × {0} ⊂ St(F,A(U)). As F is finite subset of A(X), let F = {(xi, 0) : 1 ≤
i ≤ m} ∪ {(y j, 1) : 1 ≤ j ≤ n}. Take G = {xi : 1 ≤ i ≤ m} ∪ {y j : 1 ≤ j ≤ n}. Then clearly B ⊂ St(G,U) and since
G is finite subset of X, we can say that X is set strongly 1-starcompact.

Lemma 3.7. ([15]) For a T1-space X, e(X) = e(A(X)).
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Next we give the partial solution of the open problem posed by Singh in ([11], Problem 3.8).

Theorem 3.8. If X is a T1 set starcompact space (resp., set strongly starcompact) and e(X) < ω, then A(X) is set
starcompact space (resp., set strongly starcompact).

Proof. We prove the result only for the set starcompact spaces. The proof for set strongly starcompact spaces
is on similar lines.

Let B be any nonempty subset of A(X). If |{x : ⟨x, 0⟩ ∈ B}| < ω, then by the hypothesis A(X) is set
starcompact. So, let |{x : ⟨x, 0⟩ ∈ B}| > ω and U be any open cover of B. Then C = {x ∈ X : ⟨x, 0⟩ ∈ B} is a
nonempty subset of X. For each x ∈ C, choose an open neighborhood Wx = (Vx × {0, 1}) \ {⟨x, 1⟩} of ⟨x, 0⟩
satisfying that there exists some U ∈ U such that Wx ⊂ U, where Vx is an open subset of X containing x.

LetW = {Vx : x ∈ C}. ThenW is an open cover of C. Since X is set starcompact, there is a finite subset
V ofW such that C ⊂ St(∪V,W). For each Vx ∈ V, we have Wx neighborhood of ⟨x, 0⟩ such that Wx ⊂ U
for some U ∈ U. Collect all such U and let H = {U : Wx ⊂ U,Vx ∈ V}. Then H is a finite subset of U
and C × {0} ⊂ St(∪H ,U). Let A = [C × {0, 1} ∩ (A(X) \ St(∪H ,U)] ∪ {⟨y, 1⟩ ∈ B : ⟨y, 1⟩ < C × {1}}. Then A
is a discrete closed subset of A(X). Since every subspace of T1 space is T1 space, by lemma 3.7 the set A is
finite so we can enumerate A as {a1, a2, . . . an}. Let V

′

= V ∪ {Va1 ,Va2 , . . . ,Van }, where Vai is an element of
U containing ai for i = 1, 2, . . . ,n. Thus V

′

is a finite subset of U and B ⊂ St(∪V′

,U). Hence A(X) is set
starcompact space.

Recall that the continuous images of strongly 1-starcompact (equiv., set strongly 1-starcompact) andK -
starcompact (equiv., setK -starcompact) spaces are strongly 1-starcompact (equiv., set strongly 1-starcompact)
andK -starcompact (equiv., setK -starcompact) spaces, respectively.

Theorem 3.9. Let f : X → Y be an open, closed and finite-to-one continuous mapping from a space X onto a set
strongly 1-starcompact (equiv., strongly 1-starcompact) space Y. Then X is also a set strongly 1-starcompact (equiv.,
strongly 1-starcompact) space.

Proof. Let A ⊂ X be any nonempty set and U be a collection of open sets in X such that A ⊂
⋃
U. Then

B = f (A) is a subset of Y. Let y ∈ B, then f−1(y) is a finite subset of X, thus there is a finite subset Uy of
U such that f−1(y) ⊂

⋃
Uy and U

⋂
f−1(y) , ∅ for each U ∈ Uy. Since f is closed, there exists an open

neighborhood Vy of y in Y such that f−1(Vy) ⊂
⋃
{U : U ∈ Uy}. Since f is open, we can assume that

Vy ⊂
⋂
{ f (U) : U ∈ Uy}. thenV = {Vy : y ∈ B} is an open cover of B. Since Y is set strongly 1-starcompact,

there exists a finite subset F of Y such that B ⊂ St(F,V). Since f is finite to one mapping, therefore f−1(F) is
also a finite subset of X.

We prove that A ⊂ St( f−1(F),U). Let x ∈ A. Then there exists some y ∈ B such that f (x) ∈ Vy and
Vy ∩ F , ∅. Since x ∈ f−1(Vy) ⊂

⋃
{U : U ∈ Uy}, we can choose U ∈ Uy with x ∈ U. then Vy ⊂ f (U) which

implies U ∩ f−1(F) , ∅. Hence x ∈ St( f−1(F),U). Therefore X is set strongly 1-starcompact.

Recall that [9] a function f : X → Y is said to have the containment property if for each subset A ⊂ X
such that f (A) = B, then f−1(B) ⊆ A.

Theorem 3.10. If f is an open perfect map with containment property from a space X onto a set starcompact space
Y, then X is set starcompact.

Proof. Let A be a nonempty subset of X andU be any open cover of A. Since f is closed, thus f (A) is closed.
Let f (A) = B for some subset B of Y and let y ∈ B. Since f−1(y) is compact and f has the containment
property, there exists a finite subcollection Uy of U such that f−1(y) ⊆

⋃
Uy and U ∩ f−1(y) , ∅ for each

U ∈ Uy. Let Uy =
⋃
Uy. Then Vy = Y \ f (X \ Uy) is a neighborhood of y since f is closed. Then

V = {Vy : y ∈ B} is an open cover of closed set B. Since Y is set starcompact, there exists a finite subsetV
′

ofV such that B ⊂ St(
⋃
V
′

,V). Without loss of generality, we may assume thatV
′

= {Vyi : 1 ≤ i ≤ n}. Let
W =

⋃
iUyi , thenW is a finite subset of U and f−1(

⋃
V
′

) =
⋃
W. Since f−1(Vyi ) ⊂

⋃
{U : U ∈ Uyi } for
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each i, we have A ⊂ St(
⋃
W,U). To show this, let x ∈ A. Then there exists y ∈ B such that f (x) ∈ Vy and

Vy
⋂

(
⋃
V
′

) , ∅. Since x ∈ f−1(Vy) ⊂
⋃
{U : U ∈ Uy}, we can choose U ∈ Uy with x ∈ U. As Vy ⊂ f (U),

we have U
⋂

f−1(
⋃
V
′

) , ∅. Hence x ∈ St( f−1(
⋃
V
′

),U) and therefore x ∈ St(
⋃
W,U) which shows that

A ⊂ St(
⋃
W,U). Hence X is set starcompact space.

Call the product space X × Y rectangular set starcompact if it satisfies the defining condition for the set
starcompact property for subsets of X × Y of the form A = B × C, where B and C are the nonempty subsets
of X and Y, respectively. Now we prove that the product of set starcompact space and a compact Hausdorff
space is rectangular set starcompact space.

Theorem 3.11. The product of a set starcompact space X and a compact Hausdorff space Y is rectangular set
starcompact.

Proof. Let X be any set starcompact space and Y be any compact Hausdorff space. Let A = B × C be the
subset of X × Y and U be any cover of A = B × C = B × C. Then there exists open covers V and W of
B and C such that U = V ×W. Since X is set starcompact, so there exists finite subset V

′

of V such
that B ⊂ St(∪V′

,V). Since Y is compact, so there exists finite subset W
′

of W such that C ⊂ ∪W′

. Put
U
′

=V
′

×W
′

which is a finite subset ofU such that A ⊂ St(∪U′

,U). Hence the space X×Y is rectangular
set starcompact.

The above theorem is a partial solution of the following open problem posed by Singh in [11].

Problem 3.12. ([11]) Is the product of a set starcompact and a compact space a set starcompact space?
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