A Characterization of $4-\chi_{\rho}$-(Vertex-)Critical Graphs

Jasmina Ferme ${ }^{\text {a,b }}$
${ }^{a}$ Faculty of Education, University of Maribor, Slovenia
${ }^{b}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia

Abstract

Given a graph G, a function $c: V(G) \longrightarrow\{1, \ldots, k\}$ with the property that for every $u \neq v$, $c(u)=c(v)=i$ implies that the distance between u and v is greater than i, is called a k-packing coloring of G. The smallest integer k for which there exists a k-packing coloring of G is called the packing chromatic number of G, and is denoted by $\chi_{\rho}(G)$. Packing chromatic vertex-critical graphs are the graphs G for which $\chi_{\rho}(G-x)<\chi_{\rho}(G)$ holds for every vertex x of G. A graph G is called a packing chromatic critical graph if for every proper subgraph H of $G, \chi_{\rho}(H)<\chi_{\rho}(G)$. Both of the mentioned variations of critical graphs with respect to the packing chromatic number have already been studied [6, 23]. All packing chromatic (vertex-)critical graphs G with $\chi_{\rho}(G)=3$ were characterized, while there were known only partial results for graphs G with $\chi_{\rho}(G)=4$. In this paper, we provide characterizations of all packing chromatic vertex-critical graphs G with $\chi_{\rho}(G)=4$ and all packing chromatic critical graphs G with $\chi_{\rho}(G)=4$.

1. Introduction

There are many variations of graph coloring and one of them is packing coloring. Given a graph G and a positive integer i, a k-packing coloring is a mapping $c: V(G) \longrightarrow\{1,2, \ldots, k\}$ with the following property: if $c(u)=c(v)=i$, then $d(u, v)>i$ for any $u, v \in V(G), u \neq v$, and $i \in\{1,2, \ldots, k\}$ (note that $d(u, v)$ is the usual shortest-path distance between u and v). The packing chromatic number of G, denoted by $\chi_{\rho}(G)$, is the smallest integer k such that there exists a k-packing coloring of G.

The packing chromatic number was introduced by Goddard, S. M. Hedetniemi, S. T. Hedetniemi, Harris and Rall [20] in 2008 under the name broadcast chromatic number. The current name was given in the second paper on the topic by Brešar, Klavžar and Rall [10]. The concept has a very wide spectrum of potential applications, such as frequency assignments [20] or applications in resource placements and biological diversity [10].

Packing coloring has attracted many authors. This is reflected in the (probably non-exhaustive) list of papers on this topic that were published only in the last two years $[2,3,7,9,12,15,18,19,22,23,26,31]$ (see also a survey [8]). One of the main areas of investigation has been to determine the boundedness or the exact values of the packing chromatic numbers of several classes of (finite and infinite) graphs [4,5,10-$14,16,17,24-27,29,30]$. Among them, a lot of attention was given to the question of boundedness of the invariant in the class of (sub)cubic graphs, which was already posed in the seminal paper. Finally, it was

[^0]answered in the negative by Balogh, Kostochka and Liu [1] (see also an explicit construction in [5]). Also, the problem of boundedness or the exact values of the packing chromatic numbers for the infinite grids was studied by many authors [10, 14, 16, 17, 24, 27, 28].

It is clear that the packing chromatic number is hereditary: a graph cannot have smaller packing chromatic number than its subgraphs. In particular, if we delete a vertex v from a given graph G, then for the obtained graph we have: $\chi_{\rho}(G-v) \leq \chi_{\rho}(G)$. Klavžar and Rall [23] investigated the class of graphs G with the property that $\chi_{\rho}(G-v)<\chi_{\rho}(G)$ holds for every $v \in V(G)$. Such graphs are called packing chromatic vertex-critical graph, or shorter χ_{ρ}-vertex-critical graph. In the case when G is χ_{ρ}-vertex-critical and $\chi_{\rho}(G)=k$, we also say that G is k - χ_{ρ}-vertex-critical. Among other results, the mentioned authors proved that the only $3-\chi_{\rho}$-vertex-critical graphs are C_{3}, P_{4} and C_{4}. In addition, they provided partial characterizations of 4- χ_{ρ}-vertex-critical graphs and considered χ_{ρ}-veretx-critical trees. Later, Brešar and Ferme [6] studied a different (basic) version of critical graphs for the packing chromatic number. Namely, they considered the class of graphs G satisfying the following property: $\chi_{\rho}(H)<\chi_{\rho}(G)$ for each proper subgraph H of a graph G. Such graphs are called packing chromatic critical graph, or shorter χ_{ρ}-critical graph. If G is χ_{ρ}-critical and $\chi_{\rho}(G)=k$, we can say that G is k - χ_{ρ}-critical. The mentioned authors characterized χ_{ρ}-critical graphs with diameter $2, \chi_{\rho}$-critical block graphs with diameter 3 and proved that the only $3-\chi_{\rho}$-critical graphs are C_{3} and P_{4}. The authors also considered χ_{ρ}-critical trees. In both of the mentioned papers, a partial characterization of 4- χ_{ρ}-(vertex)-critical graphs is given. In this paper, we present a general characterization of such graphs.

The paper is organized as follows. In the next section, we establish the notation and define the concepts used throughout the paper. We present the known family of graphs G with $\chi_{\rho}(G)=3$, which will help us to characterize $4-\chi_{\rho}$-vertex-critical graphs. In addition, we prove some lemmas, which will be very useful for the proofs in the sequel of this paper. In Section 3, we recall some partial characterizations of $4-\chi_{\rho}$-vertex-critical graphs. Then, we present all $4-\chi_{\rho}$-vertex-critical graphs and prove the characterization. Based on this result, in Section 4, we provide a complete characterization of 4- χ_{ρ}-critical graphs. We end the paper with some remarks.

2. Notation and preliminaries

Let G be a graph (unless stated otherwise, the term graph refers to a simple graph). We denote its vertex set by $V(G)$ and its set of edges by $E(G)$. The (open) neighborhood of an arbitrary vertex $v \in V(G), N_{G}(v)$, is the set of all vertices adjacent to v. The closed neighborhood of v is $N_{G}(v) \cup\{v\}$ and is denoted by $N_{G}[v]$. The number of elements in $N_{G}(v),\left|N_{G}(v)\right|$, is called the degree of v and is denoted by $\operatorname{deg}_{G}(v)$. In the case when $\operatorname{deg}_{G}(v)=1$, we say that v is a leaf or a pendant vertex. If $\operatorname{deg}(v)>1$, then v is called a non-pendant vertex. An isolated vertex is a vertex v with $\operatorname{deg}_{G}(v)=0$. Further, the distance between two vertices $u, v \in V(G)$, denoted by $d_{G}(u, v)$, is the length of a shortest $u-v$-path in G. Note that the subscript in some of the above notations may be omitted if the graph G is clear from the context.

A graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. A subgraph H of a graph G is called a proper subgraph of G if $V(H)$ is a proper subset of $V(G)$ or $E(H)$ is a proper subset of $E(G)$. If H is a subgraph of G and $V(G)=V(H)$, then we say that H is a spanning subgraph of G. Further, a subgraph H of a graph G is an induced subgraph of G if for each pair of the vertices $a, b \in V(H)$ holds the following: if $a b \in E(G)$, then $a b \in E(H)$. If $A \subset V(G)$, then $G[A]$ denotes an induced subgraph of G with the vertex set A. We will also use the notation $G-v$, which is shorter for $G[V(G) \backslash\{v\}]$. Next, if $e=x y \in E(G)$, then $G-e$ (or $G-x y$) denotes the subgraph of G with $V(G-e)=V(G)$ and $E(G-e)=E(G) \backslash\{e\}$.

Graphs G and H are isomorphic, $G \cong H$, if there exists a bijection $h: V(G) \longrightarrow V(H)$ such that $u v \in E(G) \Leftrightarrow$ $h(u) h(v) \in E(H)$ for any $u, v \in V(G)$.

Recall that the packing chromatic number is hereditary, which means that for any subgraph H of G, $\chi_{\rho}(H) \leq \chi_{\rho}(G)$. This property will be used several times in the sequel of this paper. Further, recall that $\chi_{\rho}\left(K_{n}\right)=n$ for every complete graph $K_{n}, n \geq 1$. Further, let C_{n} be a cycle of order $n \geq 3$. Then, $\chi_{\rho}\left(C_{n}\right)=3$ if $n=3$ or n is divisible by 4 . Otherwise, $\chi_{\rho}\left(C_{n}\right)=4$. For any path P_{n} we have: $\chi_{\rho}\left(P_{1}\right)=1, \chi_{\rho}\left(P_{2}\right)=\chi_{\rho}\left(P_{3}\right)=2$ and $\chi_{\rho}\left(P_{n}\right)=3$ if $n \geq 4$.

Now, we prove two lemmas, which will be very useful in Sections 3 and 4.
Let n be a positive integer. The graph X_{n} is formed from the disjoint union of one copy of K_{3} and one copy of P_{n} by joining a vertex of K_{3} and a leaf (or an isolated vertex) of P_{n} (see Fig. 1a). Similarly, Y_{n} is the graph obtained from the disjoint union of one copy of C_{4} and one copy of P_{n} by joining a vertex of C_{4} and a leaf (or an isolated vertex) of P_{n} (see Fig. 1b).

Figure 1: Graphs X_{5} and Y_{5}

Lemma 2.1. If $n \geq 1$, then $\chi_{\rho}\left(X_{n}\right)=3$ and $\chi_{\rho}\left(Y_{n}\right)=3$.
Proof. Let $n \geq 1$ be an arbitrary positive integer. Recall that $\chi_{\rho}\left(K_{3}\right)=3$ and $\chi_{\rho}\left(C_{4}\right)=3$. Since X_{n} contains a subgraph isomorphic to K_{3} and Y_{n} contains a subgraph isomorphic to C_{4}, the hereditary property of the packing chromatic number implies that $\chi_{\rho}\left(X_{n}\right) \geq 3$ and $\chi_{\rho}\left(Y_{n}\right) \geq 3$.

On the other hand, there exist 3-packing colorings of X_{n} and Y_{n}, defined as follows. Color the vertices belonging to K_{3} in X_{n} with different colors from $\{1,2,3\}$ such that the vertex of degree 3 receives color 3. Similarly, color the vertices belonging to C_{4} in Y_{n} with different colors from $\{1,2,3\}$ such that the vertex of degree 3 receives color 3. Next, in both cases, color the vertices belonging to the path one after another (starting with the vertex, which is adjacent to the vertex of degree 3) using the following pattern of colors: $1,2,1,3$. Since the described colorings are 3-packing colorings of X_{n}, respectively Y_{n}, we derive that $\chi_{\rho}\left(X_{n}\right)=3$ and $\chi_{\rho}\left(Y_{n}\right)=3$.
Lemma 2.2. If T is the graph in Fig. 2, then $\chi_{\rho}(T)=3$.
Proof. Let T be the graph in Fig. 2. Since T has at least one edge, is a connected graph and is not a star, $\chi_{\rho}(T) \geq 3$ [20]. Clearly, there exists a 3-packing coloring c^{\prime} of T defined as follows: $c^{\prime}\left(y^{\prime}\right)=3$, $c^{\prime}(a)=c^{\prime}(b)=c^{\prime}(c)=1$ and $c^{\prime}(d)=c^{\prime}(e)=2$ (see Fig. 2 for the notation of the vertices). Thus, $\chi_{\rho}(T)=3$ (see also [20]).

Figure 2: Graph T
We continue with the characterization of graphs G with $\chi_{\rho}(G)=3$, which was proven by Goddard et al. [20].

Let v be an arbitrary vertex of a given graph G. A T-add to a vertex v is formed as follows. First, we add to G a vertex denoted by w_{v} and an independent set (of an arbitrary size), which is denoted by X_{v}. Then we add to G the edge $v w_{v}$ and (some of the) edges, which join the vertices from $\left\{v, w_{v}\right\}$ with the vertices from X_{v}. An example of a T-add to $v \in V(G)$ is shown in Fig. 3.
Proposition 2.3. [20] Let G be a graph. Then, $\chi_{\rho}(G)=3$ if and only if G can be formed by taking some bipartite multigraph H with bipartition $\left(U_{1}, U_{3}\right)$, subdividing every edge exactly once, adding leaves to some vertices in $U_{1} \cup U_{3}$, and then performing a single T-add to some vertices in U_{3} (i.e. we attach at most one T-add to each vertex from U_{3}).

Figure 3: An example of a T-add to a vertex v of a given graph G

In this paper, we denote the family of graphs with packing chromatic number 3 by \mathcal{G}_{3}.
Let $G \in \mathcal{G}_{3}$ be an arbitrary connected graph. We denote the subsets of $V(G)$ as follows. If G is obtained from a bipartite multigraph H with bipartition $\left(U_{1}, U_{3}\right)$ by subdividing every edge of H exactly once, adding leaves to some vertices in $U_{1} \cup U_{3}$, and performing a single T-add to some vertices in U_{3}, then:

- $V_{1}=U_{1} ;$
- $V_{3}=U_{3} ;$
- V_{2} is the set of all vertices obtained by subdivision;
- V_{0} is the set of all leaves added to the vertices in V_{1};
- V_{4} is the set of all leaves adjacent to the vertices from V_{3};
- V_{5} is the set of all vertices from T-adds, which belong to a subgraph of G isomorphic to K_{3} and have degree 2 (therefore, V_{5} is the set of all vertices, which belong to a subgraph of G isomorphic to K_{3} and have degree 2);
- V_{6} is the set of all vertices from T-adds, which either: a) have degree at least 3 , or b) have degree 2 and do not belong to a subgraph of G isomorphic to K_{3} (therefore, V_{6} is the set of all vertices adjacent to the vertices from V_{3}, which have degree at least 3 , or have degree 2 , but do not belong to a subgraph of G isomorphic to K_{3} and are not obtained by subdivision);
- V_{7} is the set of all vertices from T-adds, which are leaves and are adjacent to the vertices from V_{6} (therefore, V_{7} consists of all leaves adjacent to the vertices from V_{6}).

An example of the described labeling of subsets of $V(G), G \in \mathcal{G}_{3}$, is shown in Fig. 4.
We observe that $V(G)$ is partitioned into sets $V_{0}, V_{1}, \ldots, V_{7}$. Further, since $V_{1} \cup V_{3}$ induces a subgraph of G isomorphic to a bipartite multigraph in which each edge is subdivided exactly once, $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}$, $k_{1} \geq 1$, and $d\left(v_{3}, v_{3}^{\prime}\right)=4 k_{3}, k_{3} \geq 1$, for any $v_{1}, v_{1}^{\prime} \in V_{1}, v_{1} \neq v_{1}^{\prime}$, and $v_{3}, v_{3}^{\prime} \in V_{3}, v_{3} \neq v_{3}^{\prime}$. Next, suppose that $a \in V(G)$ belongs to a subgraph of G isomorphic to K_{3}. This implies that $a \in V_{3} \cup V_{5} \cup V_{6}$. More precisely, if $\operatorname{deg}(a)=2$, then $a \in V_{5}$. If $\operatorname{deg}(a) \geq 3$, and each vertex from $N(a)$ is either a leaf or belongs to a triangle, then $a \in V_{6}$. Otherwise, $a \in V_{3}$. In addition, we observe that each vertex from V_{6} has at most one neighbour which is not a leaf and does not belong to a triangle.

We end this section with two lemmas, which will be very useful in the sequel of this paper.
Lemma 2.4. Let G be the graph obtained by attaching a vertex to two adjacent vertices of $C_{n}, n \geq 4$. Then, G contains a subgraph isomorphic to $C_{n}, n \geq 5, n \not \equiv 0(\bmod 4)$.

Proof. Let G be formed by attaching a vertex v to two adjacent vertices of $C_{n}, n \geq 4$, with $V\left(C_{n}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $E\left(C_{n}\right)=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}$. Further, let $x_{1} v, x_{2} v \in E(G)$. Clearly, if $n \not \equiv 0(\bmod 4)$, then we are done. Otherwise, G contains a subgraph isomorphic to a cycle $C_{n+1}\left(V\left(C_{n+1}\right)=\left\{v, x_{1}, x_{2}, \ldots, x_{n}\right\}\right.$ and $\left.E\left(C_{n+1}\right)=\left\{x_{1} v, v x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}\right)$. Since $n+1 \geq 5$ and $n+1 \not \equiv 0(\bmod 4)$, our claim holds.

Figure 4: The sets $V_{0}, V_{1}, \ldots, V_{7}$

Lemma 2.5. Let G be a graph, which does not contain a subgraph isomorphic to $C_{n}, n \geq 4, n \not \equiv 0(\bmod 4)$. Next, let $u \in V(G)$ be an arbitrary vertex and let $N_{i}=\{v \in V(G): d(u, v)=i\}$ for any $i \geq 1$. Further, let i be an arbitrary positive integer and let a, b be any two vertices from N_{i}. Then, $a b \notin E(G)$ if $a b$ is not an edge of a subgraph of G isomorphic to K_{3}.

Proof. Let G be a graph, which does not contain a subgraph isomorphic to $C_{n}, n \geq 4, n \not \equiv 0(\bmod 4), u \in V(G)$ and $N_{i}=\{v \in V(G): d(u, v)=i\}$ for any $i \geq 1$. Next, let i be an arbitrary positive integer and let a, b be any two vertices from N_{i}. Suppose to the contrary that $a b \in E(G)$ and $a b$ is not an edge of a subgraph of G isomorphic to K_{3}. Denote by P a shortest a-u-path and by Q a shortest b-u-path. Let $w \in V(P) \cap V(Q)$ such that the distance between w and u is the largest possible. Then, the vertices from P between w and a, and the vertices from Q between w and b form a cycle of odd order. Since $a b$ is not an edge of a triangle, we infer that G contains a cycle of order $n>3, n \not \equiv 0(\bmod 4)$. This contradicts our assumption.

3. 4- χ_{ρ}-vertex-critical graphs

In this section, we study $4-\chi_{\rho}$-vertex-critical graphs. First, we recall some known partial results for these graphs. We follow with the main result of this paper: a complete characterization of $4-\chi_{\rho}$-vertex-critical graphs.

The first known partial characterization of $4-\chi_{\rho}$-vertex-critical graphs considers all graphs that contain a cycle C_{n}, where $n \geq 5$ and is not divisible by 4 . Note that for such cycles, we have $\chi_{\rho}\left(C_{n}\right)=4$ and $\chi_{\rho}\left(C_{n}-u\right)=3$ for any $u \in V\left(C_{n}\right)$, which implies that these cycles themselves are $4-\chi_{\rho}$-vertex-critical. However, if G has $\chi_{\rho}(G)=4$ and G contains a non-spanning subgraph isomorphic to a cycle C_{n}, where $n \geq 5$ is not divisible by 4 , then G is clearly not 4- χ_{ρ}-vertex-critical.

Denote by C_{5} the family of graphs, which are shown in Fig. 5, by C_{6} the family of graphs, which are shown in Fig. 6, and let $C=\left\{C_{n}: n \geq 5, n \not \equiv 0(\bmod 4)\right.$. The following theorem provides a complete characterization of $4-\chi_{\rho}$-vertex-critical graphs that contain a cycle $C_{n} \in C$.

Figure 5: The graphs from C_{5}

Theorem 3.1. [23] If G is a graph that contains a cycle $C_{n}, n \geq 5, n \not \equiv 0(\bmod 4)$, then G is 4 - χ_{ρ}-vertex-critical if and only if one of the following holds.

Figure 6: The graphs from C_{6}

- $G \in C_{5}$;
- $G \in C_{6}$;
- $G \in C$.

We continue by presenting yet another partial characterization of $4-\chi_{\rho}$-vertex-critical graphs. Let \mathcal{D} be the class of graphs that contain exactly one cycle and have an arbitrary number of leaves attached to each of the vertices of the cycle. Next, recall that the net graph is obtained by attaching a single leaf to each vertex of K_{3}.

Theorem 3.2. [23] A graph $G \in \mathcal{D}$ is a 4- χ_{ρ}-vertex-critical graph if and only if G is one of the following graphs:

- $G \in C$;
- G is the net graph;
- G is obtained by attaching a single leaf to two adjacent vertices of C_{4};
- G is obtained by attaching a single leaf to two vertices at distance 3 on C_{8}.

In the sequel of this section, we provide a complete characterization of $4-\chi_{\rho}$-vertex-critical graphs. Recall that each χ_{ρ}-vertex-critical graph is connected [23].

First, we prove that the graphs shown in Fig. 7 are $4-\chi_{\rho}$-vertex-critical.
Theorem 3.3. The graphs $K_{4}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}, H_{8}$ and H_{9} shown in Fig. 7 are 4 - χ_{ρ}-vertex-critical.
Proof. Theorem 3.2 implies that H_{3}, H_{5} and H_{7} are $4-\chi_{\rho}$-vertex-critical. In addition, from [23] follows that H_{1} is a $4-\chi_{\rho}$-vertex-critical graph. Clearly, also K_{4} is $4-\chi_{\rho}$-vertex-critical.

Next, we prove that H_{2} (see Fig. 7c) is $4-\chi_{\rho}$-vertex-critical. Since each packing coloring of H_{2} assigns three distinct colors to the vertices a, b, e and (at most) one of these colors can be used for the vertices c and d, we have $\chi_{\rho}\left(H_{2}\right) \geq 4$. On the other hand, there exists a 4-packing coloring of H_{2}. Indeed, let a and c receive color 1, and let the other vertices of H_{2} receive different colors from $\{2,3,4\}$. Thus, $\chi_{\rho}\left(H_{2}\right)=4$. We observe that for any $u \in\{a, b, c, d, e\}, H_{2}-u$ has exactly 4 vertices, but is not isomorphic to K_{4}. Hence, $\chi_{\rho}\left(H_{2}-u\right) \leq 3$ and H_{2} is a $4-\chi_{\rho}$-vertex-critical graph.

Further, consider the graph H_{4} (see Fig. 7e). Suppose that there exists a 3-packing coloring c_{4} of H_{4}. Then, $\left\{c_{4}(c), c_{4}(d)\right\}=\{2,3\}$. Without loss of generality we may assume that $c_{4}(c)=3, c_{4}(d)=2$. Then, $c_{4}(e)=1$ and there is no available color for f, a contradiction to our assumption. Thus, $\chi_{\rho}\left(H_{4}\right) \geq 4$. Now, color the vertices a, b, c, d, e, f one after another using the colors $1,2,1,3,1,2$ and let g receive a color 4 . This coloring is a 4-packing coloring of H_{4}, which implies that $\chi_{\rho}\left(H_{4}\right)=4$. Next, let $u \in\{a, b, c, d, e, f, g\}$. If $u \in\{c, d, g\}$, then $H_{4}-u$ is a path or a union of paths. Consequently, $\chi_{\rho}\left(H_{4}-u\right) \leq 3$. If $u \in\{a, b\}$, then color the vertices g and e with color $1, c$ and f with color $2, d$ with color 3 and the other vertex with color 1 . This coloring is a 3-packing coloring of $H_{4}-u$ and hence, $\chi_{\rho}\left(H_{4}-u\right) \leq 3$. In the case when $u \in\{e, f\}$, analogously we prove that $\chi_{\rho}\left(H_{4}-u\right) \leq 3$. Therefore, H_{4} is $4-\chi_{\rho}$-vertex-critical.

Next, we claim that H_{6} (see Fig. 7 g) is a $4-\chi_{\rho}$-vertex-critical graph. If there exists a 3-packing coloring c_{6} of H_{6}, then $c_{6}(a), c_{6}(b), c_{6}(e) \neq 1$ and a, b, e receive pairwise distinct colors by c_{6}. This implies that c_{6} uses at

Figure 7: 4- χ_{ρ}-vertex-critical graphs
least 4 colors, a contradiction to c_{6} being a 3-packing coloring of H_{6}. Thus, $\chi_{\rho}\left(H_{6}\right) \geq 4$. Further, by letting $c_{6}^{\prime}(b)=c_{6}^{\prime}(c)=c_{6}^{\prime}(d)=1$, and by assigning different colors from $\{2,3,4\}$ to other vertices of H_{6}, we infer that c_{6}^{\prime} is a packing coloring of H_{6} using 4 colors. Thus, $\chi_{\rho}\left(H_{6}\right)=4$. Now, let $u \in\{a, b, c, d, e, f\}$. If $u \in\{a, e, f\}$, then c_{6}^{\prime} restricted to $H_{6}-u$ (with a substitution of a color 4 by a color 2 or 3 , if necessary) is a 3-packing coloring of $H_{6}-u$. Hence, $\chi_{\rho}\left(H_{6}-u\right) \leq 3$. If $u=b$, then all vertices of $H_{6}-u$ can be colored with 3 colors, since $H_{6}-u$ is the disjoint union of an isolated vertex and a cycle C_{4}. In the case when $u=c, u=d$, respectively, $H_{6}-u \cong Y_{1}$ and Lemma 2.1 implies that $\chi_{\rho}\left(H_{6}-u\right)=3$. Thus, H_{6} is $4-\chi_{\rho}$-vertex-critical.

Now, we prove that H_{8} (see Fig. 7i) is $4-\chi_{\rho}$-vertex-critical. Since H_{8} contains a subgraph isomorphic to H_{7} and $\chi_{\rho}\left(H_{7}\right)=4$, the hereditary property of the packing chromatic number implies that $\chi_{\rho}\left(H_{8}\right) \geq 4$. In order to show that $\chi_{\rho}\left(H_{8}\right)=4$, we form a 4-packing coloring c_{8} of H_{8}. Let $c_{8}(d)=c_{8}(i)=2, c_{8}(b)=c_{8}(g)=3$, $c_{8}(f)=4$ and let the remaining vertices receive color 1 . Since this is a 4-packing coloring of $H_{8}, \chi_{\rho}\left(H_{8}\right)=4$. Next, let $u \in\{a, b, c, d, e, f, g, h, i, j\}$ and let G^{\prime} be a subgraph of H_{8} induced by $V\left(H_{8}\right) \backslash\{u\}$. Note that, if $u=f$, then c_{8} restricted to G^{\prime} is a 3-packing coloring of G^{\prime}, thus $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. Further, suppose that $u=e$. Let $c_{8}^{\prime}(x)=c_{8}(x)$ for any $V\left(G^{\prime}\right) \backslash\{f\}$ and let $c_{8}^{\prime}(f)=1$. Clearly, c_{8}^{\prime} is a 3-packing coloring of G^{\prime}, hence $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. If $u \in\{a, j\}$, then G^{\prime} is isomorphic to a subgraph of H_{7} induced by $V\left(H_{7}\right) \backslash\{a\}$. Since $\chi_{\rho}\left(H_{7}-a\right) \leq 3$, we have $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. Similarly, if $u \in\{b, i\}$, then G^{\prime} is isomorphic to a subgraph of H_{7} induced by $V\left(H_{7}\right) \backslash\{i\}$. Since $\chi_{\rho}\left(H_{7}-i\right) \leq 3$, we have $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. Now, let $u \in\{c, d\}$. In this case, color the vertices e and i with color $2, b$ and g with color 3 and the others with color 1 . Since such coloring is a 3-packing coloring of $G^{\prime}, \chi_{\rho}\left(G^{\prime}\right) \leq 3$. Analogously we prove that $\chi_{\rho}\left(G^{\prime}\right) \leq 3$ if $u \in\{h, g\}$. Therefore, H_{8} is 4 - χ_{ρ}-vertex-critical.

Finally, consider the graph H_{9} (see Fig. 7j). Suppose that there exists a 3-packing coloring c_{9} of H_{9}. Clearly, $c_{9}(b), c_{9}(c), c_{9}(d) \neq 1$, which implies that there is no available color for one vertex from $\{b, c, d\}$, a
contradiction to c_{9} being a 3-packing coloring of H_{9}. This means that $\chi_{\rho}\left(H_{9}\right) \geq 4$. Next, we present a 4-packing coloring c_{9}^{\prime} of H_{9}. Color the vertices a, e, f, g, h with color 1 and let $c_{9}^{\prime}(b)=2, c_{9}^{\prime}(c)=3, c_{9}^{\prime}(d)=4$. Clearly, c_{9}^{\prime} is a 4-packing coloring of H_{9}, thus $\chi_{\rho}\left(H_{9}\right)=4$. Further, let $u \in\{a, b, c, d, e, f, g, h\}$ and let G^{\prime} be a subgraph of H_{9} induced by $V\left(H_{9}\right) \backslash\{u\}$. If $u \in\{b, c, d\}$, then c_{9}^{\prime} restricted to G^{\prime} is a 3-packing coloring of G^{\prime}. Hence, $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. If $u=a$, then G^{\prime} can be colored using 3 colors as follows. Let b, e, g, h receive color $1, f$ and d color 2 and c color 3 . Since this is a 3-packing coloring of $G^{\prime}, \chi_{\rho}\left(G^{\prime}\right) \leq 3$. If $u \in\{e, f, h\}$, the proof is analogous. Finally, let $u=g$. In this case, color the vertices a, c, e, f, h with color 1 , and the remaining two vertices with colors 2 and 3. Clearly, this is a 3-packing coloring of G^{\prime}, which means that $\chi_{\rho}\left(G^{\prime}\right) \leq 3$. This completes the proof.

Next, we present five infinite families of 4- χ_{ρ}-vertex-critical graphs. Let $a b$ be an edge of a given graph G. The subdivision of $a b k$-times is obtained by removing the edge $a b$ from G, and adding k new vertices, $a_{1}, a_{2}, \ldots, a_{k}$, and $k+1$ new edges, $a a_{1}, a_{1} a_{2}, \ldots, a_{k} b$, to G.

The family \mathcal{F}_{1} contains all graphs that can be constructed from the disjoint union of two copies of K_{3} as follows. First, we make an edge joining both copies of K_{3} and then, subdivide this edge $(4 k)-,(4 k+1)$ - or $(4 k+2)$-times, where $k \geq 0$. This family of graphs is shown in Fig. 8a.

Further, let A be a copy of the complete graph K_{3} and let B be a copy of the path P_{3}. The family \mathcal{F}_{2} (see Fig. 8b) contains all graphs that can be formed from the disjoint union of A and B by first joining a vertex $u \in V(A)$ with some non-pendant vertex $v \in V(B)$, and then subdividing the edge $u v(4 k+2)$-times, where k is an arbitrary non-negative integer. In addition, also the graph with no subdivided edge $u v$ belongs to \mathcal{F}_{2}.

The family \mathcal{F}_{3} contains all graphs that can be obtained from the disjoint union of graphs A, where $A \in\left\{P_{4}, C_{4}\right\}$, and B, where B is isomorphic to K_{3}, by first joining a non-pendant vertex $u \in V(A)$ with some vertex $v \in V(B)$, and then subdividing the edge $u v(4 k)$-times, where k is an arbitrary positive integer (see Fig. 8c).

The graphs from \mathcal{F}_{4} are formed from the disjoint union of two copies of a path P_{3}, denoted by A and B, and one copy of a path P_{2}, denoted by C, in the following way. First, we join a non-pendant vertex $u \in V(A)$ with a vertex $v \in V(C)$, and a vertex $v \in V(C)$ with a non-pendant vertex $z \in V(B)$. Then, we subdivide the edge $u v(4 k+2)$-times and the edge $v z\left(4 k^{\prime}\right)$-times, where k and k^{\prime} are two arbitrary non-negative integers (see Fig. 8d). The vertices obtained by subdivision (if exist) are labeled by $y_{1}, y_{2}, \ldots, y_{l}$ and $w_{1}, w_{2}, \ldots, w_{l^{\prime}}$ as in Fig. 8d. In addition, a graph from \mathcal{F}_{4} can also contain one edge from $\left\{v_{1} y_{l-1}, v_{1} w_{2}\right\}$.

Finally, the family \mathcal{F}_{5} contains all graphs, which can be obtained from the disjoint union of graphs A and B, where $A, B \in\left\{P_{4}, C_{4}\right\}$, by first joining some non-pendant vertex $u \in V(A)$ with some non-pendant vertex $v \in V(B)$, and then subdividing the edge $u v(2 k)$-times, where k is an arbitrary non-negative integer (see Fig. 8e).

Theorem 3.4. Let $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5}$. Then, G is a 4- χ_{ρ}-vertex-critical graph
Proof. Let $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5}$ be an arbitrary graph with the vertices labeled as in Fig. 8. We claim that G is 4 - χ_{ρ}-vertex-critical.

First, let $G \in \mathcal{F}_{1}$. Suppose that $\chi_{\rho}(G)=3$ (clearly, $\chi_{\rho}(G) \geq 3$, since G contains a subgraph isomorphic to K_{3}). Then, $G \in \mathcal{G}_{3}$, which implies that $V(G)$ can be partitioned into the sets $V_{0}, V_{1}, \ldots, V_{7}$, defined in Section 2. Since $\operatorname{deg}(u)=\operatorname{deg}(v)=3, u, v$ belong to a subgraph of G isomorphic to K_{3} and have neighbors, which are neither leaves nor belong to some triangle, we infer that $u, v \in V_{3}$. The fact that $u \in V_{3}$ implies that $x_{1} \in V_{2}, x_{2} \in V_{1}, x_{3} \in V_{2}, x_{4} \in V_{3}, \ldots$ Recall that any two vertices from V_{3} are at distance $4 a, a \geq 1$. Therefore, if $l \leq 2$, we have a contradiction, since $d(u, v) \leq 3$ and $u, v \in V_{3}$. Thus, $l \geq 3$, but then there exists $c \in\left\{x_{l-2}, x_{l-1}, x_{l}\right\}$, which belongs to V_{3}. Since $d(c, v) \leq 3$ and $c, v \in V_{3}$, a contradiction. Hence, $G \notin \mathcal{G}_{3}$. In order to prove that $\chi_{\rho}(G) \leq 4$, we form a 4-packing coloring c_{1} of G. Let $c_{1}(u)=3, c_{1}\left(u_{1}\right)=c_{1}\left(v_{1}\right)=1$, $c_{1}\left(u_{2}\right)=2, c_{1}(v)=4$. Further, color the vertices $x_{1}, x_{2}, \ldots, x_{l}$ one after another using the following pattern of colors: $1,2,1,3$. Finally, let $c_{1}\left(v_{2}\right)=2$ if $l=4 k$ or $l=4 k+1$ for any $k \geq 0$, and if $l=4 k+2, k \geq 0$, then let $c_{1}\left(v_{2}\right)=3$. Since c_{1} is a 4-packing coloring of $G, \chi_{\rho}(G)=4$. Now, let $a \in V(G)$ be an arbitrary vertex. Note that $G-a$ is either $X_{n}, n \geq 2$, or the disjoint union of two graphs from $\left\{K_{2}, K_{3}\right\} \cup\left\{X_{m}: m \geq 1\right\}$. Using Lemma 2.1 and the facts that $\chi_{\rho}\left(K_{2}\right)=2, \chi_{\rho}\left(K_{3}\right)=3$, we infer that $\chi_{\rho}(G-a) \leq 3$. Thus, G is $4-\chi_{\rho}$-vertex-critical.

(a) \mathcal{F}_{1}

$$
l \in\{0,4 k+2 ; k \geq 0\}
$$

(b) \mathcal{F}_{2}

(c) \mathcal{F}_{3}

(d) \mathcal{F}_{4}

$$
l \in\{2 k ; k \geq 0\}
$$

(e) \mathcal{F}_{5}

Figure 8: Families of 4- χ_{ρ}-vertex-critical graphs

Next, suppose that $G \in \mathcal{F}_{2}$. We claim that $\chi_{\rho}(G)=4$. Note that G is isomorphic to a subgraph of some graph H from \mathcal{F}_{1}. We have already proved that $\chi_{\rho}(H)=4$, which implies that $\chi_{\rho}(G) \leq 4$. Therefore, we need to prove that $\chi_{\rho}(G) \geq 4$. Suppose to the contrary that $\chi_{\rho}(G)=3$ (clearly, $\chi_{\rho}(G) \geq 3$, since G contains a subgraph isomorphic to K_{3}). Then, $G \in \mathcal{G}_{3}$, which means that $V(G)$ can be partitioned into the sets $V_{0}, V_{1}, \ldots, V_{7}$ defined above. Since $\operatorname{deg}(u)=3, u$ belongs to a subgraph of G isomorphic to K_{3} and has neighbors, which are neither leaves nor belong to some triangle, we derive that $u \in V_{3}$. If $l \neq 0$, then
$x_{1} \in V_{2}, x_{2} \in V_{1}, x_{3} \in V_{2}, x_{4} \in V_{3}, \ldots, x_{l} \in V_{1}$ and consequently, $v \in V_{0} \cup V_{2}$, a contradiction since v has degree 3. If $l=0$, then $u_{1}, u_{2} \in V_{5}$, which implies that $v \in V_{2}$, again a contradiction $\operatorname{since} \operatorname{deg}(v)=3$. Therefore, in both cases, $G \notin \mathcal{G}_{3}$, which implies that $\chi_{\rho}(G)=4$. Now, we need to prove that $\chi_{\rho}(G-a) \leq 3$ holds for any $a \in V(G)$. Let $a \in V(G)$ be an arbitrary vertex. We observe that $G-a$ is a subgraph of a graph $H-b$, where $H \in \mathcal{F}_{1}$ and $b \in V(H)$. We have already proved $\chi_{\rho}(H-b) \leq 3$, which implies that $\chi_{\rho}(G-a) \leq 3$. Thus, G is a $4-\chi_{\rho}$-vertex-critical graph.

Now, let $G \in \mathcal{F}_{3}$. We claim that $\chi_{\rho}(G)=4$. It is clear that $\chi_{\rho}(G) \geq 3$, since G contains a subgraph isomorphic to K_{3}. Suppose that $\chi_{\rho}(G)=3$, which implies that $G \in \mathcal{G}_{3}$ and hence, $V(G)$ can be partitioned into the sets $V_{0}, V_{1}, \ldots, V_{7}$ defined above. Since $\operatorname{deg}(v)=3, v$ belongs to a subgraph of G isomorphic to K_{3} and has a neighbor, which is neither leaf nor belongs to some triangle, we conclude that $v \in V_{3}$. This implies that $x_{l} \in V_{2}, x_{l-1} \in V_{1}, x_{l-2} \in V_{2}, x_{l-3} \in V_{3}, \ldots, x_{1} \in V_{3}$. Then, $u \in V_{6}$ since $\operatorname{deg}(u)=3$ and u does not belong to any triangle. Further, since u_{1}, u_{3} do not belong to any subgraph of G isomorphic to K_{3}, they belong to V_{7}, a contradiction, since u_{1} is not a leaf (recall that V_{7} contains only the leaves). Thus, $\chi_{\rho}(G) \geq 4$. Next, note that $G-u_{3}$ is isomorphic to $X_{n}, n \geq 1$. Lemma 2.1 implies that there exists a 3-packing coloring c_{3}^{\prime} of $G-u_{3}$. Let $c_{3}(a)=c_{3}^{\prime}(a)$ for any $a \in V(G) \backslash\left\{u_{3}\right\}$ and let $c_{3}\left(u_{3}\right)=4$. Clearly, c_{3} is a 4 -packing coloring of G, thus $\chi_{\rho}(G)=4$. Now, we prove that $\chi_{\rho}(G-a) \leq 3$ holds for any $a \in V(G)$. If $a=u_{3}$, then $G-a$ is isomorphic to $X_{n}, n \geq 1$. Next, if $a \in\left\{v_{1}, v_{2}\right\}$, then $G-a$ is isomorphic to (a subgraph of) $Y_{n}, n \geq 1$. In the case when $a \in V(G) \backslash\left\{u_{2}, u_{3}, v_{1}, v_{2}\right\}, G-a$ is isomorphic to the disjoint union of (a subgraph of) $X_{n}, n \geq 1$, and (a subgraph of) $Y_{n}, n \geq 1$. In each case, Lemma 2.1 implies that $\chi_{\rho}(G-a) \leq 3$. If $a=u_{2}$, then we form a 3-packing coloring $c_{3}^{\prime \prime}$ of $G-u_{2}$ as follows. Let $c_{3}^{\prime \prime}\left(u_{1}\right)=c_{3}^{\prime \prime}\left(u_{3}\right)=c_{3}^{\prime \prime}\left(v_{1}\right)=1, c_{3}^{\prime \prime}(u)=c_{3}^{\prime \prime}\left(v_{2}\right)=2, c_{3}^{\prime \prime}(v)=3$ and color the vertices $x_{1}, x_{2}, \ldots, x_{l}$ one after another using the following pattern of colors: $3,1,2,1$. Since $c_{3}^{\prime \prime}$ is a 3 -packing coloring of $G-u_{2}, \chi_{\rho}\left(G-u_{2}\right) \leq 3$. Thus, G is $4-\chi_{\rho}$-vertex-critical.

Further, let $G \in \mathcal{F}_{4}$. First, we prove that $\chi_{\rho}(G)=4$. Since G contains a subgraph isomorphic to P_{4}, $\chi_{\rho}(G) \geq 3$. Suppose that $\chi_{\rho}(G)=3$, which means that $G \in \mathcal{G}_{3}$. Then, we can partition $V(G)$ into the sets $V_{0}, V_{1}, \ldots, V_{7}$, described above. Since $\operatorname{deg}(v)=3$ and v has two neighbors, which are neither leaves nor belong to some triangle, $v \in V_{1} \cup V_{3}$. Then, $y_{l} \in V_{2}, y_{l-1} \in V_{1} \cup V_{3}, y_{l-2} \in V_{2}, y_{l-3} \in V_{1} \cup V_{3}, \ldots, y_{1} \in V_{1} \cup V_{3}$. Further, since $\operatorname{deg}(u)=3, u \in V_{6}$ and it follows that $v \in V_{1}$. Hence, $w_{1} \in V_{2}, w_{2} \in V_{3}, w_{3} \in V_{2}$, $w_{4} \in V_{1}, \ldots, w_{l^{\prime}} \in V_{1}$. This means that $z \in V_{0} \cup V_{2}$, a contradiction since $\operatorname{deg}(z)=3$. Thus, $G \notin \mathcal{G}_{3}$, which implies that $\chi_{\rho}(G) \geq 4$. Now, let $c_{4}: V(G) \longrightarrow\{1,2,3,4\}$ and let $c_{4}\left(u_{1}\right)=c_{4}\left(u_{2}\right)=c_{4}\left(v_{1}\right)=c_{4}\left(z_{1}\right)=c_{4}\left(z_{2}\right)=1$, $c_{4}(u)=c_{4}(v)=2$, and $c_{4}(z)=4$. Further, color the vertices $y_{1}, y_{2}, \ldots, y_{l}$ one after another using the pattern of colors $3,1,2,1$, and the vertices $w_{1}, w_{2}, \ldots, w_{l^{\prime}}$ one after another using the pattern of colors $1,3,1,2$. Clearly, c_{4} is a 4-packing coloring of G. Thus, $\chi_{\rho}(G)=4$. Next, we claim that $\chi_{\rho}(G-a) \leq 3$ holds for any $a \in V(G)$. Denote by G^{\prime} a subgraph of G induced by $V(G) \backslash\left\{z_{2}\right\}$. Let $c_{4}^{\prime}\left(u_{1}\right)=c_{4}^{\prime}\left(u_{2}\right)=c_{4}^{\prime}\left(v_{1}\right)=c_{4}^{\prime}(z)=1, c_{4}^{\prime}(u)=2$, $c_{4}^{\prime}\left(z_{1}\right)=3$. Then, color the vertices $y_{1}, y_{2}, \ldots, y_{l}, v, w_{1}, w_{2}, \ldots, w_{l^{\prime}}$ one after another using the following pattern of colors: $3,1,2,1$. Clearly, c_{4}^{\prime} is a 3-packing coloring of G^{\prime}, thus $\chi_{\rho}\left(G-z_{2}\right) \leq 3$. Analogously we prove that $\chi_{\rho}\left(G-z_{1}\right) \leq 3$. Let $G^{\prime \prime}$ be a subgraph of G induced by $V(G) \backslash\left\{u_{2}\right\}$. In order to prove that $\chi_{\rho}\left(G^{\prime \prime}\right) \leq 3$, we form a 3-packing coloring $c_{4}^{\prime \prime}$ of $G^{\prime \prime}$. Let $c_{4}^{\prime \prime}(u)=c_{4}^{\prime \prime}\left(v_{1}\right)=c_{4}^{\prime \prime}\left(z_{1}\right)=c_{4}^{\prime \prime}\left(z_{2}\right)=1, c_{4}^{\prime \prime}(z)=2$, $c_{4}^{\prime \prime}\left(u_{1}\right)=3$. Then, color the vertices $y_{1}, y_{2}, \ldots, y_{l}, v, w_{1}, w_{2}, \ldots, w_{l^{\prime}}$ one after another using the following pattern of colors: $2,1,3,1$. Clearly, $c_{4}^{\prime \prime}$ is a 3-packing coloring of $G^{\prime \prime}$, thus $\chi_{\rho}\left(G-u_{2}\right) \leq 3$. Analogously we prove that $\chi_{\rho}\left(G-u_{1}\right) \leq 3$. If $a \in\left\{u, y_{1}, y_{2}, \ldots, y_{l-1}, w_{2}, \ldots, w_{l^{\prime}}, z, v\right\}$, then $G-a$ is the disjoint union of a subgraph of G^{\prime} and a subgraph of $G^{\prime \prime}$. Thus, the above considerations imply that $\chi_{\rho}(G-a) \leq 3$. In the case when $a=v_{1}$, color the vertices of $G-v_{1}$ as follows. Let $u_{1}, u_{2}, z_{1}, z_{2}$ receive color $1, u$ and z color 3 , and let the vertices $y_{1}, y_{2}, \ldots, y_{l}, v, w_{1}, w_{2}, \ldots, w_{l^{\prime}}$ be colored one after another using the pattern $1,2,1,3$. The described coloring is a 3-packing coloring of $G-v_{1}$, thus $\chi_{\rho}\left(G-v_{1}\right) \leq 3$. Finally, if $a \in\left\{y_{l}, w_{1}\right\}$, then $G-a$ is isomorphic to $G-v_{1}$, or to the disjoint union of a subgraph of G^{\prime} and a subgraph of $G^{\prime \prime}$. Hence, $\chi_{\rho}(G-a) \leq 3$ and we conclude that G is $4-\chi_{\rho}$-vertex-critical.

It remains to consider the case when $G \in \mathcal{F}_{5}$. First, we prove that $\chi_{\rho}(G)=4$. It is clear that $\chi_{\rho}(G) \geq 3$ since G contains a subgraph isomorphic to P_{4}. Suppose that $G \in \mathcal{G}_{3}$. Then, we make a partition of $V(G)$ into the sets $V_{0}, V_{1}, \ldots, V_{7}$, which are described above. Since $\operatorname{deg}(u), \operatorname{deg}(v) \geq 3$ and $d(u, v)=2 k+1$, it follows that u or v belongs to V_{6}. But this is a contradiction, since u (respectively, v) has at least two neighbors, which are neither leaves nor belong to a triangle. Thus, $\chi_{\rho}(G) \geq 4$. Let $c_{5}: V(G) \longrightarrow\{1,2,3,4\}$ and let $c_{5}\left(u_{1}\right)=c_{5}\left(u_{3}\right)=c_{5}\left(v_{1}\right)=c_{5}\left(v_{3}\right)=1, c_{5}\left(u_{2}\right)=c_{5}\left(v_{2}\right)=2, c_{5}(u)=3$ and $c_{5}(v)=4$. Further, color the vertices
$x_{1}, x_{2}, \ldots, x_{l}$ one after another using the pattern of colors: $1,2,1,3$. Clearly, c_{5} is a 4 -packing coloring of G and thus, $\chi_{\rho}(G)=4$. Next, we prove that $\chi_{\rho}(G-a) \leq 3$ holds for any $a \in V(G)$. If $a \in V(G) \backslash\left\{u_{2}, v_{2}\right\}$, then $G-a$ is isomorphic to (a subgraph of) $Y_{n}, n \geq 1$, or it is the disjoint union of graphs isomorphic to (subgraphs of) $Y_{n}, n \geq 1$. In each case, Lemma 2.1 implies that $\chi_{\rho}(G-a) \leq 3$. If $a=v_{2}$ and $l=4 k^{\prime}, k^{\prime} \geq 0$, then we form a 3-packing coloring c_{5}^{\prime} of $G-v_{2}$ as follows: $c_{5}^{\prime}(a)=c_{5}(a)$ for any $a \in V(G) \backslash\left\{v, v_{2}\right\}$ and $c_{5}^{\prime}(v)=2$. In the case when $a=v_{2}$ and $l=4 k^{\prime}+2, k^{\prime} \geq 0$, let $c_{5}^{\prime \prime}\left(u_{1}\right)=c_{5}^{\prime \prime}\left(u_{3}\right)=c_{5}^{\prime \prime}\left(v_{1}\right)=c_{5}^{\prime \prime}\left(v_{3}\right)=1, c_{5}^{\prime \prime}\left(u_{2}\right)=3, c_{5}^{\prime \prime}(u)=c_{5}^{\prime \prime}(v)=2$, and color the vertices $x_{1}, x_{2}, \ldots, x_{l}$ one after another using the pattern of colors: $1,3,1,2$. These colorings imply that $\chi_{\rho}\left(G-v_{2}\right) \leq 3$. Analogously one can prove that $\chi_{\rho}\left(G-u_{2}\right) \leq 3$. Hence, G is a 4 - χ_{ρ}-vertex-critical graph. This completes the proof.

The following two lemmas will help us to prove a complete characterization of $4-\chi_{\rho}$-vertex-critical graphs.

Lemma 3.5. Let H be obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance $2 k+1$, $k \geq 0$. Then, $\chi_{\rho}(H) \geq 4$.

Proof. Let H be obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance $2 k+1$, $k \geq 0$. Clearly, if $n \neq 4 a, a \geq 1$, then H contains a subgraph H^{\prime} isomorphic to a graph from C. Since $\chi_{\rho}\left(H^{\prime}\right)=4$, the hereditary property of the packing chromatic number implies that $\chi_{\rho}(H) \geq 4$. Therefore, we only need to consider the case when $n=4 a, a \geq 1$. If $a \geq 2$, then H contains a subgraph isomorphic to a graph from \mathcal{F}_{5}. In this case, the hereditary property of the packing chromatic number and Theorem 3.4 imply that $\chi_{\rho}(H) \geq 4$. If $a=1$, then H is isomorphic to H_{5} and by Theorem 3.3, $\chi_{\rho}(H)=4$.

Lemma 3.6. Let $\mathcal{X}=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{C}_{5} \cup C_{6} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}\right.$, $\left.H_{8}, H_{9}\right\}$ and let $H \in \mathcal{X}$. If a graph $G \notin \mathcal{X}$ and it contains a subgraph isomorphic to H, then G is not 4 - χ_{ρ}-vertex-critical.

Proof. Let $H \in \mathcal{X}=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{C}_{5} \cup \mathcal{C}_{6} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}, H_{7}\right.$, $\left.H_{8}, H_{9}\right\}$ and let $G \notin \mathcal{X}$ be an arbitrary graph containing a subgraph isomorphic to H. Clearly, since $G \notin \mathcal{X}$, but $H \in \mathcal{X}, G \not \equiv H$.

First, suppose that $V(G) \neq V(H)$, which means that there exists a vertex $a \in V(G) \backslash V(H)$. Using the fact that $G-a$ contains a subgraph isomorphic to H, the hereditary property of the packing chromatic number and Theorems 3.1, 3.3, 3.4, we derive that $\chi_{\rho}(G-a) \geq 4$. It follows that G is not a 4 - χ_{ρ}-vertex-critical graph.

Now, let $V(G)=V(H)$. If $H \in C_{5} \cup C_{6} \cup C$, then Theorem 3.1 implies that G is not 4 - χ_{ρ}-vertex-critical (recall that $G \notin C_{5} \cup C_{6} \cup C$). Further, if $H \cong K_{4}$, then $G \cong H$, a contradiction to the fact that $G \nsupseteq H$.

Clearly, since $G \neq H$ and $V(G)=V(H), E(H) \neq E(G)$. Then, there exists $e^{\prime} \in E(G) \backslash E(H)$.
Therefore, if $H \cong H_{1}$ (see Fig. 7b), then at least one of the edges $b e, c a, c e, c d$ belongs to $E(G)$. This implies that G contains a subgraph isomorphic to a graph from C or it contains a subgraph isomorphic to K_{4}. The above considerations imply that G is not a $4-\chi_{\rho}$-vertex-critical graph. If $H \cong H_{2}$ (see Fig. 7c), then G contains a subgraph isomorphic to a graph from C and by the above reasoning, it is not $4-\chi_{\rho}$-vertex-critical. In the case when $H \cong H_{3}$ or $H \cong H_{6}$ (see Fig. 7d, 7 g), G contains a subgraph isomorphic to a graph from C or a subgraph isomorphic to H_{1}. In both cases, the above considerations imply that G is not $4-\chi_{\rho}$-vertexcritical. Now, let $H \cong H_{4}$ (see Fig. 7e). In this case, G contains a subgraph isomorphic to a graph from $\mathcal{C} \cup\left\{H_{1}, H_{2}\right\}$. Again, the above considerations imply that G is not 4 - χ_{ρ}-vertex-critical. If $H \cong H_{5}$ (see Fig. 7f), then G contains a subgraph isomorphic to a graph from $C \cup\left\{H_{1}\right\}$ or $G \cong H_{6}$. In the first case, the above considerations imply that G is not $4-\chi_{\rho}$-vertex-critical, and in the second case we have a contradiction to $G \notin \mathcal{X}$. Next, let $H \cong H_{7}$ (see Fig. 7h). If $e^{\prime} \in E(G) \backslash\{a d, a i, c f, f h\}$, then G contains a subgraph isomorphic to a graph from C and the above consideration implies that G is not $4-\chi_{\rho}$-vertex-critical. Further, if $a d$ or $c f$ belongs to $E(G)$, then G contains a non-spanning subgraph isomorphic to a graph from \mathcal{F}_{5} (the vertices from $V(G)$ corresponding to the vertices of degree 3 in a graph from \mathcal{F}_{5} are d, e or $\left.b, c\right)$. By Theorem 3.4, G is not $4-\chi_{\rho}$-vertex-critical. Next, if at least one of the edges from $\{a i, f h\}$ belongs to $E(G)$, then $G \cong H_{8}$ or G contains a non-spanning subgraph isomorphic to a graph from \mathcal{F}_{5}. In the first case, we have a contradiction to our assumption, and in the second case we derive that G is not $4-\chi_{\rho}$-vertex-critical. If $H \cong H_{8}$ (see Fig. 7i),
then we analogously prove that G is not $4-\chi_{\rho}$-vertex-critical (note that H_{7} is a subgraph of H_{8}). Futher, consider the case when $H \cong H_{9}$ (see Fig. 7j). It is easy to observe that G contains a non-spanning subgraph isomorphic to a graph from $\left\{H_{3}, H_{5}, C_{5}\right\} \cup \mathcal{F}_{2}$. Hence, using the fact that $\chi_{\rho}\left(C_{5}\right)=4$ and Theorems 3.3, 3.4, we deduce that G is not 4- χ_{ρ}-vertex-critical.

Next, suppose that $H \in \mathcal{F}_{1}$ (see Fig. 8a). If $e^{\prime}=u_{1} a, a \in\left\{v, v_{1}, v_{2}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then G contains a (non-spanning) subgraph isomorphic to H_{1} or a (non-spanning) subgraph isomorphic to a graph from C (G contains a subgraph obtained by attaching a vertex to two adjacent vertices of a cycle of order at least 4, hence, by Lemma 2.4, G also contains a subgraph isomorphic to a graph from C). In both cases, the above consideration implies that G is not a $4-\chi_{\rho}$-vertex-critical graph, if $\operatorname{deg}\left(u_{1}\right) \geq 3$. Analogously we prove that G is not $4-\chi_{\rho}$-vertex-critical, if $\operatorname{deg}\left(u_{2}\right), \operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right) \geq 3$. Now, let $e^{\prime}=a b, a, b \in\{u, v\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. Then, G contains a (non-spanning) subgraph isomorphic to H_{2}, a subgraph isomorphic to H_{4} or a nonspanning subgraph obtained by attaching a single leaf to two adjacent vertices of a cycle of order at least 4. In each case, the above reasoning and Lemma 3.5 imply that $\chi_{\rho}\left(G-v_{2}\right) \geq 4$. Consequently, G is not 4- χ_{ρ}-vertex-critical.

Now, let $H \in \mathcal{F}_{2}$ (see Fig. 8b). If $e^{\prime}=u_{1} a$ (or $e^{\prime}=u_{2} a$), $a \in\left\{v, v_{1}, v_{2}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then analogously as in the case when $H \in \mathcal{F}_{1}$, we prove that G is not 4 - χ_{ρ}-vertex-critical, if $\operatorname{deg}\left(u_{1}\right) \geq 3$ or $\operatorname{deg}\left(u_{2}\right) \geq 3$. If $e^{\prime}=a b, a, b \in\{u\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then again, analogously as in the case when $H \in \mathcal{F}_{1}$, we prove that G is not $4-\chi_{\rho}$-vertex-critical. Next, $e^{\prime}=u v$ implies that G contains a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. Hence, Lemma 3.5 implies that G is not $4-\chi_{\rho}$-vertex-critical. If $e^{\prime}=u v_{1}$ or $e^{\prime}=u v_{2}$, then G contains a subgraph isomorphic to a graph from $\left\{H_{2}\right\} \cup C$, hence the above reasoning yields that G is not $4-\chi_{\rho}$-vertex-critical. Now, let $e^{\prime}=v x_{i}, i \in\{1,2, \ldots, l\}$. Then, G contains a non-spanning subgraph isomorphic to a graph from \mathcal{F}_{1} or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. Hence, Theorem 3.4 and Lemma 3.5 imply that G is not a $4-\chi_{\rho}$-vertex-critical graph. If $e^{\prime}=v_{1} v_{2}$, then $G \in \mathcal{F}_{1}$ or it contains a subgraph isomorphic to a graph from \mathcal{F}_{1}. We have a contradiction to our assumption or the above consideration yields that G is not $4-\chi_{\rho}$-vertex-critical. Finally, let $e^{\prime}=v_{1} x_{i}$ or $e^{\prime}=v_{2} x_{i}, i \in\{1,2, \ldots, l\}$. Then, G contains a non-spanning subgraph isomorphic to a graph from $C \cup \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$. The above consideration and Theorem 3.4 imply that G is not $4-\chi_{\rho}$-vertex-critical.

Next, let $H \in \mathcal{F}_{3}$ (see Fig. 8c). If $e^{\prime} \in\left\{v_{1} a, v_{2} a, b c\right\}$, where $a \in\left\{u, u_{1}, u_{2}, u_{3}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}, b, c \in$ $\{u, v\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then analogously as in the case when $H \in \mathcal{F}_{1}$, we prove that G is not 4 - x_{ρ}-vertexcritical. Further, if $e^{\prime}=u_{1} v$ or $e^{\prime}=u_{3} v$, then G contains a non-spanning subgraph isomorphic to a graph from C, so it is not $4-\chi_{\rho}$-vertex-critical. Also in the case when $e^{\prime}=v u_{2}, G$ is not $4-\chi_{\rho}$-vertex-critical. Namely, G contains a non-spanning subgraph obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance 3, and Lemma 3.5 implies the result. Next, we observe that $e^{\prime}=u u_{2}$ or $e^{\prime}=u_{1} u_{3}$ imply that G contains a non-spanning subgraph isomorphic to a graph from \mathcal{F}_{1}. Hence, by Theorem 3.4, G is not a $4-\chi_{\rho}$-vertex-critical graph. Now, suppose that $e^{\prime}=u_{1} x_{i}, i \in\{1,2, \ldots, l\}$. Then, G contains a non-spanning subgraph isomorphic to H_{3} or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of a cycle of order at least 4. By Theorem 3.3 and Lemma 3.5, G is not 4 - χ_{ρ}-vertex-critical. If $e^{\prime}=u_{2} x_{i}, i \in\{1,2, \ldots, l\}$, then G contains a non-spanning subgraph isomorphic to a graph from $\left\{H_{5}\right\} \cup C$ or a non-spanning subgraph obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance 3. Hence, by Theorems 3.1 and 3.3, and Lemma 3.5, G is not $4-\chi_{\rho}$-vertex-critical. Finally, if $e^{\prime}=u_{3} x_{i}$, $i \in\{1,2, \ldots, l\}$, then G contains a subgraph isomorphic to a graph from $\left\{H_{4}\right\} \cup C \cup \mathcal{F}_{2}$. From the above consideration, we derive that G is not a $4-\chi_{\rho}$-vertex-critical graph.

Further, suppose that $H \in \mathcal{F}_{4}$ with the vertices labeled as in Fig. 8d. If $e^{\prime} \in\left\{u_{1} y_{1}, u_{2} y_{1}, u_{1} u_{2}\right.$, $\left.v_{1} w_{1}, z_{1} w_{l^{\prime}}, z_{2} w_{l^{\prime}}\right\}$, then G contains a subgraph isomorphic to a graph from \mathcal{F}_{2}. By the previous consideration, G is not $4-\chi_{\rho}$-vertex-critical. Further, suppose that $e^{\prime} \in\left\{u_{1} v, u_{1} v_{1}, u_{1} z, u_{1} z_{1}, u_{1} z_{2}\right.$,
$u_{2} v, u_{2} v_{1}, u_{2} z, u_{2} z_{1}, u_{2} z_{2}, u v_{1}, u z, u z_{1}, u z_{2}, v z, v z_{1}$,
$\left.v z_{2}, v_{1} z\right\}$. In this case, G contains a subgraph isomorphic to a cycle from C. Thus, by the above reasoning, G is not 4- χ_{ρ}-vertex-critical. If $e^{\prime} \in\left\{v_{1} z_{1}, v_{1} z_{2}, u v\right\} \cup\left\{u w_{i^{\prime}}: 1 \leq i^{\prime} \leq l^{\prime}\right\}$, then G contains a non-spanning subgraph obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance $2 k+1, k \geq 0$. Lemma 3.5 implies that G is not a $4-\chi_{\rho}$-vertex-critical graph. Next, let $e^{\prime}=a b, a, b \in\left\{v, y_{i}, w_{i^{\prime}}: 1 \leq i \leq l, 1 \leq i^{\prime} \leq l^{\prime}\right\}$. In this case, G contains a non-spanning subgraph isomorphic to H_{4} or a non-spanning subgraph obtained by
attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. Using Theorem 3.3 and Lemma 3.5, we derive that G is not 4 - χ_{ρ}-vertex-critical. Further, suppose that $e^{\prime} \in\left\{u_{1} y_{i}, u_{2} y_{i}, z_{1} w_{i^{\prime}}, z_{2} w_{i^{\prime}}, u_{1} w_{j^{\prime}}, u_{2} w_{j^{\prime}}, z_{1} y_{j}, z_{2} y_{j}\right.$: $2 \leq i \leq l, 1 \leq i^{\prime} \leq l^{\prime}-1,1 \leq j^{\prime} \leq l^{\prime}, 1 \leq j \leq l$. Then, G contains a non-spanning subgraph isomorphic to a graph from $\mathcal{F}_{5} \cup \mathcal{C}$ or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$ (if $l^{\prime}=0$). Hence, by the above consideration, Theorem 3.4 and Lemma 3.5, we infer that G is not $4-\chi_{\rho}$-vertex-critical. Now, let $e^{\prime}=z_{1} z_{2}, e^{\prime}=u y_{i}$ or $e^{\prime}=z w_{i^{\prime}}$, where $1 \leq i \leq l, 1 \leq i^{\prime} \leq l^{\prime}$. This implies that G contains a subgraph isomorphic to a graph from $\mathcal{F}_{2} \cup \mathcal{F}_{3}$ or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. Therefore, the above reasoning and Lemma 3.5 imply that G is not $4-\chi_{\rho}$-vertex-critical. If $e^{\prime}=z y_{i}, 1 \leq i \leq l$, then G contains a non-spanning subgraph isomorphic to a graph H_{3} or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. In both cases, we derive that G is not $4-\chi_{\rho}$-vertex-critical. Finally, let $e^{\prime}=v_{1} y_{i}$ or $e=v_{1} w_{i^{\prime}}, i \in\{1,2, \ldots, l-2, l\}, i^{\prime} \in\left\{3,4, \ldots, l^{\prime}\right\}$. Then, G contains a non-spanning subgraph isomorphic to a graph from $\left\{H_{4}\right\} \cup C \cup \mathcal{F}_{4}$. The above consideration implies that G is not 4 - χ_{ρ}-vertex-critical.

Finally, let $H \in \mathcal{F}_{5}$ (see Fig. 8e). If $e^{\prime}=a b, a, b \in\left\{u, u_{1}, v, v_{1}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$, then G contains a non-spanning subgraph isomorphic to a graph from $\left\{H_{3}, H_{4}\right\}$, or a non-spanning subgraph obtained by attaching a single leaf to two adjacent vertices of $C_{n}, n \geq 4$. By Theorem 3.3 and Lemma $3.5, G$ is not $4-\chi_{\rho}$-vertex-critical. If $e^{\prime} \in\left\{u u_{2}, u_{1} u_{3}, v v_{2}, v_{1} v_{3}\right\}$, then G contains a subgraph isomorphic to a graph from $\mathcal{F}_{2} \cup \mathcal{F}_{3}$. By the previous consideration, G is not 4 - χ_{ρ}-vertex-critical. Now, suppose that $e^{\prime}=u_{3} x_{i}$ or $e^{\prime}=v_{3} x_{i}$, where $i \in\{1,2, \ldots, l\}$. In this case, G contains a non-spanning subgraph isomorphic to a graph from $\left\{H_{4}\right\} \cup \mathcal{C} \cup \mathcal{F}_{5}$. Then, Theorems 3.1, 3.3 and 3.4 imply that G is not $4-\chi_{\rho}$-vertex-critical. If $e^{\prime} \in E(G) \backslash\left\{a b, u u_{2}, u_{1} u_{3}, v v_{2}, v_{1} v_{3}, u_{3} x_{i}, v_{3} x_{i}: 1 \leq\right.$ $\left.i \leq l \wedge a, b \in\left\{u, u_{1}, v, v_{1}\right\} \cup\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}\right\}$, then G contains a subgraph isomorphic to H_{7} (note that $G \not \equiv H_{7}$), a non-spanning subgraph isomorphic to a graph from $\mathcal{C} \cup \mathcal{F}_{1}$ or a non-spanning subgraph obtained by attaching a single leaf to two vertices of $C_{n}, n \geq 4$, which are at distance $2 k+1, k \geq 0$. Using the above consideration, Theorems 3.1, 3.4 and Lemma 3.5 , we derive that G is not a $4-\chi_{\rho}$-vertex-critical graph. This completes the proof.

Theorem 3.7. A graph G is 4 - χ_{ρ}-vertex-critical if and only if $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{C}_{5} \cup \mathcal{C}_{6} \cup \mathcal{C} \cup$ $\left\{K_{4}, H_{1}, H_{2}, \ldots, H_{8}, H_{9}\right\}$.

Proof. Let $\mathcal{X}=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{C}_{5} \cup \mathcal{C}_{6} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, \ldots, H_{8}, H_{9}\right\}$. If $G \in \mathcal{X}$, then Theorems 3.1, 3.3 and 3.4 imply that G is $4-\chi_{\rho}$-vertex-critical.

To prove the converse implication, let G be a $4-\chi_{\rho}$-vertex-critical graph. The assumption that $G \notin \mathcal{X}$ will lead us to a contradiction. Note that G is connected, and by Lemma 3.6, G does not contain a subgraph isomorphic to a graph from \mathcal{X}.

In the sequel of this proof, we distinguish two cases.
Case 1. G contains a subgraph isomorphic to T, which is shown in Fig. 2.
Case 1.1. T is a spanning subgraph of $G(V(T)=V(G))$.
Let the vertices of T be denoted as is shown in Fig. 2. Since G is $4-\chi_{\rho}$-vertex-critical, Lemma 2.2 implies $G \neq T$. Then, G contains at least one of the edges from $\left\{a b, a c, a d, a e, b c, b e, c d, d e, d y^{\prime}, e y^{\prime}\right\}$. Using the facts that $G \notin \mathcal{X}$ and it does not contain a subgraph isomorphic to a graph from \mathcal{X}, we infer that $b c, b e, c d, d e \notin E(G)$. Next, it is easy to observe that $\chi_{\rho}(T+f)=3$ for any $f \in\left\{a b, a c, a d, a e, d y^{\prime}, e y^{\prime}\right\}$. This means that G contains at least two edges from $\left\{a b, a c, a d, a e, d y^{\prime}, e y^{\prime}\right\}$. First, consider the case when exactly two of the mentioned edges belong to $E(G)$. If $\left\{a b, d y^{\prime}\right\} \subset E(G),\left\{a c, e y^{\prime}\right\} \subset E(G),\left\{a d, d y^{\prime}\right\} \subset E(G),\left\{a d, e y^{\prime}\right\} \subset E(G),\left\{a e, d y^{\prime}\right\} \subset E(G)$ or $\left\{a e, e y^{\prime}\right\} \subset E(G)$, then $\chi_{\rho}(G)=3$, a contradiction to G being a $4-\chi_{\rho}$-vertex-critical graph. Otherwise, G contains a subgraph isomorphic to H_{1}, H_{2} or to a graph from C. This is a contradiction, since G does not contain a subgraph isomorphic to a graph from \mathcal{X}. Hence, G contains at least three edges from $\left\{a b, a c, a d, a c, d y^{\prime}, e y^{\prime}\right\}$. By reasoning from the case when G contains exactly two edges from this set, we derive a contradiction (since G does not contain a subgraph isomorphic to a graph from \mathcal{X}) for any triple of the chosen edges.

Case 1.2. T is not a spanning subgraph of $G(V(T) \neq V(G))$.
Let $y \in V(G)$ be a vertex belonging to a subgraph of G isomorphic to T, and corresponding to the vertex $y^{\prime} \in V(T)$. Further, let $N_{i}=\{u: d(u, y)=i\}$ for any $i \geq 1$ and let $N_{0}=\{y\}$. In the sequel of this proof, we present some properties of G, which ensure that $G \in \mathcal{G}_{3}$ (and this will contradict to our assumption).

First, consider the vertices from $\bigcup_{j=1,3(\bmod 4)} N_{j}$ with degree at least 3 . Let $A=\left\{x: \operatorname{deg}(x) \geq 3, x \in N_{j}, j \equiv\right.$ $1,3(\bmod 4)\}$ and let $x \in A\left(x \in N_{j}\right)$ be an arbitrary vertex.

We claim that x has exactly one neighbor from N_{j-1}. Suppose to the contrary that x is adjacent to distinct vertices $x_{1}, x_{2} \in N_{j-1}$ (note that in this case $j \geq 3$). Then, there exist $x_{1}^{\prime}, x_{2}^{\prime} \in N_{j-2}$ such that $x_{1} x_{1}^{\prime}, x_{2} x_{2}^{\prime} \in E(G)$. If $x_{1}^{\prime}=x_{2}^{\prime}$, then G contains a subgraph isomorphic to a graph from $\mathcal{F}_{5} \cup \mathcal{C}$ (the vertices corresponding to the vertices of degree 3 in a graph from \mathcal{F}_{5} are y and x_{1}^{\prime}), a contradiction to our assumption. Thus, $x_{1}^{\prime} \neq x_{2}^{\prime}$. If $j \geq 5$, we again derive that G contains a subgraph isomorphic to a graph from \mathcal{F}_{5} (in this case, the vertices corresponding to the vertices of degree 3 in a graph from \mathcal{F}_{5} are y and x), which contradicts our assumption. Otherwise, $x_{1}^{\prime} y, x_{2}^{\prime} y \in E(G)$, which implies that G contains a subgraph isomorphic to a graph from C, again a contradiction to our assumption. Therefore, x has exactly one neighbor from N_{j-1}.

Now, suppose that there exist $x_{1}, x_{2}, x_{3} \in V(G)$ such that $x x_{1}, x x_{2}, x x_{3} \in E(G), x_{1} \in N_{j-1}, x_{2} \in N_{j}$ and $x_{3} \in N_{j} \cup N_{j+1}$. We prove that all vertices from $N_{j} \cap N(x)$ are adjacent exactly to x and x_{1} (have degree 2). Since $x_{2} \in N_{j}$, it has a neighbor from N_{j-1}. If $x_{2} x_{1} \notin E(G)$, then there exists $x_{2}^{\prime} \in N_{j-1}$ such that $x_{2} x_{2}^{\prime} \in E(G)$. But then, G contains a subgraph isomorphic to a graph from \mathcal{F}_{5} (in this case the vertices corresponding to the vertices of degree 3 in a graph from \mathcal{F}_{5} are y or x_{1}, and x) or a subgraph isomorphic to a graph from C. In both cases, we have a contradiction to our assumption. Consequently, every vertex from N_{j} adjacent to x is also adjacent to x_{1}. Moreover, each such vertex x_{2} has degree 2 . Indeed, if $x_{2} x_{3} \in E(G)$, then G contains a subgraph isomorphic to a graph from $\left\{H_{1}, K_{4}\right\}$, a contradiction to G being 4 - χ_{ρ}-vertex-critical. If there exists $x_{2}^{\prime \prime} \in V(G)$ such that $x_{2} x_{2}^{\prime \prime} \in E(G)\left(x_{2}^{\prime \prime} \neq x_{3}\right)$, then G contains a subgraph isomorphic to $\left\{H_{1}, H_{3}\right\}$, again a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Hence, each vertex from $N_{j} \cap N(x)$ has degree 2; it is adjacent to x and x_{1}.

Next, we claim that each vertex from $N_{j+1} \cap N(x)$ is a leaf. Let $x_{1}, x_{2}, x_{3} \in V(G)$ such that $x x_{1}, x x_{2}, x x_{3} \in E(G)$, $x_{1} \in N_{j-1}, x_{2} \in N_{j} \cup N_{j+1}$ and $x_{3} \in N_{j+1}$. If $x_{2} x_{3} \in E(G)$, then G contains a subgraph isomorphic to a graph from $\mathcal{F}_{2} \cup \mathcal{F}_{3}$, a contradiction to our assumption. Further, if there exists $x_{3}^{\prime} \in V(G)$ such that $x_{3} x_{3}^{\prime} \in E(G)$ $\left(x_{3}^{\prime} \neq x_{2}\right)$, then G contains a subgraph isomorphic to a graph from $\left\{H_{3}, H_{4}, H_{5}, C_{5}\right\} \cup \mathcal{F}_{5}$, again a contradiction to our assumption. Hence, each vertex from $N_{j+1} \cap N(x)$ is a leaf.

In conclusion, each $x \in \bigcup_{j \equiv 1,3(\bmod 4)} N_{j}$ either has degree at most 2 or it belongs to the set A (has degree at least 3). In the second case, $x \in N_{j}$ and its neighbors satisfy the following properties.
Property 1: Vertex x has exactly one neighbor from N_{j-1}, say x_{1}.
Property 2: All vertices from $N_{j} \cap N(x)$ are adjacent exactly to x and x_{1} (have degree 2).
Property 3: Each vertex from $N_{j+1} \cap N(x)$ is a leaf.
We observe that these properties imply that $N[x] \backslash\left\{x_{1}\right\}$ induces a T-add attached to x_{1}. Therefore, each vertex from A belongs to a T-add.

Next, we prove that $A \subseteq \bigcup_{j \equiv 1(\bmod 4)} N_{j}$ or $A \subseteq \bigcup_{j \equiv 3(\bmod 4)} N_{j}$. Clearly, if $|A| \leq 1$, then the statement holds. Hence, consider the case when $|A| \geq 2$. Suppose to the contrary that there exist $x_{1}, x_{2} \in A$ such that $x_{1} \in N_{j_{1}}$, where $j_{1} \equiv 1(\bmod 4)$, and $x_{2} \in N_{j_{2}}$, where $j_{2} \equiv 3(\bmod 4)$. Let P_{1} be a shortest $x_{1}-y$-path, P_{2} a shortest $x_{2}-y$-path and $w \in P_{1} \cap P_{2}$ such that the distance between y and w is the largest possible. Note that $w \in N_{j}, j \equiv 0,2(\bmod 4)$ and consequently, $w \neq x_{1}, x_{2}$. Namely, if $w \in N_{j}, j \equiv 1,3(\bmod 4)$, then $w \in A$ (note that $\operatorname{deg}(w) \geq 3$) and thus, by Property 3, each vertex from $N(w) \cap N_{j+1}$ is a leaf. This is implies that x_{1}, x_{2} are both adjacent to w (or one of them is w) and both belong to N_{j+1} (or one to N_{j}), a contradiction, since $x_{1} \in N_{j_{1}}, j_{1} \equiv 1(\bmod 4)$ and $x_{2} \in N_{j_{2}}, j_{2} \equiv 3(\bmod 4)$. Therefore, without loss of generality we may assume that $w \in N_{j}, j \equiv 0(\bmod 4)$. Then, $d\left(w, x_{1}\right) \equiv 1(\bmod 4)$ and $d\left(w, x_{2}\right) \equiv 3(\bmod 4)$. This implies that G contains a subgraph isomorphic to a graph from \mathcal{F}_{4} (the vertices corresponding to some of the vertices of degree 3 in a graph from \mathcal{F}_{4} are x_{1}, x_{2} and $\left.w\right)$, a contradiction to our assumption. Thus, $A \subseteq \bigcup_{j \equiv 1(\bmod 4)} N_{j}$ or $A \subseteq \bigcup_{j=3(\bmod 4)} N_{j}$.

Without loss of generality we may assume that $A \subseteq \bigcup_{j \equiv 3(\bmod 4)} N_{j}$.
We summarize our findings as follows. Since $A \subseteq \bigcup_{j \equiv 3(\bmod 4)} N_{j}$, each vertex from $\bigcup_{j \equiv 1(\bmod 4)} N_{j}$ has degree at most 2. Next, it is possible that G contains T-adds, which are attached to the vertices from $\bigcup_{j \equiv 2(\bmod 4)} N_{j}$. In particular, it is possible that G contains subgraphs isomorphic to K_{3}, which satisfy the following property: one vertex of each such triangle belongs to N_{j} and the other two to N_{j+1} for some $j \equiv 2$ $(\bmod 4)($ we have proved that $j+1 \equiv 3(\bmod 4))$.

Now, we check whether G contains a subgraph isomorphic to K_{3} of a different type (i.e., triangle, which
does not satisfy the property that one of its vertices belongs to N_{j} and the other two to N_{j+1} for some $j \equiv 2$ $(\bmod 4))$.

Let $z, z_{1}, z_{2} \in V(G)$ such that $z z_{1}, z z_{2}, z_{1} z_{2} \in E(G)$. We can assume that $z, z_{1}, z_{2} \in N_{j} \cup N_{j+1}, j \geq 0$. Moreover, let $z \in N_{j}$ and $z_{1}, z_{2} \in N_{j} \cup N_{j+1}, j \geq 0$. Further, let $z^{\prime} \in V(G)$ such that $z z^{\prime} \in E(G)$ and $z^{\prime} \in N_{j-1}$ (or $z^{\prime} \in N_{j+1}$ if $j=0)$. If $j \equiv 1,3(\bmod 4)$, then $z \in A$ and consequently, it satisfies the Properties 1,2 and 3 . This implies that z_{1} (respectively, z_{2}) is a leaf, or it has degree 2 and is adjacent to z and z^{\prime}. In both cases, we have a contradiction, since z_{1}, z_{2} do not satisfy the written properties. Therefore, $j \equiv 0,2(\bmod 4)$. Now, we prove that $z_{1}, z_{2} \in N_{j+1}$. Suppose to the contrary that $z_{1} \in N_{j}$. This implies that $j \geq 2\left(j \neq 0\right.$, because $\left.\left|N_{0}\right|=1\right)$. Note that z_{1} has a neighbor from N_{j-1}. If $z^{\prime} z_{1} \in E(G)$, then G contains a subgraph isomorphic to H_{1}, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Therefore, there exists $z_{1}^{\prime} \in N_{j-1}$ such that $z_{1} z_{1}^{\prime} \in E(G)$. Since $z^{\prime}, z_{1}^{\prime} \in N_{j-1}$, there exist $z^{\prime \prime}, z_{1}^{\prime \prime} \in N_{j-2}$ such that $z_{1}^{\prime} z_{1}^{\prime \prime}, z^{\prime} z^{\prime \prime} \in E(G)$. If $z_{1}^{\prime \prime}=z^{\prime \prime}$, then G contains a graph from C (namely C_{5}) as a non-spanning subgraph, which contradicts G being $4-\chi_{\rho}$-vertex-critical. Otherwise, G contains a subgraph isomorphic to H_{4}, a contradiction to our assumption. Thus, $z_{1}, z_{2} \in N_{j+1}$.

Therefore, each subgraph of G isomorphic to K_{3} has exactly one vertex from N_{j} and the other two vertices from N_{j+1} for some $j \equiv 0,2(\bmod 4)$.

Let $B=\left\{z: z \in N_{j}, j \equiv 0,2(\bmod 4), z\right.$ belongs to a subgraph of G isomorphic to $\left.K_{3}\right\}$.
We prove that $B \subseteq \bigcup_{j \equiv 0(\bmod 4)} N_{j}$ or $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$. Let $z, z^{\prime} \in B$ and suppose that $z \in N_{j_{1}}, j_{1} \equiv 0$ $(\bmod 4)$ and $z^{\prime} \in N_{j_{2}}, j_{2} \equiv 2(\bmod 4)$. Let P_{1}^{\prime} be a shortest z - y-path, P_{2}^{\prime} a shortest $z^{\prime}-y$-path and $w^{\prime} \in P_{1}^{\prime} \cap P_{2}^{\prime}$ such that the distance between y and w^{\prime} is the largest possible. Note that $w^{\prime} \in N_{j}, j \equiv 0,2(\bmod 4)$. Namely, if $w^{\prime} \in N_{j}, j \equiv 1,3(\bmod 4)$, then G contains a subgraph isomorphic to a graph from \mathcal{F}_{5} (the vertices corresponding to the vertices of degree 3 in a graph from \mathcal{F}_{5} are y and w^{\prime}) or a subgraph isomorphic to H_{5}. In both cases, we have a contradiction to our assumption. Thus, $w^{\prime} \in N_{j}, j \equiv 0,2(\bmod 4)$. But then, G contains a subgraph from \mathcal{F}_{1} and Lemma 3.6 again implies a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Thus, $B \subseteq \bigcup_{j \equiv 0(\bmod 4)} N_{j}$ or $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$.

Further, we prove that $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$. First, consider the case when $A \neq \emptyset$. Let $x \in A$ and let $z \in B$. Then, $x \in N_{j_{1}}, j_{1} \equiv 3(\bmod 4)$ and $z \in N_{j_{2}}, j_{2} \equiv 0,2(\bmod 4)$. Suppose that $j_{2} \equiv 0(\bmod 4)$. Let Q_{1} be a shortest x - y-path, Q_{2} a shortest $z-y$-path and $v \in Q_{1} \cap Q_{2}$ such that the distance between y and v is the largest possible. Analogously as for w^{\prime}, also in this case we prove that $v \in N_{j}, j \equiv 0,2(\bmod 4)$ and without loss of generality assume that $v \in N_{j}, j \equiv 0(\bmod 4)$. This implies that G contains a subgraph isomorphic to a graph from \mathcal{F}_{2}, a contradiction to our assumption. Hence, $z \in N_{j_{2}}, j_{2} \equiv 2(\bmod 4)$ and consequently, $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$. Note that, if $|A|=0$, then without loss of generality we may assume that $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$.

In conclusion, each subgraph of G isomorphic to K_{3} satisfies the above written property: one of its vertices, denoted by z, belongs to N_{j} and the other two, denoted by x_{1}, x_{2}, to N_{j+1}, where $j \equiv 2(\bmod 4)$. Moreover, if x_{1} (respectively, x_{2}) belongs to A (i.e., has degree at least 3), then it satisfies the Properties 1,2 and 3. Therefore, the vertices from $\left(N\left[x_{1}\right] \cup N\left[x_{2}\right]\right) \backslash\{z\}$ induce a T-add to a vertex z.

Now, we make a partition of $V(G)$ into the sets $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{7}^{\prime}$ as follows.
$V_{0}^{\prime}=\left\{u \in N_{j}: j \equiv 1(\bmod 4), \operatorname{deg}(u)=1\right\}$,
$V_{1}^{\prime}=\left\{u \in N_{j}:(j \equiv 0(\bmod 4)) \wedge\left(\exists u^{\prime} \in N_{j-1}, u u^{\prime} \in E(G), \operatorname{deg}\left(u^{\prime}\right)=2\right)\right\} \cup\{y\}$,
$V_{2}^{\prime}=\left\{u \in N_{j}: j \equiv 1,3(\bmod 4), \operatorname{deg}(u)=2, u\right.$ does not belong to a subgraph of G isomorphic to $\left.K_{3}\right\}$,
$V_{3}^{\prime}=\left\{u \in N_{j}: j \equiv 2(\bmod 4)\right\}\left(\right.$ note that $\left.B \subseteq V_{3}^{\prime}\right)$,
$V_{4}^{\prime}=\left\{u \in N_{j}: j \equiv 3(\bmod 4), \operatorname{deg}(u)=1\right\}$,
$V_{5}^{\prime}=\left\{u \in N_{j}: j \equiv 3(\bmod 4), \operatorname{deg}(u)=2, u\right.$ belongs to a subgraph of G isomorphic to $\left.K_{3}\right\}$,
$V_{6}^{\prime}=\left\{u \in N_{j}: j \equiv 3(\bmod 4), \operatorname{deg}(u) \geq 3\right\}=A$,
$V_{7}^{\prime}=\left\{u \in N_{j}:(j \equiv 0(\bmod 4)) \wedge\left(\exists u^{\prime} \in N_{j-1}, u u^{\prime} \in E(G), \operatorname{deg}\left(u^{\prime}\right) \geq 3\right)\right\}$.
First, we claim that each vertex from $V(G)$ belongs to exactly one set of $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{7}^{\prime}$. Let $u \in V(G)$ be an arbitrary vertex. Suppose that $u \in N_{j}, j \equiv 0(\bmod 4)$. If $u=y$, then $u \in V_{1}^{\prime}$. Otherwise, u has a neighbor $u^{\prime} \in N_{j-1}$. Clearly, u^{\prime} is not a leaf. If $\operatorname{deg}\left(u^{\prime}\right) \geq 3$, then $u^{\prime} \in A$ and using Property 3, we infer that u is a leaf. Consequently, there does not exist $u^{\prime \prime} \in N_{j-1}, u u^{\prime \prime} \in E(G)$ with $\operatorname{deg}\left(u^{\prime \prime}\right)=2$, which implies that u is only in V_{7}^{\prime} (clearly, $u^{\prime} \neq y$). If $\operatorname{deg}\left(u^{\prime}\right)=2$, then analogously we derive that there does not exist $u^{\prime \prime \prime} \in N_{j-1}, u u^{\prime \prime \prime} \in E(G)$ with $\operatorname{deg}\left(u^{\prime \prime \prime}\right) \geq 3$. This means that u is only in V_{1}^{\prime}. Therefore, u belongs either to V_{1}^{\prime} or to V_{7}^{\prime} and clearly, $u \notin V_{0}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime} \cup V_{6}^{\prime}$. Next, let $u \in N_{j}, j \equiv 1(\bmod 4)$. If $\operatorname{deg}(u)=1$,
then $u \in V_{0}^{\prime}$. Further, suppose that $\operatorname{deg}(u)=2$. Note that u does not belong to a subgraph of G isomorphic to K_{3}, since each subgraph of G isomorphic to K_{3} has one vertex in $B \subseteq \bigcup_{j \equiv 2(\bmod 4)} N_{j}$ and the other two in $\bigcup_{j \equiv 3(\bmod 4)} N_{j}$. This implies that $u \in V_{2}^{\prime}$. Next, suppose that $\operatorname{deg}(u) \geq 3$. Then $u \in A$ and consequently, $u \in \bigcup_{j \equiv 3(\bmod 4)} N_{j}$, a contradiction since $u \in N_{j}, j \equiv 1(\bmod 4)$. Therefore, u belongs to exactly one of the sets $V_{0}^{\prime}, V_{2}^{\prime}$, and $u \notin V_{1}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime} \cup V_{6}^{\prime} \cup V_{7}^{\prime}$. Next, using the definitions of the sets $V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{7}^{\prime}$, we derive that each $u \in N_{j}, j \equiv 2(\bmod 4)$ belongs only to the set V_{3}^{\prime}. Finally, let $u \in N_{j}, j \equiv 3(\bmod 4)$. If u is a leaf, then $u \in V_{4}^{\prime}$. If $\operatorname{deg}(u) \geq 3$, then $u \in V_{6}^{\prime}$. Further, let $\operatorname{deg}(u)=2$. If u belongs to a subgraph of G isomorphic to K_{3}, then $u \in V_{5}^{\prime}$, and otherwise, $u \in V_{2}^{\prime}$. Therefore, u belongs to exactly one of the sets $V_{2}^{\prime}, V_{4}^{\prime}$, $V_{5}^{\prime}, V_{6}^{\prime}$ and $u \notin V_{0}^{\prime} \cup V_{1}^{\prime} \cup V_{3}^{\prime} \cup V_{7}^{\prime}$. These observations imply that $\left(V_{0}^{\prime}, V_{1}^{\prime}, \ldots, V_{7}^{\prime}\right)$ is a partition of $V(G)$.

As we mentioned above, our goal is to prove that $G \in \mathcal{G}_{3}$. Hence, we show that G is formed by taking a bipartite multigraph with bipartition $\left(V_{1}^{\prime}, V_{3}^{\prime}\right)$, subdividing every edge exactly once, adding leaves to some vertices in $V_{1}^{\prime} \cup V_{3}^{\prime}$, and then performing a single T-add to some vertices in V_{3}^{\prime}.

First, we prove that $V_{1}^{\prime} \cup V_{3}^{\prime}$ induces a bipartite multigraph in G, in which each edge is subdivided exactly once. Clearly, each vertex from $V_{1}^{\prime} \cup V_{3}^{\prime}$ belongs to exactly one of the sets $V_{1}^{\prime}, V_{3}^{\prime}$. Therefore, we only need to prove that $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}, k_{1} \geq 1$, and $d\left(v_{3}, v_{3}^{\prime}\right)=4 k_{3}, k_{3} \geq 1$, for any $v_{1}, v_{1}^{\prime} \in V_{1}^{\prime}$ and any $v_{3}, v_{3}^{\prime} \in V_{3}^{\prime}$. Let v_{1}, v_{1}^{\prime} be two distinct vertices from V_{1}^{\prime}. Further, let P be a shortest $v_{1}-v_{1}^{\prime}-$ path, Q_{1} a shortest $v_{1}-y$-path, Q_{1}^{\prime} a shortest $v_{1}^{\prime}-y$-path and $w \in Q_{1} \cap Q_{1}^{\prime}$ such that the distance between y and w is the largest possible. Recall that $v_{1}, v_{1}^{\prime} \in \bigcup_{j \equiv 0(\bmod 4)} N_{j}$. If $w \in N_{j}, j \equiv 1,3(\bmod 4)$, then $w \in A$, because $\operatorname{deg}(w) \geq 3$. Using Property 3, we derive that $w v_{1}, w v_{1}^{\prime} \in E(G)\left(v_{1}, v_{1}^{\prime}\right.$ are leaves) and consequently, $v_{1}, v_{1}^{\prime} \in V_{7}^{\prime}$. Since $\left(V_{0}, V_{1}^{\prime}, \ldots, V_{7}^{\prime}\right)$ is a partition of $V(G), v_{1}, v_{1}^{\prime} \notin V_{1}^{\prime}$, a contradiction. Therefore, $w \in N_{j}, j \equiv 0,2(\bmod 4)$. Clearly, if $w \in P$, then $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}$ for some $k_{1} \geq 1$. Next, consider the case when $w \notin P$. If $P \cap\left(Q_{1} \cup Q_{1}^{\prime}\right)=\left\{v_{1}, v_{1}^{\prime}\right\}$, then $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}$ for some $k_{1} \geq 1$. Namely, otherwise G contains a subgraph isomorphic to a graph from C, a contradiction to our assumption. Now, let $P \cap\left(Q_{1} \cup Q_{1}^{\prime}\right) \neq\left\{v_{1}, v_{1}^{\prime}\right\}$. Without loss of generality we may assume that $\left|P \cap Q_{1}\right| \geq 2$ and let $w_{1} \in P \cap Q_{1}, w_{1} \neq v_{1}$, such that the distance between v_{1} and w_{1} is the largest possible. Further, let $w_{1}^{\prime} \in P \cap Q_{1}^{\prime}\left(w_{1}^{\prime}\right.$ can be v_{1}^{\prime}, but $\left.w_{1} \neq w_{1}^{\prime}\right)$ such that the distance between v_{1}^{\prime} and w_{1}^{\prime} is the largest possible. Note that $d\left(v_{1}, w_{1}\right) \neq 1$. Namely, if v_{1} and w_{1} are adjacent, then $v_{1} \in V_{7}^{\prime}$ (note that $\operatorname{deg}\left(w_{1}\right) \geq 3$), a contradiction. Analogously, if $v_{1}^{\prime} \neq w_{1}^{\prime}$, then $d\left(v_{1}^{\prime}, w_{1}^{\prime}\right) \neq 1$. Moreover, $w_{1} \in N_{j}, j \equiv 0,2$ $(\bmod 4)$. Indeed, $w_{1} \in N_{j}, j \equiv 1,3(\bmod 4)$ implies that $w_{1} \in A$ and consequently, $w_{1} v_{1} \in E(G)$, which is not true. Analogously we derive that $w_{1}^{\prime} \in N_{j}, j \equiv 0,2(\bmod 4)$. Next, we observe that the vertices from Q_{1} between w_{1} and w, the vertices from Q_{1}^{\prime} between w_{1}^{\prime} and w, and the vertices from P between w_{1} and w_{1}^{\prime} form a cycle C_{n} in $G, n \geq 3$. Note that $w_{1} w \notin E(G)$ since $w_{1} \in N_{j_{1}}, j_{1} \equiv 0,2(\bmod 4)$ and $w \in N_{j_{2}}, j_{2} \equiv 0,2$ $(\bmod 4)$, but $j_{1} \neq j_{2}$ (clearly, $w \notin P, w_{1} \in P$, hence $\left.w_{1} \neq w\right)$. Thus, C_{n} is not a triangle. Therefore, $n \geq 4$ and moreover, $n=4 a, a \geq 1$, since G does not contain a subgraph from C. This implies that $d\left(w_{1}, w_{1}^{\prime}\right)=4 k$, $k \geq 1$, if $w_{1} \in N_{j_{1}}, w_{1}^{\prime} \in N_{j_{2}}, j_{1}, j_{2} \equiv 0(\bmod 4)$ or $w_{1} \in N_{j_{1}}, w_{1}^{\prime} \in N_{j_{2}}, j_{1}, j_{2} \equiv 2(\bmod 4)$, and otherwise $d\left(w_{1}, w_{1}^{\prime}\right)=4 l+2, l \geq 0$. In the first case, $d\left(v_{1}, w_{1}\right)+d\left(v_{1}^{\prime}+w_{1}^{\prime}\right)=4 k^{\prime}, k^{\prime} \geq 1$. Thus, $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}, k_{1} \geq 1$. In the second case, $d\left(v_{1}, w_{1}\right)+d\left(v_{1}^{\prime}+w_{1}^{\prime}\right)=4 l^{\prime}+2, l^{\prime} \geq 0$, and hence, $d\left(v_{1}, v_{1}^{\prime}\right)=4 l_{1}, l_{1} \geq 1$. Analogously, we prove that $d\left(v_{3}, v_{3}^{\prime}\right)=4 k_{3}$ for some $k_{3} \geq 1$. Therefore, $V_{1}^{\prime} \cup V_{3}^{\prime}$ induces a subdivided bipartite multigraph in G.

Now, we prove that V_{2}^{\prime} is the set of all vertices obtained by subdivision of bipartite multigraph with bipartition $\left(V_{1}^{\prime}, V_{3}^{\prime}\right)$. We have to show that each $v_{2} \in V_{2}^{\prime}$ has exactly two neighbors: one from V_{1}^{\prime} and the other from V_{3}^{\prime}. Let $v_{2} \in V_{2}^{\prime}$ be an arbitrary vertex. Then, $v_{2} \in N_{j}, j \equiv 1,3(\bmod 4)$. First, consider the case when $j \equiv 1(\bmod 4)$. Clearly, $v_{2} v \in E(G)$ for some $v \in N_{j-1}(j-1 \equiv 0(\bmod 4))$. This implies that $v \in V_{1}^{\prime} \cup V_{7}^{\prime}$. It is easy to observe that each vertex from V_{7}^{\prime} has a neighbor from $V_{6}^{\prime}=A$. By Property 3, each vertex from V_{7}^{\prime} is a leaf. This implies that $v \in V_{1}^{\prime}$. Therefore, $N\left(v_{2}\right) \cap N_{j-1} \subseteq V_{1}^{\prime}$. Since the vertices from V_{1}^{\prime} are pairwise at distance $4 a, a \geq 1$, we derive that $\left|N\left(v_{2}\right) \cap N_{j-1}\right|=1$ (v_{2} has exactly one neighbor from N_{j-1}, more precisely, from V_{1}^{\prime}). Suppose that $v_{2} u \in E(G), u \in N_{j}$. Then, $u \in V_{0}^{\prime} \cup V_{2}^{\prime}$. By Lemma 2.5, v_{2} belongs to a subgraph of G isomorphic to K_{3}, a contradiction to the definition of V_{2}^{\prime}. Since $\operatorname{deg}\left(v_{2}\right)=2, v_{2}$ has one neighbor from N_{j+1}, namely from $V_{3}^{\prime}($ note that $j+1 \equiv 2(\bmod 4))$. In conclusion, v_{2} has one neighbor from V_{1}^{\prime} and the other from V_{3}^{\prime}. Next, suppose that $j \equiv 3(\bmod 4)$. Clearly, $v_{2} v \in E(G)$ for some $v \in N_{j-1}$. Since $\left.j-1 \equiv 2(\bmod 4)\right)$, we infer that $N\left(v_{2}\right) \cap N_{j-1} \subseteq V_{3}^{\prime}$. Again, since the vertices from V_{3}^{\prime} are pairwise at distance $4 a, a \geq 1$, we derive that v_{2} has exactly one neighbor from N_{j-1}. Suppose that $v_{2} u \in E(G), u \in N_{j}$. Again, by Lemma 2.5, v_{2} belongs to a subgraph of G isomorphic to K_{3}, a contradiction to the definition of V_{2}^{\prime}. Since $\operatorname{deg}\left(v_{2}\right)=2$, $v_{2} z \in E(G)$ for some $z \in N_{j+1}$. Note that $z \in V_{1}^{\prime} \cup V_{7}^{\prime}$. The fact that $\operatorname{deg}\left(v_{2}\right)=2$ implies that $z \in V_{1}^{\prime}$. In
conclusion, v_{2} has one neighbor from V_{1}^{\prime} and the other from V_{3}^{\prime}.
Further, let $v_{1} \in V_{1}^{\prime}\left(v_{1} \in N_{j}, j \equiv 0(\bmod 4)\right)$ be an arbitrary vertex. We need to prove that $N\left(v_{1}\right)$ can contain only leaves and the vertices from V_{2}^{\prime}. First, consider the case when $v_{1} \neq y$. Since $v_{1} \in N_{j}, j \equiv 0$ $(\bmod 4)$, we have: $N\left(v_{1}\right) \subseteq V_{0}^{\prime} \cup V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime} \cup V_{6}^{\prime} \cup V_{7}^{\prime}$. Clearly, v_{1} does not have a neighbor from V_{1}^{\prime} since $d\left(v_{1}, v_{1}^{\prime}\right)=4 k_{1}, k_{1} \geq 1$, for each $v_{1}^{\prime} \in V_{1}^{\prime}, v_{1}^{\prime} \neq v_{1}$. If there exists $v_{7} \in V_{7}^{\prime}$ such that $v_{1} v_{7} \in E(G)$, then $\operatorname{deg}\left(v_{7}\right) \geq 2$ (v_{7} has a neighbor v_{1} and a neighbor from N_{j-1}), a contradiction to v_{7} being a leaf (we have already argued that each vertex from V_{7}^{\prime} is a leaf). Thus, $N\left(v_{1}\right)$ does not contain the vertices from V_{7}^{\prime}. Next, suppose that $v_{1} v_{6} \in E(G)$ for some $v_{6} \in V_{6}^{\prime}$. By the definition of V_{1}^{\prime}, v_{1} is adjacent to $u^{\prime} \in N_{j-1}$ such that $\operatorname{deg}\left(u^{\prime}\right)=2$, which implies that $u^{\prime} \notin V_{6}^{\prime}$. Therefore, v_{1} has at least two neighbors (u^{\prime} and v_{6}). On the other hand, since $v_{6} \in A$, Property 3 implies that v_{1} is a leaf, a contradiction. Hence, $N\left(v_{1}\right)$ does not contain the vertices from V_{6}^{\prime}. Clearly, v_{1} is not adjacent to a vertex from V_{4}^{\prime} since each vertex from $V_{4}^{\prime}\left(\right.$ from N_{j-1}) is a leaf and hence does not have a neighbor from N_{j}. Further, recall that each subgraph of G isomorphic to K_{3} has one vertex from $N_{j_{1}}, j_{1} \equiv 2(\bmod 4)$ and the other two from $N_{j_{2}}, j_{2} \equiv 3(\bmod 4)$. Next, each vertex from V_{5}^{\prime} belongs to a triangle and has degree 2. These facts imply that v_{1} does not have a neighbor from V_{5}^{\prime}. Thus, $N\left(v_{1}\right) \subseteq V_{0}^{\prime} \cup V_{2}^{\prime}$. Obviously, $N(y)$ also contains only the vertices from $V_{0}^{\prime} \cup V_{2}^{\prime}$. Since each vertex from V_{0}^{\prime} is a leaf, our claim holds.

It remains to prove that to each vertex $v_{3} \in V_{3}^{\prime}\left(v_{3} \in N_{j}, j \equiv 2(\bmod 4)\right)$ only a single T-add, leaves and the vertices from V_{2}^{\prime} can be attached. Since $v_{3} \in N_{j}, j \equiv 2(\bmod 4)$, we have: $N\left(v_{3}\right) \subseteq V_{0}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime} \cup V_{4}^{\prime} \cup V_{5}^{\prime} \cup V_{6}^{\prime}$. Clearly, v_{3} does not have a neighbor from V_{3}^{\prime} since $d\left(v_{3}, v_{3}^{\prime}\right)=4 k_{3}, k_{3} \geq 1$, for each $v_{3}^{\prime} \in V_{3}^{\prime}, v_{3}^{\prime} \neq v_{3}$. Note that v_{3} is not adjacent to a vertex from V_{0}^{\prime}, since each vertex from V_{0}^{\prime} (from N_{j-1}) is a leaf and hence does not have a neighbor from N_{j}. Next, suppose that $v_{5} \in V_{5}^{\prime}$ is adjacent to v_{3}. Note that v_{5} belongs to a triangle and has degree 2. This implies that v_{3} also belongs to this triangle (with vertices $v_{5}, v_{3}, b ; b \in V_{5}^{\prime} \cup V_{6}^{\prime}$) and thus, $v_{3} \in B$. As we have argued above, the vertices from $\left(N\left[v_{5}\right] \cup N[b]\right) \backslash\left\{v_{3}\right\}$ induce a T-add attached to v_{3}. Now, we prove that only one T-add can be attached to v_{3}. Suppose that there exist $x_{1}, x_{2} \in N_{j+1} \backslash\left\{v_{5}, b\right\}$ such that $\left\{v_{3}, x_{1}, x_{2}\right\}$ also induce a K_{3}. Then, G contains a subgraph isomorphic to H_{2}, a contradiction to G being 4- χ_{ρ}-vertex-critical. Next, suppose that there exists $x_{1} \in\left(N_{j+1} \cap N\left(v_{3}\right)\right) \backslash\{b\}$ such that $\operatorname{deg}\left(x_{1}\right) \geq 3$ $\left(x_{1} \in V_{6}^{\prime}\right)$. Then, G contains a subgraph isomorphic to a graph from $\left\{H_{1}\right\} \cup \mathcal{F}_{2}$, a contradiction. Therefore, if v_{3} is adjacent to a vertex from V_{5}^{\prime}, only one T-add can be attached to v_{3}, and perhaps some leaves and the vertices from V_{2}^{\prime} (note that each vertex from $V_{5}^{\prime} \cup V_{6}^{\prime}$ belongs to a T-add). Thus, we can now assume that $N\left(v_{3}\right) \cap V_{5}^{\prime}=\emptyset$. Suppose that $v_{3} v_{6} \in E(G)$ for some $v_{6} \in V_{6}^{\prime}$. Note that v_{3} does not belong to a subgraph of G isomorphic to K_{3}, because $N\left(v_{3}\right) \cap V_{5}^{\prime}=\emptyset$ and G does not contains a subgraph isomorphic to H_{1} or H_{3}. Therefore, since $v_{6} \in A$, the Properties $1,2,3$ imply that all vertices from $N\left(v_{6}\right) \backslash\left\{v_{3}\right\}$ are leaves. This means that $N\left[v_{6}\right] \backslash\left\{v_{3}\right\}$ induces a T-add attached to v_{3}. Now, suppose that two T-adds can be attached to v_{3}. Since $N\left(v_{3}\right) \cap V_{5}^{\prime}=\emptyset, v_{3}$ is adjacent to two vertices from V_{6}^{\prime}. Since each vertex from V_{6}^{\prime} belongs to A and v_{3} does not belong to any triangle, the Properties $1,2,3 \mathrm{imply}$ that G contains a subgraph isomorphic to H_{9}, a contradiction to our assumption. Therefore, also in the case when $N\left(v_{3}\right) \cap V_{5}^{\prime}=\emptyset$ and v_{3} has a neighbor from V_{6}^{\prime} we derive that only one T-add can be attached to v_{3} (and perhaps some leaves and the vertices from $\left.V_{2}^{\prime}\right)$. If $N\left(v_{3}\right) \cap\left(V_{5}^{\prime} \cup V_{6}^{\prime}\right)=\emptyset$, then only the vertices from $V_{2}^{\prime} \cup V_{4}^{\prime}$ can be adjacent to v_{3}. In this case, our claim clearly holds.

Thus, $G \in \mathcal{G}_{3}$, a contradiction to G being $4-\chi_{\rho}$-vertex-critical.
Case 2. G does not contain a subgraph isomorphic to T, which is shown in Fig. 2.
Case 2.1. G contains a subgraph isomorphic to $C_{n}, n \geq 3$.
By Lemma 3.6, $n=3$ or $n=4 a, a \geq 1$.
First, suppose that $n=4 a, a \geq 1$. Since $\chi_{\rho}(G)=4, G \nsubseteq C_{n}$. Thus, if $a \geq 2, G$ contains a subgraph isomorphic to T or a subgraph isomorphic to a graph from C, a contradiction to our assumptions. Hence, $a=1$. Let $C \cong C_{4}$ and let $V(C)=\{a, b, c, d\},\{a b, b c, c d, d a\} \subseteq E(G)$. Note that G is not isomorphic to K_{4} and it does not contain a subgraph isomorphic to K_{4}. Hence, without loss of generality we may assume that $b d \notin E(G)$. Since $\chi_{\rho}(G)=4, G$ is not isomorphic to H_{1} and G does not contain a subgraph isomorphic to H_{1}, without loss of generality we may also assume that there exists a vertex from $V(G) \backslash\{b, c, d\}$ adjacent to a. This implies that $\operatorname{deg}(b)=\operatorname{deg}(d)=2$, because G does not contain a subgraph isomorphic to a graph from $\left\{H_{5}\right\} \cup C$. If each vertex adjacent to a is adjacent to c and each vertex adjacent to c is adjacent to a, then $\chi_{\rho}(G) \leq 3$ (recall that G does not contain a subgraph isomorphic to H_{1}, H_{5} or K_{4}), a contradiction to
our assumption. Thus, there exists a vertex adjacent to a, which is not adjacent to c (or a vertex adjacent to c that is not adjacent to a). Next, note that if all vertices adjacent to a, which are not adjacent to c, are leaves, and also all vertices from $N(c) \backslash N[a]$ are leaves, then $\chi_{\rho}(G)=3$, again a contradiction. Therefore, there exist $a^{\prime}, a^{\prime \prime} \in V(G)$, such that $a a^{\prime}, a^{\prime} a^{\prime \prime} \in E(G)$ and $a^{\prime} c \notin E(G)$ (note that $a^{\prime \prime} \neq b, c, d$). But then, G contains a subgraph isomorphic to T, a contradiction. These findings imply that $n \neq 4$ (therefore, G does not contain a subgraph isomorphic to $C_{n}, n \geq 4$).

Now assume that G contains a triangle C and let $V(C)=\{a, b, c\}, E(C)=\{a b, b c, c a\}$. Since $\chi_{\rho}(G)=4$, at least one vertex from $\{a, b, c\}$ has degree at least 3. Note that at least one vertex from $\{a, b, c\}$ has degree 2. Namely, otherwise, G contains a subgraph isomorphic to H_{3} or to C_{4}, a contradiciton to our assumption. Therefore, without loss of generality we may assume that $\operatorname{deg}(c)=2$.
First, suppose that $\operatorname{deg}(a), \operatorname{deg}(b) \geq 3$. This implies that there exist $a^{\prime}, b^{\prime} \in V(G)$ such that $a a^{\prime}, b b^{\prime} \in E(G)$. Note that $a^{\prime} \neq b^{\prime}\left(a^{\prime} b, b^{\prime} a \notin E(G)\right)$ since G does not contain a subgraph isomorphic to C_{4}. Moreover, each vertex from $(N(a) \cup N(b)) \backslash\{a, b, c\}$ has exactly one neighbor in $N(a) \cup N(b) \cup\{a, b, c\}$, because G does not contain a subgraph isomorphic to H_{2} or C_{4}. Hence, since $\chi_{\rho}(G)=4$, there exists $a^{\prime \prime} \in V(G) \backslash(N(a) \cup N(b) \cup\{a, b, c\})$ (or $b^{\prime \prime} \in V(G) \backslash(N(a) \cup N(b) \cup\{a, b, c\})$ such that $a^{\prime} a^{\prime \prime} \in E(G)$ (or $b^{\prime} b^{\prime \prime} \in E(G)$). Then, G contains a subgraph isomorphic to T, a contradiction.
Therefore, $\operatorname{deg}(a) \geq 3$ and $\operatorname{deg}(b)=2$. Let $N_{0}=\{a\}$ and let $N_{i}=\{u ; d(u, a)=i\}$ for each $i=1,2, \ldots, k$. Note that $k \geq 2$. Namely, $\chi_{\rho}(G)=4$ and G does not contain a subgraph isomorphic to H_{2}, which imply that there exists $a^{\prime} \in V(G)$ such that $d\left(a, a^{\prime}\right)=2$. Further, the fact that G does not contain a subgraph isomorphic to T implies that all vertices from $N_{1} \cup N_{2} \cup \ldots \cup N_{k-2}$ have degree at most 2 and in addition, $\operatorname{deg}(a)=3$. Now, let $\operatorname{deg}\left(u_{k}\right) \geq 2$ for some $u_{k} \in N_{k}$. This implies that there exist $u_{k-1} \in N_{k-1}$ and $v \in\left(N_{k} \cup N_{k-1}\right)$ such that $\left\{u_{k}, u_{k-1}, v\right\}$ induces a triangle. The fact that G does not contain a subgraph isomorphic to T implies that $\operatorname{deg}\left(u_{k-1}\right)=3, \operatorname{deg}(v)=2, \operatorname{deg}\left(u_{k}\right)=2$. Since G does not contain a subgraph isomorphic to a graph from $\mathcal{F}_{1}, k-2=4 m+3, m \geq 0$. But then, there exists a 3-packing coloring c^{\prime} of G. Namely, let $c^{\prime}(c)=c^{\prime}(v)=1$, $c^{\prime}(b)=c^{\prime}\left(u_{k}\right)=2, c^{\prime}(a)=c^{\prime}\left(u_{k-1}\right)=3$. Further, if $m \geq 1$, then let the vertices from a subgraph of G isomorphic to P_{k-2} be colored one after another using the following pattern of colors: $1,2,1,3, \ldots, 1,2,1$. Otherwise, these vertices color with the following color pattern: 1,2,1. Clearly, c^{\prime} is a 3-packing coloring of G, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Hence, $\operatorname{deg}\left(u_{k}\right)=1$ for every $u_{k} \in N_{k}$. Since G does not contain a subgraph isomorphic to T, all vertices from $N\left(u_{k-1}\right)$ except one, are leaves. If $\operatorname{deg}\left(u_{k-1}\right)=2$, then Lemma 2.1 implies that $G \in \mathcal{G}_{3}$, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Therefore, $\operatorname{deg}\left(u_{k-1}\right) \geq 3$. Since G does not contain a subgraph isomorphic to a graph from \mathcal{F}_{2}, we derive that $k-2 \neq 0$ and $k-2 \neq 4 l+2$ for any $l \geq 0$. In this case, there exists a 3-packing coloring $c^{\prime \prime}$ of G, defined as follows. Let $c^{\prime \prime}(c)=1, c^{\prime \prime}(b)=2$, $c^{\prime \prime}(a)=3$. If $k-2=4 l+1, l \geq 0$, or $k-2=4 l^{\prime}, l^{\prime} \geq 1$, then let $c^{\prime \prime}\left(u_{k-1}\right)=2$ and the leaves from $N\left(u_{k-1}\right)$ receive color 1 . If $l \geq 1$, then the other vertices color one after another using the following pattern of colors $1,2,1,3, \ldots$. The same pattern is used for any $l^{\prime} \geq 1$. If $l=0$, then color the uncolored vertex by 1 . If $k-2=4 l^{\prime \prime}+3, l^{\prime \prime} \geq 0$, then let $c^{\prime \prime}\left(u_{k-1}\right)=3$ and the leaves from $N\left(u_{k-1}\right)$ receive color 1 . Further, if $l^{\prime \prime} \geq 1$, then color the other vertices one after another using the following pattern of colors $1,2,1,3, \ldots$. Otherwise, color the remaining three vertices one after another by $1,2,1$. Clearly, in each case, the obtained coloring is a 3-packing coloring of G, a contradiction to G being $4-\chi_{\rho}$-vertex-critical.

Case 2.2. G does not contain a subgraph isomorphic to $C_{n}, n \geq 3$.
Note that in this case, G is a tree. Clearly, if every vertex has degree at most 2 , then G is a path and thus, it is not $4-\chi_{\rho}$-vertex-critical, a contradiction to our assumption. Hence, there exists $y \in V(G)$ such that $\operatorname{deg}(y) \geq 3$. Let $N_{0}=\{y\}$ and let $N_{i}=\{u: d(u, y)=i\}$ for each $i=1,2, \ldots, k$. Recall that $\chi_{\rho}(G)=4$, G is a tree and G does not contain a subgraph isomorphic to T. Thus, $k \geq 3$. Moreover, all vertices from $N_{1} \cup N_{2} \cup \ldots N_{k-2}$ have degree at most 2, all vertices from $N(y)$, except one, are leaves, and $\left|N_{i}\right|=1$ for any $i \in\{2,3, \ldots, k-1\}$. Further, $\operatorname{deg}\left(u_{k}\right)=1$ for every $u_{k} \in N_{k}$. Therefore, G contains at most two vertices of degree at least 3: one is y and let the other be $y^{\prime}\left(y^{\prime} \in N_{k-1}\right)$. Next, the fact that G is a tree implies that all vertices from $N\left(y^{\prime}\right) \backslash N_{k-2}$ are leaves. Now, we prove that G is 3-packing colorable. Let $c: V(G) \longrightarrow\{1,2,3\}$. First, suppose that $k-2=4 l, l \geq 1$, or $k-2=4 l^{\prime}+1, l^{\prime} \geq 0$. In this case, let $c(y)=3, c\left(y^{\prime}\right)=2$ and all leaves from $N(y) \cup N\left(y^{\prime}\right)$ receive color 1 . The remaining vertices (of P_{k-2}) color one after another using the following pattern of colors: $1,2,1,3$ (note that if $l^{\prime}=0$, then the vertex receives color 1). Clearly, c is a 3-packing coloring of G, thus $\chi_{\rho}(G) \leq 3$, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Next, let $k-2=4 l^{\prime \prime}+2, l^{\prime \prime} \geq 0$.

Then, let $c(y)=c\left(y^{\prime}\right)=2$ and let all leaves from $N(y) \cup N\left(y^{\prime}\right)$ receive color 1 . The remaining vertices (of P_{k-2}) are colored one after another using the pattern of colors: $1,3,1,2$ (if $l^{\prime \prime}=0$, then use only colors 1,3). The described coloring c is a 3 -packing coloring of G, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. Finally, suppose that $k-2=4 l^{\prime \prime \prime}+3, l^{\prime \prime \prime} \geq 0$. In this case, let $c(y)=c\left(y^{\prime}\right)=3$ and all leaves from $N(y) \cup N\left(y^{\prime}\right)$ color with color 1. Next, the remaining vertices (of P_{k-2}) are colored one after another using the pattern of colors: $1,2,1,3$ (if $l^{\prime \prime \prime}=0$, then use only colors $1,2,1$). Again, this is a 3-packing coloring of G, a contradiction to G being $4-\chi_{\rho}$-vertex-critical. This concludes the proof.

4. $4-\chi_{\rho}$-critical graphs

Recall that a graph G is a χ_{ρ}-critical graph, if for every proper subgraph H of $G, \chi_{\rho}(H)<\chi_{\rho}(G)$. If G is χ_{ρ}-critical and $\chi_{\rho}(G)=k$, then we say that G is k - χ_{ρ}-critical. In this section, we characterize $4-\chi_{\rho}$-critical graphs.

Brešar and Ferme [6] proved that every χ_{ρ}-critical graph is also χ_{ρ}-vertex-critical. In addition, in trees these two types of critical graphs coincide. The mentioned authors also provided two partial characterizations of $4-\chi_{\rho}$-critical graphs, which are given below.

Proposition 4.1. [6] If G is a graph containing a cycle C_{n}, where $n \geq 5$ is an integer not divisible by 4 , then G is a $4-\chi_{\rho}$-critical graph if and only if G is isomorphic to C_{n}.

Recall that \mathcal{D} is the class of graphs that contain exactly one cycle and have an arbitrary number of leaves attached to each of the vertices of the cycle.

Theorem 4.2. [6] A graph $G \in \mathcal{D}$ is a $4-\chi_{\rho}$-critical graph if and only if G is one of the following graphs:

- $G \cong C_{n}, n \geq 5, n \not \equiv 0(\bmod 4)$;
- G is the net graph;
- G is obtained by attaching a single leaf to two adjacent vertices of C_{4}.

Let \mathcal{F}_{1}^{\prime} be the subfamily of graphs from \mathcal{F}_{1} for which $l \notin\{0,4 k+2 ; k \geq 0\}$ (see Fig. 8a). Next, we denote by \mathcal{F}_{3}^{\prime} the subfamily of graphs from \mathcal{F}_{3}, which do not contain the edge $u_{2} u_{3}$ (see Fig. 8c). Further, \mathcal{F}_{4}^{\prime} consists of all graphs from \mathcal{F}_{4}, which do not contain the edges $v_{1} y_{l-1}$ and $v_{1} w_{2}$ (see Fig. 8d). Finally, let \mathcal{F}_{5}^{\prime} be the subfamily of graphs from \mathcal{F}_{5}, which do not contain the edges $u_{2} u_{3}$ and $v_{2} v_{3}$ (see Fig. 8e). Note that each graph from $\mathcal{F}_{4}^{\prime} \cup \mathcal{F}_{5}^{\prime}$ is a tree.

Theorem 4.3. A graph G is $4-\chi_{\rho}$-critical if and only if $G \in \mathcal{F}_{1}^{\prime} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}^{\prime} \cup \mathcal{F}_{4}^{\prime} \cup \mathcal{F}_{5}^{\prime} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{9}\right\}$.
Proof. The fact that each χ_{ρ}-critical graph is also χ_{ρ}-vertex-critical and Theorem 3.7 imply that $4-\chi_{\rho}$-critical graphs can only be the graphs from $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup \mathcal{C}_{5} \cup \mathcal{C}_{6} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, \ldots, H_{9}\right\}$.

From Proposition 4.1, we derive that the graphs from $C_{5} \cup C_{6}$ are not $4-\chi_{\rho}$-critical. By Theorem 4.2, the graphs from $C \cup\left\{H_{3}, H_{5}\right\}$ are 4 - χ_{ρ}-critical. In addition, Theorem 4.2 also shows that H_{7} is not a 4 - $\chi_{\rho^{-}}$ critical graph. Consequently, H_{8} is not $4-\chi_{\rho}$-critical, since it contains a proper subgraph isomorphic to H_{7}. Further, since each tree is a χ_{ρ}-critical graph if and only if it is χ_{ρ}-vertex-critical, we know that H_{9} is $4-\chi_{\rho}$-critical. Clearly, K_{4} is also a $4-\chi_{\rho}$-critical graph. Therefore, it remains to consider the graphs from $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup\left\{H_{1}, H_{2}, H_{4}, H_{6}\right\}$. Let $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4} \cup \mathcal{F}_{5} \cup\left\{H_{1}, H_{2}, H_{4}, H_{6}\right\}$. By Theorem 3.7, $\chi_{\rho}(G)=4$. Hence, we only need to check if $\chi_{\rho}(G-e) \leq 3$ for every edge e of G. Suppose that $e=x y$ and x is a leaf. We observe that $G-e$ is isomorphic to the disjoint union of $G-x$ and K_{1}. Since G is $4-\chi_{\rho}$-vertex-critical, $\chi_{\rho}(G-x) \leq 3$, which implies that $\chi_{\rho}(G-e) \leq 3$. Therefore, we only need to consider the edges of G, which connect the vertices of degree at least 2 .

Let $G \cong H_{1}$ (see Fig. 7b). If $e \in\{a b, a d, b d\}$, then $G-e \in\left\{X_{2}, Y_{1}\right\}$. By Lemma 2.1, $\chi_{\rho}(G-e)=3$. In the case when $e \in\{a e, d e\}, G-e$ is isomorphic to $H_{3}-d$. Since H_{3} is $4-\chi_{\rho}$-vertex-critical, we have $\chi_{\rho}(G-e) \leq 3$. Thus,
H_{1} is $4-\chi_{\rho}$-critical. Now, suppose that $G \cong H_{2}$ (see Fig. 7c). If $e \in\{a b, b e, b c, b d\}$, then $G-e \cong X_{2}$ and Lemma 2.1 implies that $\chi_{\rho}(G-e)=3$. Otherwise, color the leaves of $G-e$ with color 1 and the remaining vertices with colors $1,2,3$ such that the vertex of degree 4 receives color 2. The described coloring is a 3-packing coloring of $G-e$, which implies that H_{2} is $4-\chi_{\rho}$-critical. Next, let $G \cong H_{4}$ (see Fig. 7e). If $e=c d$, then $G-e$ is a path and hence, it is 3-packing colorable. Further, if $e \in\{b c, d e\}$, then $G-e$ is the disjoint union of X_{2} and K_{2}. By Lemma 2.1, $\chi_{\rho}(G-e)=3$. Now, let $e=c g$. Then, a 3-packing coloring c^{\prime} of $G-e$ can be formed as follows: $c^{\prime}(a)=c^{\prime}(c)=c^{\prime}(e)=c^{\prime}(g)=1, c^{\prime}(b)=c^{\prime}(f)=2$ and $c^{\prime}(d)=3$. This implies that $\chi_{\rho}(G-e) \leq 3$, if $e=c g$. Analogously we prove that $\chi_{\rho}(G-e) \leq 3$ holds for $e=d g$. Therefore, H_{4} is $4-\chi_{\rho}$-critical. Further, we claim that H_{6} (see Fig. 7 g) is not a $4-\chi_{\rho}$-critical graph. Note that $H_{6}-a d$ is isomorphic to H_{5} and $\chi_{\rho}\left(H_{5}\right)=4$. Hence, $\chi_{\rho}\left(H_{6}-a d\right)=4$ and the claim is true.

Now, let $G \in \mathcal{F}_{1}$ (see Fig. 8a). If $e \in E(G) \backslash\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$, then $G-e$ is isomorphic to $X_{n}, n \geq 1$, or to the disjoint union of two graphs from $\left\{K_{3}, X_{n}: n \geq 1\right\}$. Using Lemma 2.1 and the fact that $\chi_{\rho}\left(K_{3}\right)=3$, we derive that $\chi_{\rho}(G-e)=3$. Next, let $e \in\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$. If $l=0$ or $l=4 k+2, k \geq 0$, then $G-e$ is isomorphic to a graph from \mathcal{F}_{2}. Thus, $\chi_{\rho}(G-e)=4$ and G is not $4-\chi_{\rho}$-critical. If $l=4 k, k \geq 1$, then $G-e$ is isomorphic to $H-u_{2}$, where $H \in \mathcal{F}_{3}$. By Theorem 3.4, $\chi_{\rho}(G-e) \leq 3$ and consequently, G is $4-\chi_{\rho}$-critical. Finally, let $l=4 k+1$, $k \geq 0$. In this case, we can form a 3-packing coloring of $G-e$ as follows. Let the vertices of the triangle receive colors $1,2,3$ such that the vertex of degree 3 receives a color 3 . Further, color the leaves with color 1 , and the remaining vertices (of $P_{4 k+2}$) one after another with the following pattern of colors: $1,2,1,3$. This implies that G is $4-\chi_{\rho}$-critical. In conclusion, each graph from \mathcal{F}_{1}^{\prime} is 4 - χ_{ρ}-critical.

Further, let $G \in \mathcal{F}_{2}$ (see Fig. 8b). If $e \in E(G) \backslash\left\{u_{1} u_{2}\right\}$, then $G-e$ is isomorphic to X_{n}, to a subgraph of X_{n} or to the disjoint union of such graphs. Hence, by Lemma 2.1, $\chi_{\rho}(G-e) \leq 3$. If $e=u_{1} u_{2}$, then $G-e$ is isomorphic to $H-\left\{u_{2}, v_{2}\right\}$, where $H \in \mathcal{F}_{5}$. Using Theorem 3.4, we infer that $\chi_{\rho}(G-e) \leq 3$. Hence, every $G \in \mathcal{F}_{2}$ is $4-\chi_{\rho}$-critical.

Now, consider a graph $G \in \mathcal{F}_{3}$ (see Fig. 8c). Clearly, if $u_{2} u_{3} \in E(G)$, then $G-u_{2} u_{3} \in \mathcal{F}_{3}$ and hence, G is not $4-\chi_{\rho}$-critical. Thus, we only need to consider the case when $G \in \mathcal{F}_{3}^{\prime}$. If $e \in E(G) \backslash\left\{u_{1} u_{2}, v_{1} v_{2}\right\}$, then $G-e$ is isomorphic to (a subgraph of) X_{n}, to a subgraph of Y_{n} or to the disjoint union of such graphs. Using Lemma 2.1, we derive that $\chi_{\rho}(G-e) \leq 3$. If $e=v_{1} v_{2}$, then $G-e$ is isomorphic to $H-v_{2}$, where $H \in \mathcal{F}_{5}$. By Theorem 3.4, $\chi_{\rho}(G-e) \leq 3$. Note that $\chi_{\rho}\left(G-u_{1} u_{2}\right) \leq 3$, since u_{2} is a leaf. Hence, every graph $G \in \mathcal{F}_{3}^{\prime}$ is $4-\chi_{\rho}$-critical.

Next, let $G \in \mathcal{F}_{4}$ (see Fig. 8d). First, suppose that $v_{1} y_{l-1} \in E(G)$. Then $G-v_{1} y_{l-1} \in \mathcal{F}_{4}$ and by Theorem 3.4, $\chi_{\rho}\left(G-v_{1} y_{l-1}\right)=4$. Hence, G is not $4-\chi_{\rho}$-critical. Analogously, we prove that G is not a $4-\chi_{\rho}$-critical graph, if $v_{1} w_{2} \in E(G)$. If $v_{1} y_{l-1}, v_{1} w_{2} \notin E(G)$, then G is a tree and consequently, it is $4-\chi_{\rho}$-critical. Therefore, each graph from \mathcal{F}_{4}^{\prime} is $4-\chi_{\rho}$-critical.

Finally, let $G \in \mathcal{F}_{5}$ (see Fig. 8e). If G contains at least one of the edges from $\left\{u_{2} u_{3}, v_{2} v_{3}\right\}$, then $G-e \in \mathcal{F}_{5}$ for $e \in\left\{u_{2} u_{3}, v_{2} v_{3}\right\}$. By Theorem 3.4, $\chi_{\rho}(G-e)=4$ and thus, G is not $4-\chi_{\rho}$-critical. Otherwise, G is a tree and clearly, it is $4-\chi_{\rho}$-critical. Therefore, every graph from \mathcal{F}_{5}^{\prime} is $4-\chi_{\rho}$-critical. This concludes the proof.

5. Concluding remarks and open problems

In this paper, we have characterized $4-\chi_{\rho}$-vertex-critical graphs and 4- χ_{ρ}-critical graphs.
It is easy to prove that every finite graph G with $\chi_{\rho}(G)=k$ contains a χ_{ρ}-critical subgraph H with $\chi_{\rho}(H)=k$. Therefore, every graph G with $\chi_{\rho}(G)=4$ can be constructed by adding edges to a graph from $\mathcal{F}_{1}^{\prime} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}^{\prime} \cup \mathcal{F}_{4}^{\prime} \cup \mathcal{F}_{5}^{\prime} \cup \mathcal{C}_{5} \cup \mathcal{C}_{6} \cup \mathcal{C} \cup\left\{K_{4}, H_{1}, H_{2}, \ldots, H_{9}\right\}$ (or it belongs to this set). In this way, the family of graphs with packing chromatic number 4 can be characterized.

Note that S-packing colorings generalize the notion of packing colorings. Recall that, if $S=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a non-decreasing sequence of positive integers, then an S-packing k-coloring of a graph G is a partition of $V(G)$ into sets $X_{1}, X_{2}, \ldots, X_{k}$ such that for each pair of distinct vertices in the set X_{i}, the distance between them is larger than a_{i}. The S-packing chromatic number of $G, \chi_{S}(G)$, is the smallest k such that G has an S-packing k-coloring [21]. Clearly, a k-packing coloring coincides with an S-packing k-coloring where $S=(1,2,3, \ldots, k)$. Holub, Jakovac and Klavžar [22] studied S-packing chromatic vertex-critical graphs. These are graphs G with the property that $\chi_{S}(G-u)<\chi_{S}(G)$ holds for every $u \in V(G)$. Among other results, the authors in [22] have partially characterized $4-\chi_{S}$-critical graphs when $s_{1}>1$. It would be natural to study also the $4-\chi_{S}$-critical graphs for different sequences S.

References

[1] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of cubic graphs, Discrete Math. 341 (2018) 474-483.
[2] J. Balogh, A. Kostochka, X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs Combin. 35 (2019) 513-537.
[3] D. Božović, I. Peterin, A note on the packing chromatic number of lexicographic products, Discrete Appl. Math. 293 (2021) 34-37.
[4] B. Brešar, J. Ferme, Packing coloring of Sierpiński-type graphs, Aequationes Math. 92 (2018) 1091-1118.
[5] B. Brešar, J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337-2342.
[6] B. Brešar, J. Ferme, Graphs that are critical for the packing chromatic number, Discuss. Math. Graph Theory (in press); https://doi.org/10.7151/dmgt. 2298.
[7] B. Brešar, J. Ferme, K. Kamenicḱa, S-packing colorings of distance graphs $G(\mathbb{Z},\{2, t\})$, Discrete Appl. Math. 298 (2021) 143-154.
[8] B. Brešar, J. Ferme, S. Klavžar, D. F. Rall, A survey on packing colorings, Discuss. Math. Graph Theory 40 (2020) 923-970.
[9] B. Brešar, N. Gastineau, O. Togni, Packing colorings of subcubic outerplanar graphs, Aequationes Math. 94 (2020) 945-967.
[10] B. Brešar, S. Klavžar, D.F. Rall, On the packing chromatic number of Cartesian products, hexagonal lattice, and trees, Discrete Appl. Math. 155 (2007) 2303-2311.
[11] B. Brešar, S. Klavžar, D.F. Rall, Packing chromatic number of base-3 Sierpiński graphs, Graphs Combin. 32 (2016) 1313-1327.
[12] F. Deng, Z. Shao, A. Vesel, On the packing coloring of base-3 Sierpiński and H graphs, Aequationes Math. (2020); https://doi.org/10.1007/s00010-020-00747-w.
[13] J. Ekstein, P. Holub, O. Togni, The packing coloring of distance graphs $D(k, t)$, Discrete Appl. Math. 167 (2014) 100-106.
[14] J. Ekstein, J. Fiala, P. Holub, B. Lidický, The packing chromatic number of the square lattice is at least 12, arXiv:1003.2291 [cs.DM] (11 Mar 2010).
[15] J. Ferme, D. Štesl, On distance dominator packing coloring in graphs, Filomat 35 (2021) 4005-4016.
[16] J. Fiala, S. Klavžar, B. Lidický, The packing chromatic number of infinite product graphs, European J. Combin. 30 (2009) $1101-1113$.
[17] A. Finbow, D.F. Rall, On the packing chromatic number of some lattices, Discrete Appl. Math. 158 (2010) 1224-1228.
[18] J. Fresán-Figueroa, D. González-Moreno, M. Olsen, On the packing chromatic number of Moore graphs, Discrete Appl. Math. 289 (2021) 185-193.
[19] N. Gastineau, P. Holub, O. Togni, On the packing chromatic number of subcubic outerplanar graphs, Discrete Appl. Math. 255 (2019) 209-221.
[20] W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris, D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33-49.
[21] W. Goddard, H. Xu, The S-packing chromatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 795-806.
[22] P. Holub, M. Jakovac, S. Klavžar, S-packing chromatic vertex-critical graphs, Discrete Appl. Math. 285 (2020) 119-127.
[23] S. Klavžar, D.F. Rall, Packing chromatic vertex-critical graphs, Discrete Math. Theor. Comput. Sci. 21 (3) (2019) \#8, 18 pp.
[24] D. Korže, A. Vesel, On the packing chromatic number of square and hexagonal lattice, Ars Math. Contemp. 7 (2014) 13-22.
[25] D. Laïche, I. Bouchemakh, É. Sopena, Packing coloring of some undirected and oriented coronae graphs, Discuss. Math. Graph Theory 37 (2017) 665-690.
[26] R. Lemdani, M. Abbas, J. Ferme, Packing chromatic number of some particular graphs, Filomat 34 (2020) 3275-3286.
[27] B. Martin, F. Raimondi, T. Chen, J. Martin, The packing chromatic number of the infinite square lattice is between 13 and 15 , Discrete Appl. Math. 225 (2017) 136-142.
[28] R. Soukal, P. Holub, A note on packing chromatic number of the square lattice, Electron. J. Combin. 17 (2010) N\#17, 7pp.
[29] O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280-289.
[30] P. Torres, M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Appl. Math. 190-191 (2015) 127-140.
[31] A. Vesel, D. Korže, Packing coloring of generalized Sierpiński graphs, Discrete Math. Theor. Comput. Sci. 21 (3) (2019) \#7, 18 pp.

[^0]: 2020 Mathematics Subject Classification. Primary 05C15, 05C70, $05 C 12$.
 Keywords. packing coloring, packing chromatic number, packing chromatic vertex-critical graph, packing chromatic critical graph. Received: 13 January 2022; Accepted: 02 February 2022
 Communicated by Dragan S. Djordjević
 Research supported by the Slovenian Research Agency (the research projects J1-9109, J1-1693, J1-3002).
 Email address: jasmina.ferme1@um.si (Jasmina Ferme)

