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Abstract. This research work examines the standard static spacetime (SSST) in terms of almost Ricci-
Yamabe soliton with conformal vector field. It is shown that almost Ricci-Yamabe soliton in standard static
spacetime with functionψ satisfies Poisson-Laplace equation. Next, we consider the functionψ is harmonic
and discuss the harmonic aspect of almost Ricci-Yamabe soliton on SSST. In addition, we investigate the
nature of almost Ricci-Yamabe soliton on SSST with non-rotating Killing vector field. Also, we exhibit that
non-steady non shrinking almost Ricci-Yamabe soliton i.e., λ ≥ 0 on smooth, connected, and non-compact
SSST with Killing vector field satisfies the Schrödinger equation for a smooth function ψ. Finally, we study
almost Ricci-Yamabe soliton on static perfect fluid and vacuum static spacetime with conformal Killing
vector field.

1. Introduction

Einstein’s ”Theory of General Relativity” (GR) is usually referred to as the geometric theory of grav-
itation. As one of the most successful theories of the physics in the 20th century, GR has revealed the
fundamental interplay between physics and the geometry of spacetime. During the past 100 years, it has
been one of the most active research fields in both physics and mathematics. Besides its essential role in the
theoretical study, GR has also gained great success in engineering when applying to our daily life. After
being proposed, seeking the various solution to Einstein’s field equation become one of the most important
problems.

The most obvious solution is the Minikowski spacetime, which is the four dimensional Euclidean spaceR4

equipped with Lorentzian metric. The other non-trivial solutions are like Schwartzchild solution, de-Sitter,
Kerr etc. Static spacetime is a particular and relevant universal solution among all those solutions. One of
the common features is that the time direction after a proper rescaling can be written as a Killing vector
field, when evolving along the integral curve of which, the spatial slices remain invariant. This is the reason
we call them ”static” according to Newton’s viewpoint on space and time.
In GR, Lorentzian twisted product manifolds were adapted in order to find a general solution to Einstein’s
field equations. Two well-known significant examples are generalized Robertson Walker spacetime (GRW)
( for more details see [9], [16]) and standard static spacetime (SSST) [8]. Basically, a normal static spacetime
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can be treated as a Lorentzian warped product manifold where the warping function f is defined on Rie-
mannian manifold and acting on the negative definite metric on an open interval I of real numbers .

The study of spacetime symmetries is an important task for solving the Einstein’s field equations. Sym-
metries are a feature of geometry and thus expose the physics. In term of spacetime geometry and matter,
there are various symmetries. As they simplify the solution to many problems, the metric equations are
valuable. In GR, their primary utilization is that they classify solution of Einstein’s field equations. Solitons
are one such symmetry along with the geometric flow of geometrical spacetime. Ricci flow and Yamabe
flow are useful because they can help to grasp the theory of energy and entropy. Ricci soliton and Yamabe
soliton are the points at which Hamilton [12] applied the curvatures to a self-similar solution.

The symmetries of spacetime in terms of Ricci solitons were investigated by Ahsan and Ali [1]. In [3]
Blaga characterized the geometrical features of a perfect fluid spacetime in form of Einstein solitons, Ricci
solitons and their extensions. In [19] researchers have discussed certain geometrical significance of perfect
fluid spacetime with conformal Ricci soliton. Furthermore, many geometers also illustrated the spacetime
with various solitons, which are closely related to this paper (for more details see [4], [6], [18]).

Recently, in 2020, Siddiqi and Akyol [17] discussed about a new soliton named Ricci-Yamabe soliton.
The scalar combination of Ricci and Yamabe flow is a new geometric flow [10]. This is also identified as the
Ricci-Yamabe flow form (α, β). The Ricci-Yamabe flow is an evolution of the semi-Riemannian manifolds
that are described as

∂
∂t
1(t) = −2αS(t) + βr(t)1(t), 10 = 1(0). (1)

The Ricc-Yamabe flow can also be a semi-Riemannian or singular Riemannian flow according to the
indication of involved scalars α and β. In certain geometrical physical models, for example, relativistic
theories, this kind of multiple choice may be efficient. Ricci-Yamabe soliton, therefore, inevitably occurs
as the limit of the flow of Ricci-Yamabe soliton. This is valuable encouragement to lead the study of Ricci-
Yamabe soliton. In [5] where the name Ricci-Bourguignon soliton corresponding to Ricci-Bourguignon flow
but relying on a single scalar, the interpolation solitons between Ricci and Yamabe soliton are interpreted.

Ricci-Yamabe solitons are called a soliton in the Ricci-Yamabe flow if it moves diffeomorphism and
scaling by one parameter group only. In fact a Ricci-Yamabe soliton on the semi-Riemannian manifold
(M, 1) is a data (1,V, λ, α, β) satisfying

1
2
LV1 + αS + (λ −

βr
2

)1 = 0, (2)

where LV indicates the Lie derivative in the direction of vector field V, S and r is the Ricci tensor, and
scalar curvature, respectively. In (M, 1), Ricci-Yamabe soliton is called expanding, shrinking, or steady,
corresponding to λ > 0, λ < 0 or λ = 0, respectively. Therefore, generalization of Ricci soliton and Yamabe
soliton is termed as (α, β)-type Ricci-Yamabe soliton in (2). Moreover, Ricci-Yamabe soliton is called α-Ricci
soliton and β-Yamabe soliton corresponding to (α, 0), and (0, β), respectively.

Example 1.1. Let us mention the situation of Einstein soliton, which generates self-similar solutions to Einstein flow
in such a way that

∂
∂t
1(t) = −2

(
S −

r
2

)
1.

Therefore, an Einstein soliton occurs as the limit of the Einstein flow solution, such that

LV1 + 2S + (λ −
r
2

)1 = 0. (3)

Comparing equation (3) with (2), we find (1, 1) type-Ricci-Yamabe soliton.
According to Pigola et al. [23] if we swap the constant λ in (2) with a smooth function λ ∈ C∞(M), called

soliton function, then we say that (M, 1) is an almost Ricci-Yamabe soliton.
Therefore, encouraged by the earlier research work, in this research paper, we illustrate the geometry of

a standard static spacetime (SSST) in terms of almost Ricci-Yamabe soliton.
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2. Preliminaries

A standard static spacetime (briefly say SSST) is a Lorentzian warped product manifold M̄ = Iψ ×M
with the metric 1̄ = −ψ2dt2

⊕ 1, where (M, 1) is a Riemannian manifold. ψ : M −→ (0,∞) is smooth and
I = (t1, t2) with −∞ ≤ t1 < t2 ≤ ∞. We use the same notation for a vector field X ∈ χ(M) and for its lift to
SSST M̄. Likewise, a function ω on M will be identified with ω ◦ π on M̄, where π : Iψ ×M −→ M is the
natural projection map of I ×M onto M. We use 1radω ∈ χ(M) for the gradient vector field of ω on M and
for its to χ(M) ([2], [22]). The submanifold {t} ×M and M are isomorphic for every t ∈M.

Let M̄ = Iψ×M be a standard static spacetime with the metric tensor 1̄ = −ψ2dt2
⊕1. Then the Levi-Civita

connection ∇̄ on M̄ is given by [8]

∇̄∂t∂t = ψ1radψ, ∇̄∂t E = ∇̄E∂t = E(lnψ)∂t, ∇̄EF = ∇EF (4)

for any vector fields E,F ∈ χ(M), where ∇ is the Levi-Civita connection on M. The Riemannian curvature
tensor R̄ is given by

R̄(E, ∂t)∂t = −ψ∇E1radψ, (5)

R̄(∂t, ∂t)∂t = R̄(∂t, ∂t)E = R̄(E,F)∂t = 0, (6)

R̄(∂t,E)F =
1
ψ

Hψ(E,F)∂t, (7)

R̄(E,F)G = R(E,F)G, (8)

where R is the curvature tensor of M and Hψ(E,F) = 1(∇E1radψ,F) is the Hessian of ψ. Now, the Ricci
curvature tensor S̄ and scalar curvature r̄ of SSST M̄ are as follows

S̄(∂t, ∂t) = ψ∆ψ, S̄(E, ∂t) = 0, (9)

S̄(E,F) = S(E,F) −
1
ψ

Hψ(E,F), (10)

r̄ = r − 2
1
ψ

∆ψ, (11)

where ∆ψ denotes the Laplacian of ψ on M. The Lie derivative Lξ in the direction of ξ is given by

(Lξ1)(E,F) = 1(∇Eξ,F) + 1(E,∇Fξ) (12)

where E,F are vector fields in χ(M).

3. Almost Ricci-Yamabe Soliton on standard static spacetime

In this section, first we recall the definition of conformal vector field [14].

Definition 3.1. A vector field ξ is called conformal if Lξ1 = ρ1 for some smooth function ρ : M −→ R. If ρ = 0,
then the vector field, is called Killing. Also ξ is a Killing vector field if and only if 1(∇Eξ,E) = 0 for any vector field
E ∈ χ(M).

Consider, that h∂t, x∂t, y∂t ∈ χ(I) and ξ,E,F ∈ χ(M), then we have

(L̄ξ1̄)(Ē, F̄) = (Lξ1)(E,F) − 2xyψ2(h· + ξ(lnψ)), (13)

where ξ̄ = h∂t + ξ, Ē = x∂t + E and F̄ = y∂t + F. The above expression (13) is a particular case of a notable
one on warped product manifolds [9].
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Now, let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton, where M̄ = Iψ ×M is a standard static
spacetime and ξ̄ = h∂t + ξ ∈ χ(M). It is clear that a potential field ξ̄ is conformal on (M̄, 1̄) if and only if
(M̄, 1̄) is an Einstein manifold.

Assume that (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton, then from equation (2) we have

(L̄ξ̄1̄)(Ē, F̄) + 2αS̄(Ē, F̄) + (2λ − βr̄)1̄(Ē, F̄) = 0, (14)

where Ē = xh∂t + E and F̄ = yh∂t + F are vector fields on M̄. Using (13), (10) and (11), we get

(Lξ1)(E,F) + 2αS(E,F) −
1
ψ

Hψ(E,F) + (2λ − β
{

r − 2
1
ψ

∆ψ

}
)1(E,F) = 0. (15)

Suppose now that Hψ = 0 and ∆ψ = 0, then we find

(Lξ1)(E,F) + 2αS(E,F) + (2λ − βr)1(E,F) = 0. (16)

Thus, we have the following results:

Theorem 3.2. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton where M̄ = Iψ×M is a SSST and ξ̄ = h∂t +ξ ∈
χ(M) and assume that Hψ = 0 and ∆ψ = 0. Then (M, 1, ξ, λ, α, β) is an almost Ricci-Yamabe soliton.

Theorem 3.3. Let (M̄, 1̄, ξ̄, λ, 0, 1) be an almost Ricci-Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST
and ξ̄ = h∂t + ξ ∈ χ(M) and assume that Hψ = 0 and ∆ψ = 0. Then (M, 1, ξ, λ, α, β) is an almost Yamabe soliton.

Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton where M̄ = Iψ ×M is a standard static speacetime
and ξ̄ = h∂t + ξ ∈ χ(M). Then

(L̄ξ̄1̄)(Ē, F̄) + 2αS̄(Ē, F̄) + (2λ − βr̄)1̄(Ē, F̄) = 0,

Thus

(Lξ1)(E,F) + 2αS(E,F) −
1
ψ

Hψ(E,F) + (2λ − β
{

r − 2
1
ψ

∆ψ

}
)1(E,F) = 0. (17)

h·ψ + ξ(ψ) − α∆ψ = (λ −
βr
2

)ψ. (18)

Suppose that 1radψ is a concircular vector field [14] with factor ρ, then

(Lξ1)(E,F) + 2αS(E,F) + (2λ − βr +
ρ

ψ
)1(E,F) = 0. (19)

Hence we conclude that

Theorem 3.4. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton where M̄ = Iψ ×M is a SSST and assume that
1radψ is a concircular vector field with factor ρ. Then (M, 1, ξ, λ, α, β) is an almost Ricci-Yamabe soliton whenever
ρ
ψ − βr is constant.

Theorem 3.5. Let (M̄, 1̄, ξ̄, λ, 0, 1) be an almost Ricci-Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST
and assume that 1radψ is a concircular vector field with factor ρ. Then (M, 1, ξ, λ, α, β) is an almost Yamabe soliton
whenever ρ

ψ is constant.

Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton where M̄ = Iψ ×M is a standard static speacetime
and ξ̄ = h∂t + ξ ∈ χ(M) be a conformal vector field on M̄. Then

αS̄(Ē, F̄) = (λ −
βr̄
2
− ρ)1̄(Ē, F̄) (20)
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and hence from (9) we turn up

α∆ψ = (λ −
βr̄
2
− ρ)ψ. (21)

Again using (11) in the above equation entails that

2αS(E,F) −
1
ψ

Hψ(E,F) + (2λ − β
{

r − 2
1
ψ

∆ψ

}
)1(E,F) = 0. (22)

Assuming that Hψ = 0 and ∆ψ = 0, we have αS(E,F) = 0. Thus we have the following results.

Theorem 3.6. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST,
Hψ = 0 and ∆ψ = 0 with ξ̄ = h∂t + ξ ∈ χ(M) is a conformal vector field on M̄ with factor 2ρ − βr. Then (M, 1) is
Ricci flat and λ = ρ +

βr
2 .

Theorem 3.7. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST, Hψ = 0
and ∆ψ = 0 with ξ̄ = h∂t + ξ ∈ χ(M) is a conformal vector field on M̄ with factor 2ρ − r. Then (M, 1) is Ricci flat
and λ = ρ + r

2 .

Corollary 3.8. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST,
Hψ = 0 and ∆ψ = 0 with ξ̄ = h∂t + ξ ∈ χ(M) is a conformal Killing vector field on M̄. Then (M, 1) is an expanding
almost Ricci-Yamabe soliton i.e., λ =

βr
2 .

Corollary 3.9. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST,
Hψ = 0 and ∆ψ = 0 with ξ̄ = h∂t + ξ ∈ χ(M) is a conformal Killing vector field on M̄. Then (M, 1) is an expanding
almost Yamabe soliton i.e., λ = r

2 .

Corollary 3.10. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST
and ξ̄ = h∂t + ξ ∈ χ(M) and consider that Hψ = 0 and ∆ψ = 0 and (M, 1) is Ricci flat. Then ξ̄ is a conformal with
factor −2λ + βr̄.

Proof. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST with
ξ̄ = h∂t + ξ ∈ χ(M). Then

(L̄ξ̄1̄)(Ē, F̄) + 2αS̄(Ē, F̄) + (2λ − βr̄)1̄(Ē, F̄) = 0,

for any vector fields Ē, F̄ ∈ χ(M). From (10) and (11), we obtain

(L̄ξ̄1̄)(Ē, F̄) = −(2λ − βr̄)1̄(Ē, F̄),

i.e., ξ̄ is a conformal vector field with factor −(2λ − βr̄).

Theorem 3.11. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST
and ξ̄ = h∂t + ξ ∈ χ(M) and consider that Hψ = 0, ∆ψ = 0 and (M, 1) is Ricci flat. Moreover if ξ̄ is a conformal
vector field with factor −2λ + βr̄, then (M̄, 1̄, ξ̄, λ, α, β) also admits an almost Yamabe soliton.

4. Poisson-Laplace equation for standard static spacetime

Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST and
ξ̄ = h∂t + ξ is vector field on M and µ : I −→ R is smooth function. We have

1
2

(L̄ξ̄1̄)(Ē, F̄) + αS̄(Ē, F̄) =

(
λ −

βr̄
2

)
1̄(Ē, F̄) (23)
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Now, computing above equation (23) at (∂t, ∂t), we find that

∆(ψ) = (µ
′

− λ −
βr
2

)ψ + ξ(ψ) (24)

It is clear that λ = µ
′

+
βr
2 if ψ is a constant. Equation (24) at (E,F) where E,F ∈ χ(M) we get

1
2

(Lξ1)(E,F) + αS(E,F) =

(
λ −

βr
2

+
1
ψ

∆ψ

)
1̄(Ē, F̄) +

1
ψ

Hψ(E,F) (25)

If ξ is a conformal vector field on M, then we have

αS(E,F) =

(
λ − ρ −

βr
2

+
1
ψ

∆ψ

)
1̄(Ē, F̄) +

1
ψ

Hψ(E,F) (26)

Thus M is Einstein if Hψ = 0. Taking trace on both sides we get

r =

(
α +

βn
2

) [
n(λ − ρ) +

n
ψ

∆ψ

]
(27)

Theorem 4.1. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1. Consider that (M̄, 1̄, ξ̄, λ, α, β) be an almost

Ricci-Yamabe soliton of type (α, β). Then the function ψ satisfies the Poisson-Laplace equation

∆(ψ) =
ψ

n

(
α +

βn
2

)
−

1
ψ

(µ
′

− λ). (28)

Corollary 4.2. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1. Consider that (M̄, 1̄, ξ̄, λ, α, 0) be an almost

Ricci soliton of type (1,0). Then the function ψ satisfies the Poisson-Laplace equation

∆(ψ) =
ψ

n
α −

1
ψ

(µ
′

− λ). (29)

Corollary 4.3. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1. Consider that (M̄, 1̄, ξ̄, λ, 0, β) be an almost

Yamabe soliton of type (0,1). Then the function ψ satisfies the Poisson-Laplace equation

∆(ψ) =
ψ

n

(
βn
2

)
−

1
ψ

(µ
′

− λ). (30)

Theorem 4.4. If (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ×M is a SSST with
metric 1̄ = −ψ2dt2

⊕ 1 and ξ is a conformal vector field on M, then the scalar curvature r of M is given by

r =

(
α +

βn
2

) [
n(λ − ρ) +

n
ψ

∆ψ

]
(31)

Corollary 4.5. If (M̄, 1̄, ξ̄, λ, α, 0) be an almost Ricci soliton of type (1, 0), where M̄ = Iψ ×M is a SSST with metric
1̄ = −ψ2dt2

⊕ 1 and ξ is a conformal vector field on M, then the scalar curvature r of M is given by

r = α

[
n(λ − ρ) +

n
ψ

∆ψ

]
(32)

Corollary 4.6. If (M̄, 1̄, ξ̄, λ, 0, β) be an almost Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST with
metric 1̄ = −ψ2dt2

⊕ 1 and ξ is a conformal vector field on M, then the scalar curvature r of M is given by

r =
βn2

2

[
(λ − ρ) +

∆ψ

ψ

]
(33)
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Now, from (26) we also have the following result

Theorem 4.7. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1. Consider that (M̄, 1̄, ξ̄, λ, α, β) be an almost

Ricci-Yamabe soliton of type (α, β). Then M is an Einstein manifold if ξ is a conformal vector field and Hψ = 0.

Corollary 4.8. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1. Consider that (M̄, 1̄, ξ̄, λ, α, 0) be an almost

Ricci soliton of type (1, 0). Then M is an Einstein manifold if ξ is a conformal vector field and Hψ = 0.

4.1. Significance of Poisson-Laplace equation in Physics
The GR of solution of Poisson-Laplace equation is known as potential theory and the solution of Poisson-

Laplace equation are harmonic functions, which are important in branches of physics, electrostatics, gravi-
tation and fluid dynamics. In modern physics, there are two fundamental forces of the nature known at the
time, namely, gravity and the electrostatics forces, could be modeled using functions called the gravitational
potential and electrostatics potential both of which satisfy Poisson-Laplace equation. For example, consider
the phenomena, if ψ be the gravitational filed, ρ the mass density and G the gravitational constant. The
Gauss’s law of gravitational in differential form is

∇ψ = −4πGρ. (34)

In case of gravitational field,ψ is conservative and can be expressed as the negative gradient of gravitational
potential, i.e., ψ = −1rad f then by the Gauss’s law of gravitational , we have

∇
2 f = 4πGρ. (35)

This physical phenomena is directly identical to the Theorem (4.1) and equation (28), which is a Poisson-
Laplace equation with potential vector filed of gradient type.

4.2. Application of Poisson-Laplace equation in Cosmology
In the Newtonian cosmology the Poisson-Laplace equation for the gravitational field ∇2 f = 4πGρ. This

equation for the universe pre suppose that matter is continuously distributed with mass density ρ, while
G stands for Newton’s gravitational constant and f is the gravitational potential. Therefore, Newtonian
gravitational potential also satisfy the Poisson-Laplace equation with Newtonian cosmological constant Λ
such that

∇
2 f = 4πGρ −Λ

Poisson-Laplace equation obey the principal of relativity, it describes gravitational field. The Azimuthally
symmetric theory of gravitation (ASTG-model), Magneto-Hydro-Dynamic (MHD) modeling of molecular
clouds are also based on the Poisson-Laplace equation.

5. Harmonic aspect of almost Ricci-Yamabe soliton on SSST

This section is based on the fact that a function f : M −→ R is said to be harmonic if ∆ f = 0, where ∆ is
the Poisson-Laplace operator on M [24], we have the following results:

Theorem 5.1. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1 and ψ is a harmonic function on M. Also

(M̄, 1̄, ξ̄, λ, α, β) admits an almost Ricci-Yamabe soliton of type (α, β). Then the soliton is expanding, steady and
shrinking according as

1. 1
ψµ

′

>
ψ
n

(
α +

βn
2

)
,
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2. 1
ψµ

′

=
ψ
n

(
α +

βn
2

)
and

3. 1
ψµ

′

<
ψ
n

(
α +

βn
2

)
respectively.

Proof. Form equation (28) we can easily obtain the desired result.

Corollary 5.2. Let M̄ = Iψ × M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1 and ψ is a harmonic function on M.

Also (M̄, 1̄, ξ̄, λ, α, 0) admits an almost Ricci soliton of type (α, 0). Then soliton is expanding, steady and shrinking
according as

1. 1
ψµ

′

>
ψ
nα,

2. 1
ψµ

′

=
ψ
nα and

3. 1
ψµ

′

<
ψ
nα respectively.

Corollary 5.3. Let M̄ = Iψ ×M be a SSST with metric 1̄ = −ψ2dt2
⊕ 1 and ψ is a harmonic function on M. Also

(M̄, 1̄, ξ̄, λ, 0, β) admits an almost Yamabe soliton of type (0, β). Then soliton is expanding, steady and shrinking
according as

1. 1
ψµ

′

>
βψ
2 ,

2. 1
ψµ

′

=
βψ
2 and

3. 1
ψµ

′

<
βψ
2 respectively.

6. Almost Ricci-Yamabe soliton on SSST with non-rotating Killing vector field

First, we remind the concept of a curl operator on a semi-Riemannian manifold of an arbitrary finite
dimension, that is , if V is a vector field on a semi-Riemannian manifold (M̄, 1̄), then curlV is an anti-
symmetric 2-covariant tensor field described by [15]

curlV(E,F) = 1(∇EV,F) − 1(∇FV,E), (36)

where E,F ∈ χ(M).

Remark 6.1. If V a Killing vector field on a semi-Riemannian manifold (M, 1), then V is non-rotating if and only if
it is parallel. Indeed, for any E,F ∈ χ(M)

(LV1)(E,F) = curlV(E,F) + 21(∇FV,E) = 0. (37)

Thus CurlV(E,F) = 0 for any E,F ∈ χ(M) and for any F ∈ χ(M) then 1(∇FV,E) = 0 for any E ∈ χ(M).

Now, from above remark and using Corollaries (3.8) and (3.9), we obtain the following results

Theorem 6.2. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (α, β), where M̄ = Iψ ×M is a SSST,
Hψ = 0 and ∆ψ = 0 with ξ̄ = h∂t +ξ ∈ χ(M) is a non-rotating Killing vector field on M̄. Then (M, 1) is an expanding
almost Ricci-Yamabe soliton i.e., λ =

βr
2 .

Corollary 6.3. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (0, 1), where M̄ = Iψ ×M is a SSST,
Hψ = 0 and ∆ψ = 0 with ξ̄ = h∂t + ξ ∈ χ(M) is a non-rotating Killing vector on M̄. Then (M, 1) is an expanding
almost Yamabe soliton i.e., λ = r

2 .
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7. Schrödinger equation for connected and non-compact standard static spacetime

In [11] Grigoyan and Losev considering the Schrodinger equation if M be a smooth, connected and
non-compact Riemannian manifold, ∆ the Laplace-Beltrami operator on M, and f is a smooth non negative
function on M not identically zero, then considering the Schrödinger equation on M such that

∆u − f (x)u = 0, (38)

Therefore, we adopt the equation (21) for α = 1 , β = 0 and assume the condition for Killing vector [8]
filed i.e., ρ = 0

∆ψ − λψ = 0. (39)

Thus, we can state the following theorem

Theorem 7.1. Let (M̄, 1̄, ξ̄, λ, α, β) be an almost Ricci-Yamabe soliton of type (1, 0), where M̄ = Iψ×M is a connected
and non-compact standard static spacetime with a Killing vector field on M̄ and (M, 1) is a non-shrinking and
non-steady almost Ricci-Yamabe soliton i.e., λ > 0. Then the smooth function ψ : M −→ R satisfies the Schrödinger
equation

(∆ − λ)ψ = 0. (40)

8. Almost Ricci-Yamabe solitons in Static perfect fluid and Vacuum static spacetime

Static spacetimes for Einstein’s field equations are significant universal solutions. Therefore, we are
concerned in this part with static spacetime bearing perfect fluid matter and admitting an almost Ricci-
Yamabe solitons with conformal Killing vector field [14].

A static spacetime M̄ = Iψ ×M with metric 1̄ = −ψ2dt2
⊕ 1 satisfies the Einstein equation

S̄ −
r̄
2
1̄ = (µ + p)η ⊗ η + p1̄, (41)

for the energy-momentum stress tensor of a perfect fluid

T = −µψ2dt2
− p1 (42)

where S̄ and r̄ indicates the Ricci tensor and scalar curvature, , respectively for metric 1̄ in (41). In addition,
η is a 1-form with 1̄(η, η) = −1 whose related vector field reflects the flux of the fluid, µ and p are smooth
functions, namely time independent mass-energy density and pressure of the perfect fluid respectively in
equation (42), also some solutions of (41) provide models for galaxies, stars and black holes ( for more
details see [15, 20]).

From (42) we know that the static perfect fluid spacetime equation is equivalent to [21](
S −

r
n
1

)
ψ = ∇2ψ −

∆ψ

n
1, (43)

and

r = 2µ, ψp =
n − 1

n

[
∆ψ −

n − 2
2(n − 1)

rψ
]
.

In particular M̄ = Iψ ×M with metric 1̄ = −ψ2dt2
⊕ 1 is said to be a vacuum static spacetime if (43) reduces to

[21]

∇
2ψ −

(
S −

r
n
1

)
ψ = 0, (44)
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where S, r, and ∇2ψ are, respectively, the Ricci tensor, scalar curvature, and Hessian traceless tensor, ∆ is
the Laplacian for 1.

Now consider the fact that vector field ξ̄ is Killing and using (16), (43), and (44), we find

λ =

(
α
ψ
∇

2ψ + α
∆ψ

nψ

)
− 2µ

(
α
n
−
β

2

)
. (45)

Thus, we have followings results:

Theorem 8.1. If a static perfect fluid spacetime (M̄, 1̄) satisfying the Einstein equation with a conformal Killing
vector field admits an almost Ricci-Yamabe soliton (1̄, ξ̄, λ, α, β) of type (α, β), then almost Ricci-Yamabe soliton is
expanding, steady and shrinking according as

1. )
(
α
ψ∇

2ψ + α
∆ψ
nψ

)
> 2µ

(
α
n −

β
2

)
,

2.
(
α
ψ∇

2ψ + α
∆ψ
nψ

)
= 2µ

(
α
n −

β
2

)
, and

3.
(
α
ψ∇

2ψ + α
∆ψ
nψ

)
< 2µ

(
α
n −

β
2

)
, respectively.

Theorem 8.2. If a Vacuum static spacetime (M̄, 1̄) satisfying the Einstein equation with a conformal Killing vector
field admits an almost Ricci-Yamabe soliton (1̄, ξ̄, λ, α, β) of type (α, β), then almost Ricci-Yamabe soliton is expanding,
steady and shrinking according as

1. α
ψ∇

2ψ > 2µ
(
α
n −

β
2

)
,

2. α
ψ∇

2ψ = 2µ
(
α
n −

β
2

)
, and

3. α
ψ∇

2ψ < 2µ
(
α
n −

β
2

)
, respectively.

Corollary 8.3. If a static perfect fluid spacetime (M̄, 1̄) satisfying the Einstein equation with a conformal Killing
vector field admits an almost Yamabe soliton (1̄, ξ̄, λ, α, β) of type (0, β), then almost Yamabe soliton is expanding i.e
λ = βµ.

Corollary 8.4. If a Vacuum static spacetime (M̄, 1̄) satisfying the Einstein equation with a conformal Killing vector
field admits an almost Yamabe soliton (1̄, ξ̄, λ, α, β) of type (0, β), then almost Yamabe soliton is also expanding.
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