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Available at: http://www.pmf.ni.ac.rs/filomat

Invariant Submanifolds of Hyperbolic Sasakian Manifolds and
η-Ricci-Bourguignon Solitons

Sudhakar K Chaubeya, M. Danish Siddiqib, D. G. Prakashac

a Section of Mathematics, Department of Information Technology, University of Technology and Applied Sciences-Shinas, P.O. Box 77 Postal
Code 324, Oman

bDepartment of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia
cDepartment of Studies in Mathematics, Davangere University, Shivagangothri Campus, Davangere - 577 007, India

Abstract. We set the goal to study the properties of invariant submanifolds of the hyperbolic Sasakian
manifolds. It is proven that a three-dimensional submanifold of a hyperbolic Sasakian manifold is totally
geodesic if and only if it is invariant. Also, we discuss the properties of η-Ricci-Bourguignon solitons on
invariant submanifolds of the hyperbolic Sasakian manifolds. Finally, we construct a non-trivial example of
a three-dimensional invariant submanifold of five-dimensional hyperbolic Sasakian manifold and validate
some of our results.

1. Introduction

The concept of Ricci-Bourguignon flow as an extension of Ricci flow [22] has been introduced by J.
P. Bourguignon [10] based on some unprinted article of Lichnerowicz and a paper of Aubin [2]. Ricci-
Bourguignon flow is an intrinsic geometric flow on Riemannian manifolds, whose fixed points are solitons.
Therefore, the Ricci-Bourguignon solitons generate self-similar solution to the Ricci-Bourguignon flow [10]:

∂1

∂t
= −2(Ric − ρR1), 1(0) = 10, (1)

where Ric is the Ricci curvature tensor, R is the scalar curvature with respect to the semi-Riemannian metric
1 and ρ is a non-zero real constant. It should be noticed that for special values of the constant ρ in equation
(1), we obtain the following situations for the tensor Ric− ρR1 appearing in equation (1). In particular [10],
we have

(i) for ρ = 1
2 , the Einstein tensor Ric − R

2 1 (for Einstein soliton [5]),
(ii) for ρ = 1

n , the traceless Ricci tensor Ric − R
n 1,

(iii) for ρ = 1
2(n−1) , the Schouten tensor Ric − R

2(n−1)1 (for Schouten soliton [10]),
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Corresponding author: Sudhakar K Chaubey
Email addresses: sk22 math@yahoo.co.in (Sudhakar K Chaubey), msiddiqi@jazanu.edu.sa (M. Danish Siddiqi),

prakashadg@gmail.com (D. G. Prakasha)



S. K. Chaubey et al. / Filomat 36:2 (2022), 409–421 410

(iv) for ρ = 0, the Ricci tensor Ric (for Ricci soliton [22]).

In dimension two, the first three tensors are zero, hence the flow is static, and in higher dimensions, the
value of ρ is strictly ordered as above, in descending order.

Short time existence and uniqueness for the solutions of this geometric flow have been proved in [10].
In fact, for sufficiently small t, the equation (1) has a unique solution for ρ < 1

2(n−1) .
On the other hand, quasi-Einstein metrics or Ricci solitons serve as solutions to Ricci flow equation

( ∂1∂t = −2Ric, 1(0) = 10) [11, 22]. Aubin [2] has given the notion of Ricci-Bourguignon flow in a complete
Riemannian manifold. Recently, De et al. [19] and Danish [30] have studied the properties of Ricci-
Bourguignon solitons. A (semi-)Riemannian manifold of dimension n ≥ 3 is said to be Ricci-Bourguignon
soliton [2] if

1
2
LV1 + Ric + (λ − ρR)1 = 0, (2)

where LV denotes the Lie derivative operator along the vector field V (called soliton or potential vector
field), ρ is a non-zero constant and λ is a real constant. Similar to the Ricci soliton, a Ricci-Bourguignon
soliton (M, 1,V, λ, ρ) is called expanding if λ > 0, steady if λ = 0 and shrinking if λ < 0.

Perturbing the equation that define (2) Ricci-Bourguignon solitons by multiple of a certain (0, 2)-tensor
field η ⊗ η, we obtain a slightly more general notion, namely η-Ricci-Bourguignon solitons [30] such as

LV1 + 2Ric + 2(λ − ρR)1 + 2ωη ⊗ η = 0, (3)

where ω is a real constant and η is 1-form. Particularly, if we choose ρ = 0 in equation (3), then the η-Ricci
Bourguignon soliton reduces to the η-Ricci soliton (see [6], [7], [12]-[14], [18], [20], [24], [31], [32], [34]). We
say that (M, 1, f , λ, ρ) is a gradient Ricci-Bourguignon soliton if the potential vector field V, defined in (2),
is the gradient of some smooth function f on M. Here, the soliton equation (2) takes the following form as:

Hess f + Ric + (λ − ρR)1 = 0, (4)

where Hess f is the Hessian of f .
Motivated by the contact structure, Upadhyay and Dube [33] introduced the notion of an almost

hyperbolic contact
(

f , 1, η, ξ
)
-structure. A (2n+1)-dimensional differentiable manifold of class C∞ equipped

with the structure
(

f , 1, η, ξ
)

is known as an almost hyperbolic contact manifold. Further, it was studied
by number of authors [1, 3, 25, 28]. Let Tp(M̃) denote the tangent space of the almost hyperbolic contact
manifold M̃ at point p. Then a vector field ν ∈ Tp(M̃), ν , 0, is said to be time-like (resp., null, space-like,
and non-space-like) if it satisfies 1p(ν, ν) < 0 (resp., = 0, > 0, and ≤ 0) ([17, 27]). If {e1, e2, . . . , e2n, e2n+1 = ξ}
represents a local orthonormal basis of M̃, then the Ricci tensor Ric and scalar curvature R of an almost
hyperbolic contact metric manifold, respectively, are defined as follows:

Ric(X,Y) =

2n+1∑
i=1

εi1(R̃(ei,X)Y, ei) =

2n∑
i=1

εi1(R̃(ei,X)Y, ei) − 1(R̃(ξ,X)Y, ξ), (5)

R =

2n+1∑
i=1

εiRic(ei, ei) =

2n∑
i=1

εiRic(ei, ei) − Ric(ξ, ξ) (6)

for all X, Y ∈ TM̃, where εi = 1(ei, ei), ξ is a unit time-like vector field, R̃ represents the curvature tensor of
M̃ and TM̃ denotes the tangent bundle of M̃.

We structure our work as follows: Section 2 gathers the basic information of hyperbolic Sasakian
manifolds whereas in Section 3 we give some basic tools of submanifolds of the hyperbolic Sasakian
manifolds. The properties of invariant submanifolds of the hyperbolic Sasakian manifolds are studied in
Section 4. Sections 5 and 6 deal with the study of η-Ricci-Bourguignon solitons on invariant submanifolds
of hyperbolic Sasakian manifolds. We give a non-trivial example of an invariant submanifold of hyperbolic
Sasakian manifold in Section 7.
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2. Hyperbolic Sasakian manifolds

Let M̃ be an (n = 2m + 1)-dimensional differentiable manifold of differentiability class C∞. Then the
structure (φ, ξ, η) satisfying

φ2 = I + η ⊗ ξ, η ◦ φ = 0 (7)

is said to be an almost hyperbolic contact structure [33], where I denotes the identity transformation and
φ, η, ξ and ⊗ are the tensor fields of type (1, 1), (0, 1), (1, 0) and tensor product, respectively. The manifold
M̃ equipped with the structure (φ, ξ, η) is called an almost hyperbolic contact manifold. From (7), it is
noticed that

φξ = 0, η(ξ) = −1 and rank(φ) = n − 1. (8)

If the associated semi-Riemannian metric 1 of M̃ satisfies

1(X, ξ) = η(X) and 1(φX, φY) + 1(X,Y) + η(X)η(Y) = 0 (9)

for all X,Y ∈ TM̃, then the structure (φ, ξ, η, 1) is called an almost hyperbolic contact metric structures and
M̃ with the structure (φ, ξ, η, 1) is known as an almost hyperbolic contact metric manifold. From (9), it is
obvious that 1(φX,Y) = −1(X, φY), ∀ X,Y ∈ TM̃.

An almost hyperbolic contact metric manifold is said to be an almost hyperbolic Sasakian manifold if
the 2-form defined as Φ(X,Y) = 1(φX,Y) satisfies −2Φ = dη, which is equivalent to

(∇̃Xφ)(Y) = 1(X,Y)ξ − η(Y)X. Then ∇̃Xξ = −φX, (10)

for X,Y ∈ TM̃. Here ∇̃ represents the Levi-Civita connection of M̃. It is obvious from (7)-(10) that a
hyperbolic Sasakian manifold satisfies the following relations

R̃(X,Y)ξ = η(Y)X − η(X)Y, (11)

η(R̃(X,Y)Z) = η(X)1(Y,Z) − η(Y)1(X,Z), (12)

R̃(ξ,X)Y = 1(X,Y)ξ − η(Y)X (13)

for X, Y, Z ∈ TM̃.

3. Submanifolds of hyperbolic Sasakian manifolds

Let M be a submanifold immersed in a hyperbolic Sasakian manifold M̃. We use the same notation 1
for the induced metric of M. Let TM be a set of all vector fields tangent to M, and T⊥M is a set of all vector
fields normal to M. Then the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y), (14)

∇̃XN = −ANX + ∇⊥XN (15)

for X, Y ∈ TM and N ∈ T⊥M, where ∇ and ∇⊥ are the connections in TM and T⊥M, respectively. The second
fundamental form h and the shape operator AN are connected by the relation

1(ANX,Y) = 1(h(X,Y),N), ∀ X, Y ∈ TM, N ∈ T⊥M. (16)

A submanifold M of an n-dimensional hyperbolic Sasakian manifold M̃ is said to be invariant if the
structure vector field ξ is tangent to M everywhere on M and φX is tangent to M for any vector field X
tangent to M at every point of M, that is, φ(TM) ⊂ TM (see [15], [23], [29], [35]).

A submanifold M of a hyperbolic Sasakian manifold M̃ is said to be totally umbilical [15] if

h(X,Y) = 1(X,Y)H, (17)

where H is the mean curvature on M for X,Y ∈ TM. Moreover, if h(X,Y) = 0 for all X,Y ∈ TM, then M is
totally geodesic and if H = 0, then M is minimal in M̃.
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4. Invariant submanifold of a hyperbolic Sasakian manifold

This section is dedicated to study the properties of invariant submanifolds of hyperbolic Sasakian
manifolds.

Lemma 4.1. If M is an invariant submanifold of a hyperbolic Sasakian manifold M̃, then there exists the distributions
D and D⊥ on M such that

TM = D ⊕D⊥ ⊕ 〈ξ〉, φ(D) ⊂ D⊥ and φ(D⊥) ⊂ D.

Proof. Since the characteristic vector field ξ is tangent to the invariant submanifold M of M̃, we have
TM = D1

⊕ 〈ξ〉. Let X ∈ D1. Then 1(ξ,X) = 0 and 1(X, φX) = 0. This shows that φX is orthogonal to ξ and
X. If possible, we suppose that D1 = D ⊕D⊥, where X ∈ D ⊂ D1 and φX ∈ D⊥ ⊂ D1. If φX ∈ D⊥, then from
equation (7) we have φ(φX) = φ2X = X + 1(ξ,X)ξ = X ∈ D. Again if X ∈ D and φX = Y ∈ D⊥. Then we
can easily show that for X ∈ D, φX ∈ D⊥ and for Y ∈ D⊥, φY ∈ D. Hence, the statement of proposition is
proved.

Lemma 4.2. The second fundamental form h on an invariant submanifold M of a hyperbolic Sasakian manifold M̃
satisfies

h(X, ξ) = 0 and h(X, φY) = h(φX,Y) = φh(X,Y).

Proof. In view of equations (10) and (14), we immediately get the first result. Taking the covariant derivative
of φY along the vector field X and making use of equation (14), we get

(∇̃Xφ)(Y) = (∇Xφ)(Y) + h(X, φY) − φh(X,Y).

This equation along with equation (10), after taking normal part, give the second part of Lemma 4.2.

Lemma 4.3. An invariant submanifold M of a hyperbolic Sasakian manifold M̃ satisfies the following relations:

∇Xξ = −φX,

R(X,Y)ξ = η(Y)X − η(X)Y,

R(ξ,X)Y = 1(X,Y)ξ − η(Y)X,

Qξ = (n − 1)ξ, Ric(X, ξ) = (n − 1)η(X).

Proof. The straight forward calculation follows Lemma 4.3.

Lemma 4.4. [26] An invariant submanifold M of a hyperbolic Sasakian manifold M̃ is also hyperbolic Sasakian.

Now, we prove the following:

Theorem 4.5. Every 3-dimensional invariant submanifold M of a hyperbolic Sasakian manifold is totally geodesic.

Proof. Let M be a 3-dimensional invariant submanifold of a hyperbolic Sasakian manifold M̃. Then from
Lemma 4.4, it is obvious that M is also a hyperbolic Sasakian manifold. We have from (7)

φ2h(X,Y) = h(X,Y) + η(h(X,Y))ξ.

From Lemma 4.1, we have

TM = D ⊕D⊥ ⊕ 〈ξ〉.

Let X1, Y1 ∈ D. Then from the Lemma 4.2, we have

h(X1, φY1) = φ h(X1,Y1).
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Also, Lemma 4.2 tells that

φh(X1, φY1) = φ2h(X1,Y1).

Since h(X1,Y1) ∈ T⊥M, h(X1,Y1) is orthogonal to ξ ∈ TM. Thus, the above equation gives

φh(X1, φY1) = h(X1,Y1) = h(φX1, φY1) = φ2h(X1,Y1). (18)

Next, we suppose that X2, Y2 ∈ D⊥ and X2 = φX1, Y2 = φX2. We have

h(X2,Y2) = h(φX1, φY1) = h(X1,Y1),

where equation (18) is used. As we know that h is bilinear, therefore for X1, Y1 ∈ D and X2, Y2 ∈ D⊥, we
get

h(X1 + X2 + ξ,Y1) = h(X1,Y1) + h(X2,Y1) + h(ξ,Y1),

h(X1 + X2 + ξ,−Y2) = −h(X1,Y2) − h(X2,Y2) − h(ξ,Y2)

and

h(X1 + X2 + ξ, ξ) = h(X1, ξ) + h(X2, ξ) + h(ξ, ξ).

It is well-known that on a hyperbolic Sasakian manifold, h(X, ξ) = 0, ∀ X ∈ TM. By considering this result
together with the last expressions, we have

h(X1 + X2 + ξ,Y1 − Y2 + ξ) = h(X2,Y1) − h(X1,Y2).

If U, W ∈ TM, then we can write U and W as

U = X1 + X2 + ξ, and W = Y1 − Y2 + ξ.

We have

h(U,W) = h(X1 + X2 + ξ,Y1 − Y2 + ξ) = h(X2,Y1) − h(X1,Y2),

φh(U,W) = h(X2, φY1) − h(φX1,Y2) = 0,

φ2(h(U,W)) = 0 =⇒ h(U,W) = 0.

Then follows the statement.

Theorem 4.6. Every totally geodesic submanifold M of a hyperbolic Sasakian manifold is invariant.

Proof. We suppose that the submanifold M of a hyperbolic Sasakian manifold M̃ is totally geodesic, that is,

h(X,Y) = 0, ∀X, Y ∈ TM.

We shall prove that the submanifold M of a hyperbolic Sasakian manifold M̃ is invariant. Thus, we have to
show φX < T⊥M. To prove this, if possible, we suppose that the vector field φX has a component, say LX
along the normal vector field of M. It is obvious that ALXY ∈ TM, ∀ X, Y ∈ TM. Let Z = ALXY , 0. Then

1(Z,Z) = 1(ALXY,Z) = 1(h(Y,Z),LX) = 0. (19)

Since Z is a non-null and non-zero vector field of TM implies 1(Z,Z) , 0. Thus our hypothesis that φX
has a component along T⊥M is inadmissible. Hence φX ∈ TM and therefore the submanifold M of M̃ is
invariant.

In view of Theorem 4.6, we can state the following corollary as:
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Corollary 4.7. Every 3-dimensional geodesic submanifold M of a hyperbolic Sasakian manifold M̃ is invariant.

By considering the Theorem 4.5 and Corollary 4.7, we can state:

Theorem 4.8. A 3-dimensional submanifold M of a hyperbolic Sasakian manifold M̃ is totally geodesic if and only if
it is invariant.

Next, we have the following results:

Lemma 4.9. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃. Then

(∇Yh)(Z, ξ) = −h(Z,∇Yξ) (20)

for any Y,Z ∈ TM.

Proof. From Lemma 4.2 we turn up

(∇Yh)(Z, ξ) = ∇Yh(Z, ξ) − h(∇YZ, ξ) − h(Z,∇Yξ),

which gives the statement of Lemma 4.9.

Corollary 4.10. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃. Then

(∇Yh)(Z, ξ) = h(Z, ϕY) (21)

for any Y,Z ∈ TM.

Proof. By using equations (10) and (20), we get (21).

Corollary 4.11. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃. Then the following
conditions are equivalent.

1. M is totally geodesic,
2. h is parallel,
3. (∇Y∇Zh)(ξ, ξ) = 0,

where Y and Z are arbitrary vector fields on M.

Theorem 4.12. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃. Then

ϕ(ANZ) = AϕNZ = −ANϕZ (22)

for all Z ∈ TM, N ∈ TM⊥.

Proof. Adopting (9) and (16) for all Z ∈ TM, N ∈ TM⊥ we turn up

1(ϕ(ANZ),W) = −1(ANZ, ϕW) = −1(h(Z, ϕY),N)

= −1(h(ϕZ,W),N) = −1(ANϕZ,W).

Then, we have ϕ(ANZ) = −ANϕZ. Now using Lemma (4.2), we lead to

1(AϕNZ,W) = 1(h(Z,W), ϕN) = −1(ϕ(h(Z,W)),N) = −1(h(Z, ϕW),N)

= −1(ANZ, ϕW) = 1(ϕ(ANZ),W).

Thus, we have the result.
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5. η-Ricci-Bourguignon solitons on invariant submanifolds

Let us adopt (1, ξ, λ, ω, ρ) as an η-Ricci-Bourguignon soliton on an invariant submanifold M of a hyper-
bolic Sasakian manifold M̃. Then we have

(Lξ1)(X,Y) + 2Ric(X,Y) + 2(λ + ρR)1(X,Y) + 2ωη(X)η(Y) = 0. (23)

From (10) and (14), we turn up

−φX = ∇̃Xξ = ∇Xξ + h(X, ξ). (24)

If M is invariant in M̃, then −φX, ξ ∈ TM and therefore equating the tangential and normal parts of (24) we
find that

∇Xξ = −ϕX and h(X, ξ) = 0. (25)

Again from (10) we lead to

(Lξ1)(X,Y) = 1(∇Xξ,Y) + 1(X,∇Yξ) = 0. (26)

Adopting (23) and (25) we trun up

Ric(X,Y) = −(λ − ρR)1(X,Y) − ωη(X)η(Y), (27)

which implies that M is η-Einstein. Also, from (17) and (25) we get η(X)H = 0, i.e., H = 0, since η(X) , 0 (in
general) and therefore M is minimal in M̃. Thus, we turn up to the following:

Theorem 5.1. If (1, ξ, λ, ω, ρ) is an η-Ricci-Bourguignon soliton on an invariant submanifold M of a hyperbolic
Sasakian manifold M̃. Then we have the following:

1. M is η-Einstein,
2. M is minimal and
3. ξ is a Killing vector field in M̃.

Now, by choosing the different values of ρ in equation (27), we obtain the following table:

ρ Solitons Expression of Ricci tensor
1
2 η-Einstein solitons Ric(X,Y) = −(λ − R

2 )1(X,Y) − ωη(X)η(Y)
1

2(n−1) η-Schouten solitons Ric(X,Y) = −(λ − R
2(n−1) )1(X,Y) − ωη(X)η(Y)

0 η-Ricci solitons Ric(X,Y) = −λ1(X,Y) − ωη(X)η(Y)

(28)

From table (28) and Theorem 5.1, we state the following corollaries:

Corollary 5.2. If (1, ξ, λ, ω, ρ) is an η-Einstein or η-Schouten or η-Ricci solitons on an invariant submanifold M of
M̃, then we have

1. M is η-Einstein,
2. M is minimal and
3. ξ is Killing vector field in M̃.

From Lemma (4.3), we have

Ric(X, ξ) = (n − 1)η(X),

and henceforth

Ric(ξ, ξ) = −(n − 1). (29)

Also from (27) we trun up

Ric(ξ, ξ) = −(λ − ρR) − ω. (30)

Thus from (29) and (30) we obtain λ = ρR + [(n − 1) − ω]. In particular, if we choose ω = 0 then the
η-Ricci-Bourguignon soliton becomes the Ricci-Bourguignon soliton and λ = ρR + (n− 1). This leads to the
following:
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Theorem 5.3. Let (1, ξ, λ, ω, ρ) be an η-Ricci-Bourguignon soliton on an invariant submanifold M of M̃. Then
λ+ω = ρR+n−1. Also, the Ricci-Bourguignon soliton (1, ξ, λ, ρ) on M is steady, expanding or shrinking according
as ρR > −(n − 1), ρR = −(n − 1) or ρR < −(n − 1), respectively.

Also, in consequence of Theorem 5.3 we can easily obtain the followings corollaries:

Corollary 5.4. An Einstein soliton (1, ξ, λ, 1
2 ) on an invariant submanifold M of a hyperbolic Sasakian manifold M̃

is steady, expanding or shrinking according as R
2 > −(n − 1), R

2 = −(n − 1) or R
2 < −(n − 1), respectively.

Corollary 5.5. A Schouten soliton (1, ξ, λ, 1
2(n−1) ) on an invariant submanifold M of a hyperbolic Sasakian manifold

M̃ is steady, expanding or shrinking according as R
2(n−1) > −(n−1), R

2(n−1) = −(n−1) or R
2(n−1) < −(n−1), respectively.

Corollary 5.6. A Ricci soliton (1, ξ, λ, 0) on an invariant submanifold M of a hyperbolic Sasakian manifold M̃ is
shrinking, expanding or steady if Ric(ξ, ξ) > 0, < 0 or = 0, respectively.

6. η-Ricci-Bourguignon solitons with concircular vector field on invariant submanifolds

This section deals with the study of η-Ricci-Bourguignon solitons with concircular vector field on an
invariant submanifold M of a hyperbolic Sasakian manifold M̃.

In 1939, A. Fialkow [21] has been proposed the theory of concircular vector fields on a Riemannian
manifold. A vector field v on a (semi-)Riemannian manifold M is said to be a concircular vector field if it
satisfies

∇Uv = µU, (31)

for any U ∈ TM, where ∇ denotes the Levi-Civita connection of the metric 1 and µ is a non-trivial smooth
function on M. The concircular vector fields are also known as geodesic fields because their integral
curves are geodesics [21]. Recently, Chen [16] studied the properties of Ricci solitons on submanifolds of a
Riemannian manifold equipped with a concircular vector field. Particularly, if we choose µ = 1 in equation
(31), then the concircular vector field v is called concurrent vector field.

For an invariant submanifold, from Lemma (4.1), we can write

v = vT + v⊥, (32)

where v ∈ TM, vT
∈ D and v⊥ ∈ D⊥.

Since v is a concircular vector field on M̃ and from (32), we get

µU = ∇̃UvT + ∇̃Uv⊥ (33)

for any U ∈ D. Also, from (14) and (15), we turn up

µU = ∇UvT + h(U, vT) − Av⊥U + ∇⊥Uv⊥. (34)

By comparing the tangential and normal components of equation (34), we conclude that

h(U, vT) = −∇⊥Uv⊥, ∇UvT = µU − Av⊥U. (35)

Now, we prove the following theorem as:

Theorem 6.1. Let M be an invariant submanifold of M̃ admitting an η-Ricci-Bourguignon soliton with a concircular
vector field v. Then the Ricci tensor RicD on the invariant distribution D is given by

RicD(U,W) = −

{(
λ −

ρR
2

+ µ

)
1(U,W) + 1(h(U,W), v⊥) + ωη(U)η(W)

}
(36)

for any U,W ∈ D.
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Proof. By the definition of Lie-derivative, we have

(LvT1)(U,W) = 1(∇UvT,W) + 1(U,∇WvT). (37)

Adopting (35) together with (37), the above equation infers that

(LvT1)(U,W) = 2µ1(U,W) − 21(h(U,W), v⊥). (38)

Again, since the invariant submanifold M admits an η-Ricci-Bourguignon soliton, therefore we observe that

(LvT1)(U,W) + 2RicD(U,W) + 2(λ − ρR)1(U,W) + 2ωη(U)η(W) = 0. (39)

From equations (38) and (39), we obtain the statement of Theorem 6.1.

In particular, if we take µ = 1 in equation (31) then we will get concurrent vector field. Let us suppose that v
is a concurrent vector field and (1, v, λ, ω, ρ) is an η-Ricci-Bourguignon soliton in an invariant submanifold
M of a hyperbolic Sasakian manifold M̃. Then by following the similar process of Theorem 6.1, we can state
the following:

Theorem 6.2. If an invariant submanifold M of a hyperbolic Sasakian manifold M̃ admits an η-Ricci-Bourguignon
soliton with the concircular vector field v, then the invariant distribution D of M is η-Einstein, provided the invariant
distribution D of M is D-geodesic.

In view of Theorem 6.1, we can write the following corollaries as:

Corollary 6.3. Let M be an invariant submanifold of M̃ admitting an η-Ricci-Bourguignon soliton with a concurrent
vector field v. Then the Ricci tensor RicD on the invariant distribution D is given by

RicD(U,W) = −

{(
λ −

ρR
2

+ 1
)
1(U,W) + 1(h(U,W), v⊥) + ωη(U)η(W)

}
(40)

for any U,W ∈ D.

Corollary 6.4. Suppose that an invariant submanifold M of M̃ admits an η-Ricci-Bourguignon soliton with a
concurrent vector field v. If the invariant distribution D of M is D-geodesic, then the invariant distribution D is
η-Einstein.

Remark 6.5. It is noticed that if we choose D⊥ distribution and D⊥-geodesic condition in the above theorems and
corollaries, then after following the similar steps we obtain the results as stated in Theorem 6.1, Theorem 6.2 and
Corollary 6.3, Corollary 6.4.

Now, with the help of Table (28) and Theorem 6.1, we can easily obtain following corollaries as:

Corollary 6.6. If an invariant submanifold M of a hyperbolic Sasakian manifold M̃ admits an η-Einstein soliton with
a concircular vector field v, then the Ricci tensor RicD on the invariant distribution D is given by

RicD(U,W) = −
{(
λ −

R
2

+ µ
)
1(U,W) + 1(h(U,W), v⊥) + ωη(U)η(W)

}
(41)

for any U,W ∈ D.

Corollary 6.7. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃ admitting an η-Schouten
soliton with a concircular vector field v. Then the Ricci tensor RicD of the invariant distribution D is given by

RicD(U,W) = −

{(
λ −

R
2(n − 1)

+ µ

)
1(U,W) + 1(h(U,W), v⊥) + ωη(U)η(W)

}
(42)

for any U,W ∈ D.

Corollary 6.8. Let M be an invariant submanifold of a hyperbolic Sasakian manifold M̃ admitting an η-Ricci soliton
with a concircular vector field v. Then the Ricci tensor RicD on the invariant distribution D is given by

RicD(U,W) = −
{
(λ + µ)1(U,W) + 1(h(U,W), v⊥) + ωη(U)η(W)

}
for any U,W ∈ D.
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7. Example

Let Rn be an n-dimensional real number space. Define M5 = {(x1, x2, x3, x4, x5) : xi ∈ R, i = 1, 2, ..., 5}. Let
{e1, e2, e3, e4, e5} be a set of linearly independent vector fields of M5 given by

e1 = e2x1
∂
∂x1
− 2x2

∂
∂x3

, e2 =
∂
∂x3

+
∂
∂x2

, e3 =
∂
∂x3

, e4 = x4
∂
∂x4
− 2x5

∂
∂x3

, e5 =
∂
∂x5

.

We define the (1, 1)-tensor field φ of M5 as

φe1 = e2, φe2 = e1, φe3 = 0, φe4 = e5, φe5 = e4.

Also, we define the associated metric 1 of M5 by the following relation.

1(ei, e j) =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

 .
By the linearity property of φ and 1, we can show that the relations

φ2ei = ei + η(ei)ξ, η(ξ) = −1

hold for i = 1, 2, 3, 4, 5 and ξ = e3. Again, for ξ = e3, M5 satisfies 1(ei, e3) = η(ei), 1(φei, e j) = −1(ei, φe j) and
1(φei, φe j) = −1(ei, e j) − η(ei)η(e j), where i, j = 1, 2, 3, 4, 5. It can be easily obtained that

[ei, e j] =


2e3, i = 1, j = 2
2e3, i = 4, j = 5

0, otherwise,

where i, j = 1, 2, 3, 4, 5. Koszul’s formula for the Levi-Civita connection ∇ is given by

21(∇XY,Z) = X1(Y,Z) + Y1(X,Z) − Z1(X,Y) − 1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y])

for all vector fields X, Y and Z on M5. In view of this formula and the above results, we have

∇e1 e1 = 0, ∇e1 e2 = e3, ∇e1 e3 = −e2, ∇e1 e4 = 0, ∇e1 e5 = 0,
∇e2 e1 = −e3, ∇e2 e2 = 0, ∇e2 e3 = −e1, ∇e2 e4 = 0, ∇e2 e5 = 0,
∇e3 e1 = −e2, ∇e3 e2 = −e1, ∇e3 e3 = 0, ∇e3 e4 = −e5, ∇e3 e5 = −e4,

∇e4 e1 = 0, ∇e4 e2 = 0, ∇e4 e3 = −e5, ∇e4 e4 = 0, ∇e4 e5 = −e3,

∇e5 e1 = 0, ∇e5 e2 = 0, ∇e5 e3 = −e4, ∇e5 e4 = −e3, ∇e5 e5 = 0.

From the above equations, it is obvious that ∇Xξ = −φX for all X ∈ TM5 and ξ = e3. Thus, the structure
(φ, ξ, η, 1) is an almost hyperbolic Sasakian structure and M5 equipped with the structure (φ, ξ, η, 1) is an
almost hyperbolic Sasakian manifold of dimension 5.

We suppose that f is an isometric immersion from M3 to M5 defined by f(x1, x2, x3, x4, x5) = (x1, x2, x3, 0, 0).
Let the triplet (x1, x2, x3) be the standard coordinates in R3. We define M3 = {(x1, x2, x3) ∈ R3 such that

(x1, x2, x3) , 0}. If we consider the vector fields

e1 = e2x1
∂
∂x1
− 2x2

∂
∂x3

, e2 =
∂
∂x3

+
∂
∂x2

, e3 =
∂
∂x3

on M3, then they form a basis for M3. By considering these vectors, we can easily find the components of
Lie bracket for e1, e2 and e3 as:

[e1, e2] = 2e3, [e1, e3] = 0, [e2, e3] = 0 (43)
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and other components can be obtained by using the skew-symmetric property of Lie bracket. Let the
associated metric 1 of M3 is defined by

1(ei, e j) =

 1 0 0
0 −1 0
0 0 −1

 .
Suppose that the 1-form η with respect to the metric 1 is defined as η(X) = 1(X, ξ), ∀ X ∈ TM3. The
(1, 1)-type tensor φ of M3 is defined by

φe1 = e2, φe2 = e1, φe3 = 0.

By the linearity of φ and 1, we can easily see that for ξ = e3

φ2X = X + η(X)ξ, η(ξ) = −1

and

1(φX, φY) = −1(X,Y) − η(X)η(Y), ∀ X, Y ∈ TM3.

From the Koszul’s formula, we have

∇e1 e1 = 0, ∇e1 e2 = e3, ∇e1 e3 = −e2, ∇e2 e1 = −e3, ∇e2 e2 = 0,
∇e2 e3 = −e1, ∇e3 e1 = −e2, ∇e3 e2 = −e1, ∇e3 e3 = 0. (44)

It is obvious from these equations that ∇Xξ = −φX for ξ = e3 and X ∈ TM3 holds on M3. Thus, (M3, 1)
is a 3-dimensional hyperbolic Sasakian manifold. It is obvious that (M3, 1) is a submanifold of (M̃5, 1). To
achieve our goal, we have to prove that M3 is an invariant as well as totally geodesic.

If possible, we suppose that 〈e1〉 = D and 〈e2〉 = D⊥, then the tangent space TM of M3 takes the form
TM = D ⊕D⊥ ⊕ 〈ξ〉. Let U ∈ D and W ∈ D⊥, then we can write U = αe1 and W = βe2, where α and β are the
smooth functions. We have

φU = φ(α e1) = αφe1 = α e2 ∈ D⊥ ∈ TM

and
φW = φ(β e2) = βφe2 = β e1 ∈ D ∈ TM.

Hence, we can say that M3 = M under consideration is an invariant submanifold of M5 = M̃.
From equation (14), we have

h(ei, e j) = ∇̃ei e j − ∇ei e j.

It is evident from the above results that

h(ei, e j) = 0, ∀ i, j = 1, 2, 3.

Let U, W ∈ TM. Then we can write U = α1e1 + β1e2 + γ1e3 and W = α2e1 + β2e2 + γ2e3, where αi, βi and γi,
for i = 1, 2, are scalars. We have

h(U,W) = h(α1e1 + β1e2 + γ1e3, α2e1 + β2e2 + γ2e3)
= α1 α2 h(e1, e1) + α1 β2 h(e1, e2) + α1 γ2 h(e1, e3)

+β1 α2 h(e2, e1) + β1 β2 h(e2, e2) + β1 γ2 h(e2, e3)
+γ1 α2 h(e3, e1) + γ1 β2 h(e3, e2) + γ1 γ2 h(e3, e3).

The last two equations give

h(U,W) = 0, ∀ U, W ∈ TM.
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This shows that the 3-dimensional hyperbolic Sasakian submanifold M3 of the 5-dimensional hyperbolic
Sasakian manifold M5 is totally geodesic. Hence, the statement of Theorem 4.8 is verified.

Also, by using equations (43), (44) and the metric of M3 in R(U,Z)W = ∇U∇ZW − ∇Z∇UW − ∇[U,Z]W, we
find the non-zero components of curvature tensor R as:

R(e1, e2)e1 = 3e2, R(e1, e3)e1 = −e3 R(e1, e2)e2 = 3e1, R(e2, e3)e2 = e3, R(e1, e3)e3 = −e1, R(e2, e3)e3 = −e2.

The other components of the curvature tensor can be obtained by the symmetric properties. The above
results together with equations (5) and (6) reveal that

Ric(e1, e1) = Ric(e3, e3) = −2, Ric(e2, e2) = 2 and R = −2.

By the straight forward calculations, we can show that the Lemma 4.2, Lemma 4.3, Lemma 4.4, Theorem
4.5 and Corollary 4.7 hold on M3.
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