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Abstract. For a zero-dimensional topological space X and a totally ordered field F with interval topology,
Cc(X,F) denotes the ring consisting of ordered field-valued continuous functions with countable range on
X. This article aims to study and investigate the rings of quotients of Cc(X,F). Qc(X,F) (resp. qc(X,F)), the
maximal (resp. classical) ring of quotients of Cc(X,F) as a modified countable analogue of Q(X) (resp. q(X)),
the maximal (resp. classical) ring of quotients of C(X) are characterized. It is proved that Qc(S), the maximal
ring of quotients of the subring S of Cc(X,F), is a subring of Qc(X,F) if and only if every dense ideal in S has
dense cozero-set in X. Also, the coincidence of rings of quotients of Cc(X,F) is investigated. We show that
qc(X,F) = Cc(X,F) if and only if the set of non-units and zero-divisors in Cc(X,F) coincide if and only if X is
almost CPF-space. Finally, it is shown that the fixed ring of quotients and the cofinite ring of quotients of
Cc(X) coincide if and only if Hom(Mc

p) = Cc(Xp) for every p ∈ X.

1. Introduction

Unless otherwise mentioned any topological space X is zero-dimensional, any ring is commutative with
identity and F is a totally ordered field with the interval topology. C(X) (C∗(X)) denotes the ring of all
real-valued continuous (bounded) functions on a space X. A ring A(X) lying between C∗(X) and C(X) is
called an intermediate ring. A class of ideals in intermediate rings of continuous functions is introduced in
[5]. The subring of C(X) consisting of those functions with countable (respectively, finite) image, which is
denoted by Cc(X) (respectively, CF(X)) is an R-subalgebra of C(X). The subring C∗c(X) of Cc(X) consists of
bounded elements of Cc(X). The rings Cc(X) and CF(X) are introduced and studied in [11, 12]. It is shown in
[11] that for any topological space X, there exists a zero-dimensional space Y which is a continuous image
of X and Cc(X) � Cc(Y). For more discussion on some topics related to this area, one can refer to articles
[14–16, 20, 26–29]. Let F be a totally ordered field, equipped with its ordered topology and let C(X,F) be the
set of all F-valued continuous functions on X. This latter set becomes a commutative lattice ordered ring
with identity, if the operations are defined pointwise on X. For more information in this regard, we refer
the reader to articles [1, 3, 4]. For each f ∈ C(X,F), the zero-set of f , denoted by Z( f ), is the set of zeros of
f and coz( f ) = X \ Z( f ) is the cozero-set of f and Z(X,F) is the set consisting of all zero-set in X. We recall
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that a zero-dimensional space is a Hausdorff space with a base consisting of clopen (closed-open) sets. For a
zero-dimensional topological space X and a totally ordered field F, we let

Cc(X,F) = { f ∈ C(X,F) : f (X) is a countable subset of F}.

It is easy to check that Cc(X,F) is an F-subalgebra of C(X,F). This ring has been fully investigated in [2].
Given f ∈ Cc(X,F), let | f | : X → F be defined by | f |(x) := | f (x)| = f (x) ∨ − f (x) for each x ∈ X. Therefore,
| − f | = | f | ≥ 0, | f | = 0 gives f = 0 and further | f | is continuous, in fact, | f | ∈ Cc(X,F). Notice that F ⊇ Q, the
set of rational numbers. So for every f , 1 ∈ Cc(X,F), we have f ∨1 = f+1+| f−1|

2 ∈ Cc(X,F), also, f ∧1 ∈ Cc(X,F)
(note, f ∧ 1 = −(− f ∨ −1)). Hence, Cc(X,F) is a subring as well as a sublattice of C(X,F). For an ideal I of
Cc(X,F), we let Z(I) =

⋂
f∈I Z( f ) and coz(I) = X \ Z(I) which is equal to

⋃
f∈I coz( f ).

Suppose A and B are commutative rings with identity. For an ideal I of A, we will denote by HomA(I),
briefly, Hom(I), the set of all A-module homomorphisms of I to A. It is immediate that by the definition
r.φ = rφ such that (rφ)(a) = rφ(a) (a ∈ A), Hom(I) turns into an A-module. If I and J are two ideals in A such
that I ⊆ J, then Hom(J) ⫅ Hom(I). An ideal D of A is called dense in A whenever AnnA(D) = {r ∈ A : rd = 0,
for every d ∈ D} = 0. An element a ∈ A is called regular whenever its annihilator in A is 0. Clearly, a ∈ A
is regular if and only if it is a non-zero-divisor. An ideal in A is called a regular ideal if it contains a regular
element. So a regular ideal is a dense ideal. Also, a principal ideal (a) is dense if and only if a is regular. A
commutative ring is called semiprime (or reduced) if it has no nonzero nilpotent elements. In [10, Definition
1.4], B(⊇ A) is called a ring of quotients of A, provided that for every b ∈ B, the ideal b−1A := {a ∈ A : ab ∈ A}
is dense in B, that is to say, for each 0 , b′ ∈ B there exists a ∈ A such that ba ∈ A and b′a , 0.

Theorem 1.1. ([10, Theorem 1.5]) Suppose B ⊇ A. If A is semiprime, then B is a ring of quotients of A if and only
if b(b−1A) , 0 for all nonzero b ∈ B, i.e., for 0 , b ∈ B there exists a ∈ A such that 0 , ba ∈ A.

Q(A) and q(A) denote the maximal and the classical ring of quotients of A respectively. By [10, 1.2],

q(A) =
{ c
d

: c ∈ A, and d is a non-zero-divisor in A
}
.

For more details on the structure of these rings, one can refer to [17]. Notice that A ≦ q(A) ≦ Q(A). By
Qc(X,F) and qc(X,F), we mean the maximal ring of quotients and the classical ring of quotients of Cc(X,F).
We should also remind that Q(X), the maximal ring of quotients, and q(X) the classical ring of quotients of
C(X) are fully characterized in [10], and, in fact, we are following the methods in [10] in our investigation.

We will need the next lemma which is a consequence of [17, 2.3 Exercise 3].

Lemma 1.2. Let B ⊇ A be a ring of quotients of A. Then Q(A) = Q(B).

A brief outline of this paper is as follows. In Section 2, rings of quotients of Cc(X,F) and C∗c(X,F) are
investigated. We show that Qc(X,F) (resp. qc(X,F)) as a modified countable analogue of Q(X) (resp. q(X))
based on rings of continuous functions with values in F are characterized. It is proved that Qc(S), the
maximal ring of quotients of the subring S of Cc(X,F), is a subring of Qc(X,F) if and only if every dense ideal
in S has dense cozero-set in X. Section 3 deals with the coincidence of rings of quotients of the Cc(X,F), in
particular, we are interested in cases when some of these rings of quotients coincide with Cc(X,F), itself. It is
shown that for a zero-dimensional space X and a totally ordered field F, qc(X,F) = Cc(X,F) if and only if the
set of non-units and zero-divisors in Cc(X,F) coincide if and only if X is almost CPF-space. At the end of the
paper, the fixed ring of quotients and the cofinite ring of quotients of Cc(X) are investigated. We show that the
fixed ring of quotients and the cofinite ring of quotients of Cc(X) coincide if and only if Hom(Mc

p) = Cc(Xp)
for every p in X.

2. Rings of quotients of Cc(X, F) and C∗c(X, F)

In this section, rings of quotients of Cc(X,F) and C∗c(X,F) are investigated. We show these two rings have
the same maximal (resp. classical) ring of quotients. In more general, we show the maximal (resp. classical)
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rings of quotients of Cc(X,F) and each intermediate ring Ac(X,F) coincide. Based on rings of continuous
functions on dense open sets (resp. dense σ-clopen sets) with values in F, the maximal (resp. classical) ring
of quotients of Cc(X,F) is characterized.

Notation 2.1. If f , 1 ∈ Cc(X,F) and 1 is a unit, then we sometimes use f
1

instead of f1−1.

Proposition 2.2. Let f ∈ Cc(X,F) and f−1 : coz( f ) → F \ {0} ⊆ F be defined by f−1(x) = ( f (x))−1. Then f−1 is
continuous.

Proof. Since F is a topological field, the function 1 : F \ {0} → F \ {0}which α 7→ α−1(= 1
α ) is continuous. The

result is now obtained by the fact that f−1 = 1 ◦ ( f |coz( f )).

Corollary 2.3. The units of Cc(X,F) are precisely those f ∈ Cc(X,F) for which coz( f ) = X, i.e., Z( f ) = ∅.

A function f ∈ Cc(X,F) is called bounded if | f (x)| ≤ r for some 0 < r ∈ F and each x ∈ X. So each element
of F is a bounded function on X. Let us put

C∗c(X,F) =
{

f ∈ Cc(X,F) : f is bounded
}
.

Then F ⊆ C∗c(X,F). Moreover, C∗c(X,F) is an F-subalgebra of Cc(X,F).
Let Zc(X,F) =

{
Z( f ) : f ∈ Cc(X,F)

}
and Z∗c(X,F) =

{
Z(1) : 1 ∈ C∗c(X,F)

}
. These two latter sets coincide.

To see this, for f ∈ Cc(X,F), let 1 = | f |(1 + f 2)−1 =
| f |

1+ f 2 . Then 1 ∈ C∗c(X,F), in fact, 0 ≤ 1 ≤ 1 and further
Z( f ) = Z(1). So Zc(X,F) ⊆ Z∗c(X,F) (note, a ≤ a2 + 1 for all a ∈ F and therefore a(1 + a2)−1 = a

a2+1 ≤ 1).
It is stated in [2, Theorem 2.10] that X is zero-dimensional if and only if the family Zc(X,F) is a base

for closed sets in X. Suppose for two subsets A and B of X, there exits f ∈ Cc(X,F) such that f (A) = 0 and
f (B) = 1. Now, if we let 1 = (0 ∨ f ) ∧ 1, then 1 ∈ C∗c(X,F) and we also have 1(A) = 0 and 1(B) = 1.

In [2, Definition 2.9], a Hausdorff space X is called countably completely F-regular, briefly, CCFR space, if
given a closed set K in X and a point x ∈ X \ K, there exists f ∈ Cc(X,F) such that f (x) = 0 and f (K) = 1.

Definition 2.4. Two subsets A and B of X are said to be countably completely F-separated, briefly, CCF separated
(from one another) in X if there exists a function f in C∗c(X,F) such that 0 ≤ f ≤ 1, f (A) = 0 and f (B) = 1.

Corollary 2.5. Two subsets A and B of X are CCF separated in X if and only if there are disjoint zero-sets Z,Z′ ∈
Zc(X,F) such that A ⊆ intXZ and B ⊆ intXZ′, or equivalently, there exits h ∈ C∗c(X,F) such that A ⊆ intXZ(h) and
B ⊆ intXZ(1 − h).

We state the next result without proof that it can be accomplished by following the arguments in [13,
Theorem 3.11(a)].

Proposition 2.6. In a CCFR space, any two disjoint closed sets, one of which is compact, are CCF separated.

A ring Ac(X,F) lying between C∗c(X,F) and Cc(X,F) is called an intermediate ring.

Proposition 2.7. Let Ac(X,F) be an intermediate ring. Then Ac(X,F) and Cc(X,F) have the same classical ring of
quotients and the same maximal ring of quotients.

Proof. First, we show that Cc(X,F) is a ring of quotients of C∗c(X,F). Note that Cc(X,F), and therefore each
subring is semiprime (i.e., f ∈ Cc(X,F) and f 2 = 0, implies that f = 0). Also, a ≤ a2 + 1 for all a ∈ F and
therefore a(1 + a2)−1

≤ 1. Now, let 0 , f ∈ Cc(X,F) and 1 = (1 + f 2)−1 = 1
1+ f 2 . Then 0 < 1 ≤ 1 and | f |1 ≤ 1.

So 0 , f1 ∈ C∗c(X,F), equivalently, 1 ∈ f−1C∗c(X,F), so f ( f−1C∗c(X,F)) , 0. Applying Theorem 1.1, we get the
result. It can now be concluded that Cc(X,F) is also a ring of quotients of Ac(X,F) because for a chain of rings
A ≦ B ≦ C; C is a ring of quotients of A if and only if C is a ring of quotients of B and B is a ring of quotients
of A, see [10, page 8]. To show the coincidence of the classical rings of quotients, let f

1
∈ q(Ac(X,F)). Then
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1 is a non-zero-divisor in Ac(X,F) as well as in Cc(X,F). So q(Ac(X,F)) ≦ qc(X,F). Now, let f
1
∈ qc(X,F) and

notice that f
1
=

f
1+ f 2+12⧸

1

1+ f 2+12 . Since both f
1+ f 2+12 and 1

1+ f 2+12 belong to C∗c(X,F) ≦ Ac(X,F), and further

the latter function is a non-zero-divisor, we get f
1
∈ q(Ac(X,F)). Hence, qc(X,F) ≦ q(Ac(X,F)). Finally, the

coincidence of the maximal rings of quotients follows from Lemma 1.2.

Definition 2.8. A subset S of a space X is called CcF-embedded (resp. C∗cF-embedded) in X if every function in
Cc(S,F) (resp. C∗c(S,F)) can be extended to a function in Cc(X,F) (resp. C∗c(X,F)).

Thus, in this terminology, CcR-embedded (resp. C∗cR-embedded) is precisely Cc-embedded (resp. C∗c-
embedded) introduced in [15].

Every CcF-embedded subset of X is C∗cF-embedded. To see this, let S ⊆ X be CcF-embedded and
f ∈ C∗c(S,F). Take m ∈ F such that | f (x)| ≤ m for each x ∈ S. Let f̄ be the extension of f to X and let
f ∗ = (−m ∨ f̄ ) ∧m. Then f ∗ ∈ C∗c(X,F) and f ∗|S = f . But the converse is not true in general, see Example 3.7.

Proposition 2.9. If V ⊆ X is dense and CcF-embedded in X, then Cc(X,F) � Cc(V,F) as F-algebras.

Theorem 2.10. Let V be a dense open subset of X. Then Cc(V,F) is a ring of quotients of Cc(X,F). Moreover,
Qc(X,F) � Qc(V,F).

Proof. By the above proposition, the density of V in X implies that Cc(X,F) is isomorphic to a subring
of Cc(V,F) via the map: f 7→ f |V. According to Theorem 1.1, we must show if 0 , f ∈ Cc(V,F), then
f ( f−1Cc(X,F)) , 0. So let 0 , f ∈ Cc(V,F). Take v ∈ V such that f (v) , 0. Since X is zero-dimensional and
v < X \V, by [2, Theorem 2.10], there exists 1 ∈ Cc(X,F) such that 1(v) , 0 and X \V ⊆ intXZ(1). Now, let us
define the function h as follows:

h(x) =
{

f (x)1(x) x ∈ V,
0 x ∈ X \ V.

We claim that h ∈ Cc(X,F). To show this, it is enough to show that h is continuous on X\V = V∩X \ V = ∂V.
Let x ∈ X \ V and (xλ)λ∈Λ ⊆ V be a net that converges to x. Then for some λ0 ∈ Λ and each λ ≥ λ0, we have
xλ ∈ intXZ(1) and therefore h(xλ) = 0. So h is continuous, in fact, h ∈ Cc(X,F). This yields h is an extension
of f1 to X. Hence, 1 ∈ f−1Cc(X,F) and f1 , 0. As for the second part, we use Lemma 1.2.

Corollary 2.11. If V is a dense cofinite subset of X, then Cc(V,F) is a ring of quotients of Cc(X,F).

Proposition 2.12. Every dense open subset of X is CcF-embedded (resp. C∗cF-embedded) if and only if every open
subset of X is CcF-embedded (resp. C∗cF-embedded).

Proof. Let V be an open subspace of X and f ∈ Cc(V,F) (resp. f ∈ C∗c(V,F)). We must extend f to X. Notice
that V∪ (X \V) is a dense open subset of X. Define f (x) = f (x) for each x ∈ V and f (x) = 0 for each x ∈ X \V.
Since the subspace V ∪ (X \V) is disconnected, f̄ is continuous. By the hypothesis, f̄ can be extended to X.
The converse is obvious.

Proposition 2.13. Let V ⊆ X. Then V is open if and only if V = coz(I), for some ideal I of Cc(X,F).

Proof. Clearly, ∅ = coz(0) and X = coz(1). Suppose V , ∅ and put I =
{

f ∈ Cc(X,F) : coz( f ) ⊆ V
}
. It is easy

to verify that I is an ideal in Cc(X,F) and coz(I) =
⋃

f∈I coz( f ) ⊆ V. To show equality, let x ∈ V. Then by
Proposition 2.6 (or [2, Theorem 2.10]), there exists f ∈ Cc(X,F) such that f (x) = 1 and X \ V ⊆ intXZ( f ). So
x ∈ coz( f ) and f ∈ I. Hence, V ⊆ coz(I).

The next example shows that not all open, even dense, sets are cozero-sets of elements of Cc(X,F). Notice
that by [2, Theorem 4.1], every zero-set Z ∈ Zc(X,F) is a Gδ-set.
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Example 2.14. Let X∗ = X ∪ {x} (where x < X) be the one-point compactification of an uncountable discrete
space X and F, a totally ordered field. Clearly, X is a dense open set in X∗.We claim that X is not a cozero-set
with respect to an element of Cc(X∗,F). Otherwise, {x} is a zero-set, hence a Gδ-set, i.e., {x} =

⋂
∞

n=1 Vn, where
each Vn is an open set in X∗. Since X∗ \ Vn is finite, we obtain X = X∗ \ {x} =

⋃
∞

n=1(X∗ \ Vn) is countable, a
contradiction. Consequently, we reach the claim. But if we let I =

{
f ∈ Cc(X∗,F) : coz( f ) is finite

}
, then it

easily follows that I is an ideal in Cc(X∗,F), and X = coz(I).

Lemma 2.15. Let S be a subring of Cc(X,F). Then for any ideal D of S, we have HomS(D) ⊆ Cc(coz(D),F).

Proof. The proof is more or less the same as the proof of [10, Lemma 2.5].

We remark that HomS(D) = Cc(coz(D),F) if and only if for each f ∈ Cc(coz(D),F) and each 1 ∈ D, f1 has
an extension to X. Also, in Lemma 2.15 the inclusion may be strict, see Example 3.11.

Proposition 2.16. Let f ∈ Cc(X,F) and 1 ∈ Cc(coz( f ),F). Then 1 ∈ Hom(I); for some ideal I of Cc(X,F).

Proof. We first note that 1 + 12 is a unit and (1 + 12)−1 = 1
1+12 ≤ 1. Let f̄ : X→ F be defined by

f̄ (x) =
{ f (x)

1+12(x) x ∈ coz( f ),
0 x ∈ Z( f ).

Then f̄ ∈ Cc(X,F). Set I = ( f̄ ). It is claimed that 1 ∈ Hom(I). Take h f̄ ∈ I, where h ∈ Cc(X,F) and define
1̄ : I→ Cc(X,F) as follows:

1̄(h f̄ ) =
{
1(x)h(x) f (x)

1+12(x) x ∈ coz( f ),
0 x ∈ Z( f ).

Since 1

1+12 is bounded and f h ∈ Cc(X,F), we obtain 1̄ ∈ Cc(X,F). This means that 1h f̄ can be continuously
extended to X, i.e., 1 ∈ Hom(I).

We call a subring of Cc(X,F) essential if it intersects every nonzero ideal of Cc(X,F) nontrivially. In the
next result, we observe that an ideal of an essential subring of Cc(X,F) is dense in that subring if and only
if its cozero-set is dense in X.

Proposition 2.17. Let S be an essential subring of Cc(X,F). Then, an ideal D of S is dense in S if and only if coz(D)
is dense in X.

Proof. (⇒) Suppose D is dense in S and V is an open set in X such that coz(D)∩V = ∅. We claim that V = ∅.
By Proposition 2.13, there exists an ideal I of Cc(X,F) such that V = coz(I). Since coz(D) ⊆ Z(I) =

⋂
f∈I Z( f ),

we conclude that f (coz(D)) = 0 for every f ∈ I. Hence, f d = 0 for every d ∈ D. So f D = 0 for every f ∈ I.
If I , (0), then by the assumption, there must exist 0 , f ∈ I ∩ S, which is absurd since D is dense in S.
Therefore, I = (0) and so V = ∅.

(⇐) Suppose f ∈ AnnS(D). Then for every d ∈ D, f d = 0 and therefore coz( f d) = coz( f ) ∩ coz(d) = ∅.
Hence, coz(D) ⊆ Z( f ). Since coz(D) is a dense subset of X, we have Z( f ) = X or f = 0. Thus AnnS(D) = {0},
i.e., D is dense in S.

Corollary 2.18. An ideal D in Cc(X,F) is dense in Cc(X,F) if and only if coz(D) is dense in X.

Let S be a subring of Cc(X,F) and D0 (resp. D) be the family of all dense (resp. regular) ideals in S.
Notice thatD0 andD are closed under multiplication, i.e., if D1 and D2 are dense (resp. regular) ideals in S,
then D1D2 is also a dense (resp. regular) ideal in S; and (d) ∈ D0 if and only if (d) ∈ D. Furthermore, d ∈ D
gives Hom(D) ⊆ Hom((d)). Then Qc(S) (resp. qc(S)), the maximal (resp. classical) ring of quotients of S has
been described based on the S-modules Hom(D), where D ∈ D0 (resp. D ∈ D), i.e.,

Qc(S) = lim
−−→

D∈D0

Hom(D), and qc(S) = lim
−−→
D∈D

Hom(D). (1)
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Observe that Qc(S) and qc(S) may be thought of as
⋃

Hom(D), where we identify φ1 ∈ Hom(D1) and
φ2 ∈ Hom(D2) whenever φ1 and φ2 agree on D1D2 (see [10, 1.7], and also [19]). Therefore,

Qc(S) =
⋃{

Hom(D) : D ∈ D0

}
, and qc(S) =

⋃{
Hom(D) : D ∈ D

}
. (2)

In [10, Theorem 2.6], Q(X) (resp. q(X)) is determined in terms of the rings of continuous functions on
dense open sets (resp. dense cozero-sets concerning to elements of C(X)) in X. Also, Qc(X) and qc(X), the
maximal and the classical ring of quotients of Cc(X) are characterized in [20, Theorem 2.12] and [6, Theorem
2.2] respectively. We are now ready to express the next theorem which generalizes these characterizations.

Theorem 2.19. Let Qc(X,F) (resp. qc(X,F)) be the maximal (resp. classical) ring of quotients of Cc(X,F). Then

(i) Qc(X,F) =
⋃{

Cc(V,F) : V is a dense open subset of X
}
.

(ii) qc(X,F) =
⋃{

Cc(coz( f ),F) : f ∈ Cc(X,F) and coz( f ) = X
}
.

Proof. (i) Let V0 =
{
V : V is a dense open subset of X

}
and Q0 =

⋃{
Cc(V,F) : V ∈ V0

}
. Note that V0 is a

filter base, i.e., it is closed under finite intersection. An equivalence relation on Q0 is obtained by defining
f ∈ Cc(V1,F) and 1 ∈ Cc(V2,F) to be equivalent if and only if the restriction of f and 1 to V1 ∩ V2 are equal.
It is known that the above relation turns Q0 into a commutative ring with identity. Now, we claim that
Qc(X,F) = Q0. Combining (2) in the above discussion (where S = Cc(X,F)), Lemma 2.15 and Corollary 2.18,
we get

Qc(X,F) =
⋃{

Hom(D) : D ∈ D0

}
≦
⋃{

Cc(coz (D)) : D ∈ D0

}
≦ Q0.

On the other hand, we know from Theorem 2.10 that, if V ⊆ X is dense and open, then Cc(V,F) is a ring of
quotients of Cc(X,F), so Q0 is too. Thus Q0 is contained in Qc(X,F) and therefore Q0 = Qc(X,F).
(ii) Recall that a function f ∈ Cc(X,F) is regular if and only if coz( f ) = X. Also, an ideal D in Cc(X,F) is
regular if it contains a regular element. Let f ∈ D be a regular element. Then for the regular principal ideal
( f ), we have ( f ) ⊆ D and hence Hom(D) ⊆ Hom(( f )) ⊆ Cc(coz( f ),F). So using relation (2), we get

qc(X,F) =
⋃{

Hom(D) : D ∈ D, i.e, D is a regular ideal in Cc(X,F)
}

=
⋃{

Hom(( f )) : f is a regular element of Cc(X,F)
}
.

Now, let V =
{
coz( f ) : f ∈ Cc(X,F) and coz( f ) = X

}
and Q =

⋃{
Cc(coz( f ),F) : coz( f ) ∈ V

}
. Note that V and

Q have the same properties as V0 and Q0 respectively, i.e., V is a filter base and Q is a commutative ring
with identity. Applying Lemma 2.15, we obtain that qc(X,F) ≦ Q. As for the reverse inclusion, suppose that
1 ∈ Q. So 1 ∈ Cc(coz( f ),F), where coz( f ) ∈ V. Since coz( f ) = X; f is regular. Now, according to Proposition
2.16, we consider f̄ and set D = ( f̄ ). Since f̄ is regular, D is also a regular ideal and further 1 ∈ Hom(D).
Thus 1 ∈ qc(X,F), i.e., Q ≦ qc(X,F).

Theorem 2.20. let X be zero-dimensional and F be either uncountable or a countable subfield ofR. Then, a subset of
X is a cozero-set (of a function lying in Cc(X,F)) if and only if it is a σ-clopen set in X.

Proof. (⇒) Suppose F is uncountable and V is a cozero-set in X. Clearly, if V=∅ or V = X, then V is a
σ-clopen set. Now, let V = coz( f ), where 0 , f ∈ Cc(X,F) is a non-unit. Since coz( f ) = coz( f 2), we can
suppose that f ≥ 0, i.e., f (X) = {0, a1, a2, . . . , an, . . .}, where an > 0 for all n. Since F is uncountable, the set
{x ∈ F : x ≥ 0} is also uncountable, so there exist 0 < rn, rn+1 ∈ F \ f (X) such that an ∈ (rn, rn+1). Now,
[rn, rn+1] ∩ f (X) = (rn, rn+1) ∩ f (X) is a clopen set in f (X) and therefore f−1

(
(rn, rn+1)∩ f (X)

)
is a clopen set in

X. So
V = coz( f ) =

⋃
n∈N

f−1
(
(rn, rn+1) ∩ f (X)

)
=
⋃
n∈N

f−1
(
(rn, rn+1)

)
=
⋃
n∈N

f−1
(
[rn, rn+1]

)
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is a σ-clopen set in X.
Next, suppose F is a countable subfield of R. So F contains Q as well as a countable subset of R \ Q.

Suppose F = {an : n ∈N} and let rn, rn+1 ∈ R \ F such that an ∈ (rn, rn+1). Then [rn, rn+1]∩ F = (rn, rn+1)∩ F is a
clopen subset of F, and, F =

⋃
∞

n=1

(
[rn, rn+1]∩ F

)
, i.e., F is a σ-clopen set. So F \ {0} is a σ-clopen set (note, this

is true for any countable subset of R). Hence, for f ∈ C(X,F) = Cc(X,F); coz( f ) = f−1(F \ {0}) is a σ-clopen
set in X.

(⇐) Here it suffices that F is infinite and therefore contains Q. Let V be a σ-clopen set in X. Then
V =
⋃
∞

n=1 Vn, where each Vn is a clopen set in X. Without loss of generality, we may assume that the sets Vn

are disjoint. (To see this, it suffices to take G1 = V1 and Gn = Vn \
⋃n−1

i=1 Vi, for n ≥ 2. So each Gn is a clopen
set and V =

⋃
∞

n=1 Gn.) Next, consider the function f : X→ F as follows:

f (x) =
{

1
n x ∈ Vn,
0 x ∈ X \ V.

Evidently, f ∈ Cc(X,F) and V = coz( f ).

Example 2.21. Let X = R = F and f (x) = x. Then f ∈ C(R) = C(X,F) and F is uncountable. But
coz( f ) = R \ {0} is not a σ-clopen set in X. So in the above theorem, the “countability of f (X)” is necessary.

Corollary 2.22. let X be zero-dimensional and F be either uncountable or a countable subfield of R. Then

qc(X,F) = lim
−−→
D∈D

Hom(D) =
⋃{

Cc(coz( f ),F) : f ∈ Cc(X,F) and coz( f ) = X
}

=
⋃{

Cc(V,F) : V is a dense σ-clopen set in X
}
.

Proof. Using Theorems 2.19 and 2.20, we get the result.

In the next example, we observe that qc(X,F) is a proper subring of Qc(X,F).

Example 2.23. Let X∗ be the space in Example 2.14. Remember that X is not a cozero-set in X∗. So the only
dense cozero-set in X∗ is itself. Hence, qc(X∗,F) = Cc(X∗,F). On the other hand, the only dense open sets in
X∗ are X and X∗. Thus Qc(X∗,F) = Cc(X,F) ∪ Cc(X∗,F) and hence Qc(X∗,F) = Cc(X,F), by Theorem 2.10. To
show that qc(X∗,F) ≨ Qc(X∗,F), it suffices to show that X is not CcF-embedded in X∗. To see this, let Y be an
infinite countable subset of X. Define a function f : X→ F by f (x) = 1 for each x ∈ Y and f (x) = −1 for each
x ∈ X \ Y. Then f ∈ Cc(X,F) while it cannot be extended to X∗. Hence, Cc(X∗,F) ≨ Cc(X,F).

Lemma 2.24. Let S be a subring of Cc(X,F). Then Qc(S) is a subring of a homomorphic image of a subring of
Qc(X,F).

Proof. Let us put

D0 =
{
D : D is a dense ideal in S

}
, and C1 =

{
coz(D) : D ∈ D0

}
, and let

C2 =
{
V ⊆ X : V is dense open in X and V ⊇ coz(D) for some D ∈ D0

}
.

Remind thatD0 is closed under multiplication and coz(D1)∩ coz(D2) = coz (D1 ∩D2). So C1 and C2 are filter
base on X. Let

Q1 =
⋃{

Cc(coz(D),F) : D ∈ D0

}
, and Q2 =

⋃{
Cc(V,F) : V ∈ C2

}
.

Notice that Q1 and Q2 are commutative rings with identity, in fact, they are F-algebras. (An equivalence
relation on Q2 is obtained by defining f ∈ Cc(V1,F) and 1 ∈ Cc(V2,F) to be equivalent if and only if they
agree on V1 ∩ V2, and so on for Q1.) Applying relation (2) and Lemma 2.15, we obtain that Qc(S) ≦ Q1.
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Also, Q2 ≦ Qc(X,F), by Theorem 2.19. Now, let ψ : Q2 → Q1 be defined by ψ( f ) = f |coz(D). Clearly, ψ is an
F-algebra homomorphism. Let 1 ∈ Cc(coz(D),F) and define 1̄ by

1̄(x) =
{
1 x ∈ coz(D),
0 x ∈ X \ coz(D).

Since coz(D) ∪ (X \ coz(D)) is a dense open subset of X, we obtain 1̄ ∈ Q2 and ψ(1̄) = 1, i.e., ψ is onto. So

Qc(S) ≦ Q1
onto
←−− ψ : Q2 ≦ Qc(X,F), and we are done.

Corollary 2.25. Let ψ be as defined in (the proof of) Lemma 2.24. Then, ψ is one-to-one if and only if every dense
ideal in S has dense cozero-set in X.

Proof. (⇒) Suppose D is a dense ideal in S such that coz(D) , X. Let V = coz(D) ∪ (X \ coz(D)). Define
f : V → F by f (x) = 0 for each x ∈ coz(D) and f (x) = 1 for each x ∈ X \ coz(D). Thus f ∈ Cc(V,F) and hence
f ∈ Q2. Moreover, ψ( f ) = 0 while f , 0, i.e., ψ is not one-to-one.

(⇐) Suppose f ∈ Q2 and ψ( f ) = 0. So f ∈ Cc(V,F) for some V ∈ C2. Hence, f |coz(D) = 0, where D is a
dense ideal D in S and V ⊇ coz(D). Now, the assumption, coz(D) = X, yields f = 0, and we are done.

Theorem 2.26. Let S be a subring of Cc(X,F). Then Qc(S) is a subring of Qc(X,F) if and only if every dense ideal in
S has dense cozero-set in X.

Proof. (⇒) Let D be a dense ideal in S and take f ∈ Hom(D). Then f ∈ Cc(coz(D),F), by Lemma 2.15.
Furthermore, the assumption that f ∈ Qc(S) ≦ Qc(X,F) gives f belongs to a ring of continuous functions on
a dense open set in X. So coz(D) is dense.

(⇐) It follows from Corollary 2.25.

The following is an immediate consequence of Proposition 2.17 and Theorem 2.26.

Corollary 2.27. Let S be an essential subring of Cc(X,F). Then Qc(S) ≦ Qc(X,F).

3. Equalities among various rings of quotients of Cc(X, F)

In this section, we deal with the coincidence of rings of quotients of the Cc(X,F), in particular, we are
interested in cases when some of these rings of quotients coincide with Cc(X,F), itself. We show that the
fixed ring of quotients and the cofinite ring of quotients of Cc(X) coincide if and only if Hom(Mc

p) = Cc(Xp)
for every p in X.

Proposition 3.1. Qc(X,F) = Cc(X,F) if and only if every open set in X is CcF-embedded.

Proof. By Theorem 2.19, Qc(X,F) = Cc(X,F) if and only if every dense open subset of X is CcF-embedded.
Proposition 2.12 now yields the result.

Notice that the “zero-dimensional condition” cannot be omitted from the above result. To see this, let
X = R2, F = R and let V = R2

\

{
(0, y) : y ∈ R

}
. Remember that the relation Cc(X,F) = F(= R) follows

trivially from the connectedness of X = R2, and therefore Qc(X,F) = Q(F) = F. Now, let f : V → R be
defined by f (x, y) = 1, if x > 0, and f (x, y) = −1, if x < 0. Then f ∈ Cc(V,F), but it cannot be extended to X,
i.e., V is not CcF-embedded.

Using Proposition 3.1 and the fact that “CcF-embedding gives C∗cF-embedding”, we get the following.

Corollary 3.2. Qc(X,F) = Cc(X,F) implies that Q∗c(X,F) = C∗c(X,F).

The converse of the above corollary is not true in general, see Example 3.7.

Proposition 3.3. For a zero-dimensional space X and a totally ordered field F, the following are equivalent.
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(i) Qc(X,F) = qc(X,F).
(ii) Each F-valued continuous function on a dense open subset of X agrees on the cozero-set coz(h) for some
h ∈ Cc(X,F) for which coz(h) is dense in X.
(iii) Q∗c(X,F) = q∗c(X,F).

Proof. (i)⇔ (ii) It is evident.
(ii) ⇒ (iii) Let f ∈ Q∗c(X,F). Then for some dense open subset V of X, we have f ∈ C∗c(V,F). By the

assumption, there is h ∈ Cc(X,F) and 1 ∈ Cc(coz(h),F) such that coz(h) = X and f agrees with 1 on V ∩ coz(h).
So f ∈ q∗c(X,F). The reverse inclusion is clear.

(iii)⇒ (i) If f ∈ Qc(X,F), then for some dense open subset V of X, f ∈ Cc(V,F). Take 1 = (1+ f 2)−1 = 1
1+ f 2 .

Hence, 1, f1 ∈ C∗c(V,F) ≦ Q∗c(X,F) = q∗c(X,F). So there exist h1 ∈ Cc(X,F) and k1 ∈ C∗c(coz(h1),F) such that
coz(h1) = X and f1 agrees with k1 on V ∩ coz(h1). Also, we can take h2 ∈ Cc(X,F) and k2 ∈ C∗c(coz(h2),F) such
that coz(h2) = X and 1 agrees with k2 on V ∩ coz(h2). Notice that 1−1

≥ 1 and agrees with k−1
2 on V ∩ coz(h2),

also, coz(h1) ∩ coz(h2) = coz(h1h2) is dense. Therefore, f = ( f1)1−1
≡ k1k−1

2 on V ∩ coz(h1h2). This yields
f ∈ qc(X,F). The reverse inclusion is obvious.

In the sequel, we will need the next proposition.

Proposition 3.4. Let F be an infinite, totally ordered field and (aλ)λ∈Λ ⊆ F be a net of nonzero elements. Then the
following hold.

(i) If 0 , a ∈ F, then aλ → a if and only if a−1
λ → a−1.

(ii) aλ → 0 if and only if the net (a−1
λ )λ∈Λ is unbounded.

Proof. (i) Suppose a > 0 and aλ → a. Let (x1, x2) be an open set containing a−1 such that x1 > 0. Then
a ∈ (x−1

2 , x
−1
1 ). So for some λ0 ∈ Λ and each λ ≥ λ0; aλ ∈ (x−1

2 , x
−1
1 ) and thus a−1

λ ∈ (x1, x2). This yields
a−1
λ → a−1. The converse is obvious, by the previous part.

(ii) It is obtained similarly.

The CPF-spaces are introduced and determined in [2, Section 4]. Now, with this terminology, we call a
space X an almost CPF-space, if intXZ , ∅, for each nonzero zero-set Z ∈ Zc(X,F).

Recall that f ∈ Cc(X,F) is a zero-divisor if and only if intXZ( f ) , ∅ if and only if coz( f ) , X.

Theorem 3.5. For a zero-dimensional space X and a totally ordered field F, the following are equivalent
(i) Every non-unit element in Cc(X,F) is a zero-divisor.
(ii) There is no proper dense cozero-set in X.
(iii) qc(X,F) = Cc(X,F).
(iv) X is almost CPF-space.

Proof. (i)⇒ (ii) Let f ∈ Cc(X,F) and coz( f ) = X. Then intXZ( f ) = ∅which means f is a non-zero-divisor. By
the hypothesis, f is a unit and thus coz( f ) = X.

(ii)⇒ (iii) Since the only dense cozero-set in X is, itself, the result holds.
(iii) ⇒ (iv) Let Z = Z( f ) ∈ Zc(X,F) and intXZ = ∅, i.e., coz( f ) = X. Notice that f−1

∈ Cc(coz( f ),F)
(Proposition 2.2). Therefore, by the assumption, f−1 has an extension to X, say f̄ . For x ∈ X, there is a net
(xλ)λ∈Λ ⊆ coz( f ) converging to x. Hence, f (xλ)→ f (x) and f̄ (xλ)→ f̄ (x), this means that f−1(xλ)→ f̄ (x). We
claim that f (x) , 0. Otherwise, by Proposition 3.4(ii), the net ( f−1(xλ))λ∈Λ is unbounded which is absurd,
since f̄ (x) ∈ F. Consequently, we reach the claim, i.e., f (x) , 0. This yields coz( f ) = X, or Z = ∅.

(iv)⇒ (i) Let f ∈ Cc(X,F) be a non-unit. Then Z( f ) , ∅. Now, by the assumption, intXZ( f ) , ∅, i.e., f is
a zero-divisor.

An immediate conclusion of the above theorem is the following.

Corollary 3.6. qc(X,F) = Cc(X,F) implies that q∗c(X,F) = C∗c(X,F).
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The converse of the above corollary is not true in general, see Example 3.7.
Recall that a topological space is called extremally disconnected if all open sets have open closures. Hence,

an extremally disconnected space is zero-dimensional. By [13, 1H], a topological space is extremally
disconnected if and only if every open set is C∗-embedded in it.

Example 3.7. Let X = Σ = N ∪ {σ} (where σ < N) be the space in [13, 4M] and let F = R. We recall that the open
neighborhoods of σ in the space X are of the form: G ∪ {σ}, where G is a member of a free ultrafilter onN, and each
point ofN is isolated. If f (n) = 1

n and f (σ) = 0, then f ∈ Cc(X,F) = C(X,F) = C(X). So {σ} is a zero-set and thusN
is a cozero-set in X. Notice that X andN are precisely the dense open sets as well as the dense cozero-sets in X. By
Theorem 2.10, C(X) ≦ C(N) and thus Q(X) = q(X) = C(N) (note, Qc(X,F) = Q(X) and qc(X,F) = q(X)). Hence,
Q∗(X) = q∗(X) = C∗(N). Since X is extremally disconnected, every open subspace is C∗-embedded, see [13, 1H]. This
yields C∗(X) = C∗(N). So Q∗(X) = q∗(X) = C∗(X). Moreover, sinceN is not C-embedded in X (consider f (n) = n),
we obtain C(X) ≨ C(N).

In [2, Definition 2.7], an ideal I in Cc(X,F) is called a fixed ideal if Z(I) =
⋂

f∈I Z( f ) , ∅. Also, by [2,

Theorem 2.8], a fixed maximal ideal in Cc(X,F) is in the form of Mc
p,F =

{
f ∈ Cc(X,F) : f (p) = 0

}
, where p ∈ X.

Proposition 3.8. Let p ∈ X. Then Mc
p,F is a dense ideal in Cc(X,F) if and only if p is a non-isolated point.

Proof. (⇒) Suppose p is an isolated point of X. Then {p} and X \ {p} are clopen sets. Define a map 1 : X→ F
by 1(p) = 1 and 1(x) = 0 for every x , p. So 1 ∈ Cc(X,F) and 1.Mc

p,F = 0. Since 1 , 0, it gives Mc
p,F is not a

dense ideal.
(⇐) Let p be a non-isolated point of X and let 1 ∈ Cc(X,F) such that 1.Mc

p,F = 0. We claim that 1 = 0.
Otherwise, 1(x) , 0 for some x , p. By [2, Theorem 2.10], there exists h ∈ Cc(X,F) such that h(x) = 1 and
p ∈ intXZ(h). Now, h ∈Mc

p,F and 1h , 0, a contradiction.

If F = R, then we let Cc(X,F) = Cc(X) and Mc
p,F =Mc

p.
The fixed ring of quotients and the cofinite ring of quotients of C(X) have been investigated in [19]. In

the following, we follow these methods in determining the fixed ring of quotients and the cofinite ring of
quotients of Cc(X,R) = Cc(X). Let F0 be the family of all finite intersections of dense fixed maximal ideals of
Cc(X). Then F0 is a filter base, i.e., it is closed under finite intersection. Let F be the filter of ideals of Cc(X)
that is generated by F0. Then Fc(X) =

⋃{
Hom(D′) : D′ ∈ F

}
, with the usual equivalence relation, is a ring

of quotients of Cc(X) because F ⊆ D0, the family of dense ideals of Cc(X). Note that for each D′ ∈ F there
is D ∈ F0 such that D′ ⊇ D, and, in fact, we have Fc(X) =

⋃{
Hom(D) : D ∈ F0

}
. Hence, if f ∈ Fc(X), then

f ∈ Hom(D) for some D that is a finite intersection of dense fixed maximal ideals of Cc(X). By borrowing
the terminology from [19], we call Fc(X) the fixed ring of quotients of Cc(X).

For a finite subset G of X, we let XG = X \ G and MG =
⋂

x∈G Mc
x, where Mc

x =
{

f ∈ Cc(X) : f (x) = 0
}
. If

G = {p}, then we use Xp instead of XG.

Lemma 3.9. Let G be a finite subset of X and let f ∈ Cc(XG). If f ∈ Fc(X), then f ∈ Hom(MG).

Proof. Let G1 be a finite set of non-isolated points of X such that f ∈ Hom(MG1 ). If G1 ⊆ G, then MG ⊆MG1 ,
hence Hom(MG1 ) ⊆ Hom(MG), and we are done. Otherwise, for two disjoint finite (compact) sets G1 \ G
and G \ G1, there is h ∈ C∗c(X) such that G1 \ G ⊆ intXZ(h) and G \ G1 ⊆ intXZ(1 − h), by Proposition 2.6 (or
[11, Proposition 4.3]). Let 1 ∈ MG, then we must extend f1 to a continuous function on X. Since 1h ∈ MG1

and f ∈ Hom(MG1 ), the function f1h has an extension to X. Now, if we define ( f1)(t) = ( f1h)(t) for all t ∈ G,
then f1 is extended to X. So f ∈ Hom(MG), and we are done.

Recall that for each finite set G of isolated points of X, we have Hom(MG) = Cc(XG).

Theorem 3.10. Let X be a zero-dimensional space. Then, Hom(MG) = Cc(XG) for every finite set G of non-isolated
points of X if and only if Hom(Mc

p) = Cc(Xp) for every non-isolated point p ∈ X.
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Proof. (⇒) It is obvious.
(⇐) We provide the proof for the case that G = {p, q}. The general case is done in the same way. We

first note that MG = Mc
p ∩Mc

q and it is dense by Proposition 3.8, moreover, Hom(MG) ⊆ Cc(XG), by Lemma
2.15. Now, take f ∈ Cc(XG) and 1 ∈ MG. We must extend f1 to a continuous function on X. Recall that
1 = 1

1
3 1

2
3 ∈ Cc(X) and Z(1) = Z(1

1
3 ) = Z(1

2
3 ). It is clear that 1

1
3 ∈Mc

p and 1
2
3 ∈Mc

q because a maximal ideal in

Cc(X) is a zc-ideal (see [11]). Let Y = Xp and M′cq =
{
h ∈ Cc(Y) : h(q) = 0

}
. Then Yq = XG and M′cq is a maximal

ideal in Cc(Y). Using the assumption, Hom(M′cq ) = Cc(Yq), we get f1
2
3 ∈ Cc(Y), since 1

2
3 ∈M′cq and f ∈ Cc(Yq).

Again, applying the assumption, Hom(Mc
p) = Cc(Y), we obtain that f1 = ( f1

2
3 )1

1
3 ∈ Cc(X). Consequently,

f ∈ Hom(MG), and we are through.

Let F0 be the set of all dense cofinite subsets of X. Then F0 is a filter base. Let Fc(X,F) = lim
−−→V∈F0

Cc(V,F).
By Corollary 2.11, Cc(V,F) is a ring of quotients of Cc(X,F), and thus Fc(X,F) is too. We observe that
Fc(X,F) =

⋃{
Cc(V,F) : V ∈ F0

}
, where we identify f1 ∈ Cc(V1,F) with f2 ∈ Cc(V2,F) whenever f1 and f2

agree on V1∩V2. Now, letF be the filter of sets that is generated byF0. Then for W ∈ F , there exists V ∈ F0
such that V ⊆ W. So W is a dense cofinite subset of X, and thus the chain Cc(X,F) ≦ Cc(W,F) ≦ Cc(V,F) is a
chain of rings of quotients. Moreover,⋃{

Cc(W,F) : W ∈ F
}
≦
⋃{

Cc(V,F) : V ∈ F0

}
.

Note that in more general, we have

Fc(X,F) = lim
−−→
V∈F0

Cc(V,F) =
⋃{

Cc(V,F) : V ∈ F0

}
=
⋃{

Cc(W,F) : W ∈ F
}
.

By borrowing the terminology from [19], we call Fc(X,F) the cofinite ring of quotients of Cc(X,F).
In the case that F = R, we let Fc(X,F) = Fc(X). Applying Lemma 2.15, we obtain Fc(X) ≦ Fc(X). In the

next example, we observe that Fc(X) ≨ Fc(X).

Example 3.11. Let X = Q × Q, F = R, and p = (a, b) ∈ X be fixed. Then coz(Mc
p) = Xp is a dense cofinite

subset of X. Also, 1(x, y) = (x − a)2 + (y − b)2
∈ Mc

p and f = 1
12 ∈ C(Xp) = Cc(Xp) ⊆ Fc(X). We claim that

f < Fc(X). Otherwise, f ∈ Hom(Mc
p), by Lemma 3.9, which is absurd because f1 = 1

1
< C(X). Now, we reach

the claim, i.e., Fc(X) , Fc(X). Moreover, Hom(Mc
p) ⫋ C(coz(Mc

p)) = C(Xp).

Theorem 3.12. Let X be zero-dimensional space. Then, Fc(X) = Fc(X) if and only if Hom(Mc
p) = Cc(Xp) for every

p ∈ X.

Proof. (⇒) Note first that if p is an isolated point, then the equation Hom(Mc
p) = Cc(Xp) is obtained quickly.

Next, let p ∈ X be non-isolated. Then, Mc
p is a dense ideal in Cc(X) (Proposition 3.8) and further Hom(Mc

p) ⊆
Cc(Xp) (Lemma 2.15). Now, we take f ∈ Cc(Xp). Since Xp is a dense cofinite subset of X; f ∈ Fc(X) and thus
f ∈ Fc(X), by the assumption. Using Lemma 3.9, we get f ∈ Hom(Mc

p). Therefore, Cc(Xp) ⊆ Hom(Mc
p).

(⇐) Let f ∈ Fc(X). Then for a finite set G of non-isolated points of X; f ∈ Cc(XG). Now, combining the
assumption and Theorem 3.10 gives f ∈ Hom(MG) which means that f ∈ Fc(X).
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