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Abstract. In theory of topological LA-semigroups, we introduce the concepts of LA-loop functions for
LA-lifting functions in theory of LA-fibrations. We prove that the LA-lifting function and LA-loop function
for any LA-fibration are not necessarily unique. We also restrict the LA-loop function on any idempotent
point in any LA-fiber space to get another LA-map which is called a LA-loop restriction.

1. Introduction

Many concepts of Hurewicz fibration, [3], have been important tools in the study of maps in homotopy
theory for topological spaces. Cerin, [1] extended this notion into theory of topological semigroups by
giving the concepts Sx—homotopy classes and Sx—fibration classes.

The concept of left almost semigroups (simply, LA-semigroups) is introduced in 1972 by Kazim and
Naseeruddin, [5], which is considered as an algebraic structure between a groupoid and a commutative
semigroup. A groupoid (L, a) is called a LA-semigroup the operationc : LXL — L from LXL into L satisfies a
left invertive law, i.e., c(u, c(v, w)) = c(c(u, v), w) for all u, v, w € L. Many authors in theory of LA-semigroups
gave useful results such as Mushtaq [8] and others ([2, 4, 9, 10]).

In this paper, in Section 2, we give the concepts of LA-homotopy relation and LA-fibration as well
as we extend the concept of lifting functions for Hurewicz fibrations into analogical structure in theory
of LA-fibrations for topological LA-semigroups. Section 3 gives the concepts of LA-loop functions for
LA-fibrations and emphasize on the uniqueness property for the LA- lifting function and LA-loop function
for any LA-fibration. That is, we prove that the LA-lifting function and LA-loop function for any LA-
fibration are not necessarily unique. Then we prove that any two LA-loop functions for LA-fibration are
LA-homotopic. In Section 5, under the notion of the LA-loop function, we restrict the LA-loop function on
any idempotent point in the LA-fiber space J. to get another LA-map which is called a LA-loop restriction.

Here we recall some definitions and theorems which will be used in our work. The set of all continuous

functions of topological space L into a space L’ is denoted by L’-. We will use the compact-open topology
with the space L'" which has a subbase

B ={W(K U): Kis compact setin L and U is an open set in L'},
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where W(K, U) = {f € L'' : f(K) C U}. P(L) denotes the space of all continuous functions (called paths) of
an interval I = [0, 1] with the compact-open topology into L and by X we mean the constant path at x for all
x € L. For every a space L and x € L, by £L(L, x) we mean the subspace of P(L) which is the set of all loops
based at x in L.

Theorem 1.1. ([6]) Let L be a topological space. The subspace L(L, x) is a closed subspaces of P(L) for every x € L.

Theorem 1.2. ([7]) Let L be a compact space. Then for any metrizable space L', the metrizable space L' coincides
with the compact-open topological space on L'".

Theorem 1.3. ([11]) IfF: L X L’ — L” is a continuous function then H : L — L"¥ given by H(x)(y) = F(x, y) for
all x € L,y € L’ is continuous. If H : L — LY is continuous and L' is locally compact and regular space then the
function F: LxX L' — L"” given by F(x,y) = H(x)(y) forall x € L,y € L is continuous.

2. LA-regular lifting functions

A topological LA-semigroup (L, a) is a a topological space L and Al-semigroup (L, a) such that the operation
a:LxL — Lis a continuous function. A pair (J,¢) is called a LA-subspace of topological LA-semigroup
(L, a) if | is a subspace of L and a(u, v) = c(u,v) for all u,v € J. For any topological LA-semigroup (L, a), by
I (L, a) we mean the idempotent set of LA-semigroup (L, a), thatis, 7(L,a) = {x € L : a(x, x) = x}.

For any topological LA-semigroup (L, a), it is clear that the pair (P(L),7) is a topological LA-semigroup
sucha : P(L) x P(L) — P(L) is a function given by a{(B1, B2)(t) = a(B1(t), B2(t)) for all B1, B2 € P(L),t € I. It is
clear also to show that the pair (£(L, x),a) is LA-subspace of (P(L),a) for every topological LA-semigroup
(L,a)and x € L.

The function f : (L,a) — (L', b) of two topological LA-semigroups (L,a) and (L', b) is called a LA-map if
the function f is a continuous and f(a(u,v)) = b(f(u), f(v)) for all u,v € L. The identity id; : (L,a) — (L,a)
of topological LA-semigroup (L,a) is a LA-map and the composition of two LA-maps is a LA-map. Let
(L,a) and (L', b) be two topological LA-semigroups. The two LA-maps h, I’ : (L,a) — (L’,b) are called
LA-homotopic if there is a LA-map H : (L,a) — (P(L"),b) such that H(x)(0) = h(x) and H(x)(1) = h’(x) for
all x € L. The LA-map H is called a LA-homotopy from h into i’ and write h ~;4 I’. Similar of the proof
Theorem(2.10 in [1] we show that the relation ~; 4 is an equivalence relation on the set of all LA-maps of a
topological LA-semigroup (L, a) into a topological LA-semigroup (L', b).

Definition 2.1. The LA-map f : (L,a) — (L’,a’)iscalled a LA-fibration if for every topological LA-semigroup
(ULb), a LA-map k : (U,b) — (L,a) and a LA-homotopy ¥ : (U,b) — (P(L’),a’) with Fy = f ok, there is a
LA-homotopy K : (U, b) — (P(L),a) such that Ky = k and f[K(u)(t)] = F (u)(t) forallu € Ut € L.
Let f : (L,a) = (L’,a") be a LA-map and
O(f) = {(x,w) e LXP(L") : f(x) = w(0)}

be a subset of L X P(L"). Then one can easy show that the pair (6(f), a X a ) is a LA-subspace of a topological
LA-semigroup (L X P(L"),a X a’), where the operation

axa : (LxPL))x(LxPL)) — LxP(L")
defined by

(@x a)[(x1, @1), (X2, )] = [a(x1, %2), @ (@1, @2)],
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for all x1,x2 € L, w1, w2 € P(L’). Note that for all (x1, w1), (x2, w2) € 6(f),

[@ (@1, 02)1(0) = @ (@1(0), w2(0)) = ' (f(x1), f(x2)) = f(a(x1, x2)),
that is,

(a X a)[(x1, @), (¥2, 02)] = [a(x1, %2), @ (@1, @2)] € 6(f)-
Definition 2.2. Let f : (L,a) — (L’,a’) be a LA-map. Then the function

Ap: (O(f),axa’) — (P(L),a)
issaid tobe a LA-lifting function of f if A is a LA-map, A¢(x, w)(0) = xand f[A¢(x, w)] = w for all (x, w) € &(f).

We say that the LA-lifting function A is said to be a LA-regular lifting function or has regularity property
if Af(x,f ox) = xforall x € L. The LA-map f : (L,a) — (L’,a’) is said to be a LA-regular fibration or has
regularity property if it has LA-lifting function with regularity property.

Example 2.3. Let (L,a) and (L’,a’) be two topological LA-semigroups. It is clear that the usual product
(L’ x L,a’ x a) is also a topological LA-semigroup and the usual first projection 1 : (L’ X L,a’ X a) — (L', a’)
defined by 1 (x’, x) = x" for all (x’,x) € L’ X L is a LA-map and LA-fibration. Define the LA-map

Ap, = (0(P1), (@ xa) xa’) — (P(L’ X L),d” X a)
by Ap, [(x', x), w](t) = (w(t), x) for all t € I, (x’, x), w) € 6(P1). Note that for ((x’, x), w) € 6(P1),
Ap [(', %), 0](0) = (@(0), %) = (P1(x', %), x) = (', x);
and for every ((x,x), ) € 6(%1),
P1lAp, (', x), w)](t) = Pr(w(t), ) = w(b),
forall t € I. Hence Agp, is a LA-lifting function for $;. Note that for (x’,x) € L’ X L,
Ay [, %), P10 (7, ](0)

[(P1 o (2, 0)(0),x] = (P1(¥, %), %)
(', 2) = (),
forall t € I. Hence Ap, is a LA-regular lifting function for $;.

Theorem 2.4. The LA-map f : (L,a) — (L’,a’) is a LA-fibration if and only if it has LA-lifting function.

Proof. Suppose thata LA-map f : (L,a) — (L’,a’) has a LA-lifting function
Ay = (O(P),ax @) = (P(L), 7).

Let (U, b) be any topological LA-semigroup, k : (U,b) — (L, a) be any LA-map and ¥ : (U, b) — (P(L’),E) be
a LA-homotopy with ¢ = f o k. For every u € U, let w, be a path: ¢t — ¥ (u)(t). Then by lemma above,
the function H : (U, b) — (P(L"),a’) defined by H(u) = w, for all u € U, is a LA-map. Hence define the
LA-homotopy K : (U, b) — (P(L),a) by

Ku)(t) = Aslk(u), w,](¢)

forallu € U, t € I. Hence Ky = kand f o K = F. Therefore f is LA-fibration.

Conversely, let f be a LA-fibration and (U, b) = (5(f),a x a’). Define LA-homotopy F : (U,b) — (P(L’),a’)
by ¥ (x, w)(t) = w(t) for all (x, w) € 6(f),t € landa LA-map k : (U, b) — (L,a) by k(x, w) = x for all (x, w) € 6(f).
Since ¥y = f ok, then there is a LA-homotopy K : (U, b) — (P(L),a) such that Ky = kand f[K(u)(t)] = F (u)(t)
for all u € U, t € I. Hence define the LA-lifting function Af : (5(f),a x ') — (P(L),a) for f by

Af(x, w)(t) = K(x, w)(t),
forall (x,w) € 6(f),tel. O
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3. The LA-loop functions

Let f : (L,a) — (L’,a’) be a LA-fibration with 7(L’,a") # 0 and e € 7(L’,a’) be a chosen base idempotent
point in (L', a"). From now we will mean by the symbol J, the set ], = f ~I(e). Consider J, a topological space
with the relative topology of L. Since e is an idempotent point in (L', a"), we observe that for all x;,x, € J,

flax, x2)) = a'(f(x1), f(x2)) = a'(e,e) = e.
That is, a(x1, x2) € J, and (J,,a) will be a LA-subspace of (L, ) and is called a LA-fiber space over e.
Definition 3.1. Let f : (L,a) = (L’,a’) be a LA-fibration with 7(L’,a") # 0. Lete € I(L’,a’) be a chosen base

idempotent point in (L’,a’). The LA-loop map or function of LA-fibration f which induced by a LA-lifting
function Ay is a function

LOy, : (L(L',€) X Jo, &’ X ) = (Jo, )
which is defined by

LOy (a,x) = Ag(x, a)(1)
forallx € J,,a € L(L,e).

The following theorem shows that LA-loop functions for any LA-fibration f are well-defined LA-maps
between two topological semigroups (L(L’,€) X J,,a’ X a) and (J, a).

Theorem 3.2. Let f : (L,a) — (L',a’) be a LA-fibration. Then the LA-loop function LO,, is LA-map.

Proof. Firstly, we prove that the LA-loop function LO, . L(L’,e) X ], = ]. is continuous. It is clear that the
space L(L',e) X ], is a subspace of 6(f) and the LA-lifting function A¢ : 6(f) — P(L) is a continuous. By
Theorem 1.3, note that the function H : L(L’,¢e) X J. X I — L defined by

H((y,x),t) = Ap(x, y)(t) for all (y,x) € L(L,e) X ], t €1,
is a continuous. Hence a restriction H| L ex]oxi1y Of H on L(L,e) X ], X {1} is also continuous. Since
FILOA(y, 2)] = flAf(x, )] = (1) =e

for all (y,x) € L(L',e) X J., then LO,(y,x) € J.. Hence note that LO», = H|gw exj.xq) is a well defined as
mapping : (L(L',e) X J.,a’ X a) = (J.,a). Note that
LOA @ x )[(y1,x1), (2, %2)]} Af{(@ x a)[(x1, 1), (2, y2)IH(L)
= alAp(xr, y1), Ap(x2, y2)I(1)
= a[Af(xr, y1)(1), Af(xz, y2)(D]
= a[LOx,(y1,x1), LOA, (32, x2)]
for all (y1,x1), (y2,x2) € L(L',€) X J,. Then LOAf isa LA-map. O

The symbol f : (L,a);, — (L',ﬂ')LoAf means the LA-regular fibration f : (L,a) — (L’,a’) with a LA-loop
function

LOx, : (LW, 0) X I, @ X @) = (I, a),

induced by the LA-lifting function A : (6(f), a X a’) = P(L,a) and with the LA-fiber space J, = f!(e), where
e € I(L',a’) # 0 is a chosen base idempotent point in (L', a").
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Remark 3.3. In any LA-fibration f : (L,a);, — (L', a’) L0,/ by the LA-regularity of LA-lifting function A, the
LA-loop function LO,, has the following property:

LOAw, @) = A, D)D) = Ap(x, fD(1) = F(D) = x
forall x € J,.

Example 3.4. In Example(2.3), the first LA-fibration #; : (L’ X L,a’ X a) — (L’,a’) has a LA-regular lifting
function

Ap, - (AP, (@ xa)xa’) — P(L’ x L,a’ x a)
defined by
Ap,[(b, %), 7](t) = (¥(t),x) for all t € I, [(b, x), 7] € O(P1).

Then the LA-loop function LOx,, : (L(L",e) X ]L,,ﬁ7 x a) = (J,,a) for LA-fibration $; induced by Ap, defined
by

LOy,, (y,x)=xforallx e ],y e L(Le).

Example 3.5. Let (L', a’) be topological semigroup with I(L’,a’) # 0. Lete € Z(L’,a’) be a base idempotent
point in (L’,a’). The LA-fibration f : (P(L’),Zf) — (L",a’) defined by f(y) = y(1) for all y € P(L’) has
LA-regular lifting function Ay : (6(f), 7 X E) — (P(P(L")), E) defined by

[ y@t/2-5), for 0<t<1-s/2,
[Af(‘)// a))(s)](t) - { Q)(Zt +5— 2)’ fOI' 1 _ 5/2 S t S 1[

forall s € [ and (y, w) € 6(f). An LA-loop function
LOy, : (L' €) X Jo, & X a) = (Jo, )
for the LA-fibration induced by A defined by

_ y@2t), for 0<t<1/2,
LOy (@ 7)) = { w2t-1), for 1/2<t<1.

Since Ay is not LA-regular, we get that LO, (¢, ) # .

Definition 3.6. A topological LA-semigroup (L,a) is called a LA-absolute retract for normal topological
LA-semigroups (E, c) if for every closed LA-subspace (J,c) of (E,c), any LA-map h : (J,c) — (L,a) has a
extension LA-map H : (E,c) — (L,a).

Let (], ) be any LA-subspace of topological LA-semigroup (L, a) (L, a). The (K}, 7(L2, L")—-maps for (J,c)in (L, a)
w.r.t (L’,a’) consists two LA-maps 7(]1 2 (J,a) = (P(L),a’y and K? : (L,a) — (L’,a’) such that 7(]1(]')(0) = K2(j)
forall j€J.

Lemma 3.7. Let f : (L,a) — (L',a") be a LA-regular fibration with a LA-absolute retract (L,a). Let (J,a”) be any
closed LA-subspace of a normal space (L ,a”). If there is (K}, ‘KLZ,,, L)—maps such that f [7(]1( DB = fIK ]1 (H(0)] for
all j € J,t €1 then ‘KI1 extends to the LA-map H : (L”,a”") — (P(L),a) with Hy = K7, and f o H(x) = f[%(O)]
forallxeL”.
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Proof. Since (J,a”") is a closed LA-subspace of a normal space (L”,a”) and (L,a) is a LA-absolute retract,

then the LA-map K ]1 ca be extended to LA-map K : (L”,a”) — (P(L),a) such that Ky = ‘KLZ,,. For every

w € (P(L),a) and r € I, define the path w, in (P(L),a) by w(t) = w[r(1 — t)] for t € I. Then by Lemma 3.4,
(P(L),a) — P(P(L),a) : (0)(r) = w;
is a LA-map. Hence we ca define the LA-map H : (L”,a”) — (P(L),a) by
Hw)(t) = Af[Kw)Et), f o K(u)l(1)
forallu e L”,t € I. We prove that H = 7(5 Since Ay is regular and ‘K]l extends to K, then foru € L”,
H(w)(0) = A{(K)(O), f o K(u)o)(1) = [Kw(O)(1) = Kw)(0) = KE, ().
Now we prove that H is a extension of 7(]1 Since K is a extension for 7(]1, then
FIKG)D] FIKG)r(1 =] = fIK} (G)(r(1 = 1)]
FIFG (O] = fIKG (N = FIKG O],
forall j € Jand r,t € I. Hence by the LA-regularity of A we get that
H((1) = K1) = K (1)
forallr e, j e ]J. Hence H is a extension for ‘K]l Finally
FIH@)B] = FIAHK @)W, f o Kw))D)] = fFIK@)O)] = fFIKL )] = fIHw)©0)]
foralluel”,tel. O

Lemma 3.8. Let f : (L,a) — (L’,a’) be a LA-regular fibration with a LA-absolute retract (L,a) and (],a’") be any
closed LA-subspace of a normal space (L”,a”). Let g1,9> : (J,a”’) = (L,a) and R : (J,a”’) — (P(L),a) be three
LA-maps such that Ry = g1, Ri = g2 f o R(j) = f [ﬁG’)J(O)] forall j € ]. If g1 has a extension LA-map G to all of
(L”,a”), then g has a extension LA-map G, to all of (L”,a”"). Also there is a LA-homotopy H : (L”,a’’) — (P(L),a)
between Ky and Ky such that H is a extension of Rand f o H(x) = f [7?((\3()/(0)] forallxeL”.

Proof. Let G1 be an extension LA-map of g; to all of (L”,a”), that is,
G1(j) = 51(j) = R()(0)
for all j € J. Then there exists (R, G1, L)—-maps with
foR() = FIRGIO)]
for all j € J. By theorem above R extends to LA-map H : (L”,a”) — (P(L),a) with Hy = G1 and f o H(x)(t) =

—~

fIH(x)(0)] for all x € L”. Define the LA-map G» : (L”,a”) — (L,a) by Ga2(x) = Hi(x) for all x € L”. Then G4
is LA-homotopic to G» by H and

G2(j) = H(HA) = g2())
forall j € |. Thatis, G is a extension of g,. [J

Theorem 3.9. Let f : (L,a);, — (L',Il')Lo,\f be a LA-fibration with metrizable compact spaces L and L’. Let
LO: (L(L,e) X J.,a’ X a) = (Jo,a) bea LA-map such that

LOj, =14 LO and LO(e,x) = x for all x € ..
If (L, a) is a LA-absolute retract, then there is at least one LA-reqular lifting function L} for f that induces LO.
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Proof. By LO,, =14 LO there is a LA-homotopy

R: (L, €)X J,,a’ X a) = P(J.,a)

such that R(y, x)(0) = LOx,(y, x) and R(y, x)(1) = LO(y, x) forall x € ],y € L(L’,e). LA-map LO,, can extend
toa LA-map

LO}, : (P(L',e) X ., @ xa) = (L,a)
defined by
LO’Af(y, x) = As(x,y)(1) forall x € ],y € P(L',e)

with the property f [LO;‘f(y, x)] = y(1) for all x € J,, € P(L’,e). Then we apply Lemma(3.8) on the LA-

fibration f as follows: Since L and L’ are metrizable spaces, then by Theorem( 1.2), we get that P(L") X L is
normal space and by Theorem(1.1), L(L’,e) is a closed in P(L’) and J, is closed in L. That is, L(L’,e) X ], is
closed in P(L’) X L. Then LO can be extended to a LA-map LO" : (P(L’,¢) X J,,a’ X a) — (L, a) with

fILO'(y,x)] =y(1) forall xe ],y e L(Le).
For y € P(L’,a’) and s € I, define two paths y;, y; € P(L’,a’) by
Vs(t) = y(st) and y(f) = y(s + (1 = s)h)
for all t € I. Note that the two functions
(L") = P(P(L), @) : (1)) = ys - and (7)(s) = 7%
are LA-maps. Hence define a LA-homotopy
H' (L&) X Jo,a’ X a) = P(]., a)
by
H'(y, x)(t) = A[LO (yr, %), y'1(1)
foralltel,x € ],y € L(L',e). By the hypothesis and the LA-regularity for A we get that

H'(y,x)(0) Af[LO' (yo,%),7°1(1)
= AfALO(e,%),y1(1)
= As(x,9)(1) = LOx,(y, %)
forallx € [,y € L(L,e),

H' (v, )(1) AfILO (y1, %), y'1(1)
= ALO(y, %) el(D)
= LO'(y,x) =LO(y,x)
forallx € J,,y € L(L',e) and

H' (e, x)(t) Af[LO (@), ), (€)'1(1)
MLO'@),2(D)
Af(x,e)(1) = x

forall x € J,.
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Let Ay = [L(L,e)x J.], Ay = [ X L) N &(f)], and A = Ay UA, , where I’ = {¥’ : ¥’ € L’} and

O'(f) =1{(y,x) € P(L")XL : y(0) = f(x)}. Now we apply Lemma(3.7) on the LA-fibration f as follows: Note that

A is a closed subspace of ¢’(f) and ¢’(f) is subspace of normal space P(L") X L; We have (G}q, Gg, ¢y L)-maps
given by

Gg/(f)()/I X) = Af(xr 7/)(1)
for all (y,x) € 0'(f) and

| H'(y,x)(t), for ((y,x),t)e A x],
Ga(y, )b = { X, for ((y,x),t) € A; x I;

Note that for (y,x) € A,

FG ()] {f (G20 for (.0 € A X,

f(X), for ((7// X), t) € A2 X I;

f(x), for ((y,x)t) €A %I,
f(x), for ((y,x),t)eAxI;

fIGL (7, )O)];

By the hypothesis, (L,a) is a LA-absolute retract, then G}4 extends to LA-map H : (0'(f ),57 X a) — P(L,a)
with Hy = G2, and f o H(y, )] = FIH(, x)(0)] for all (y, x) € & (f).
Now define a LA-map L} 1 (6(f),a x a’) — P(L, a) by
L}(x, Y)®) = H(yy,x)(1) forall (x,y) € o(f), tel.

Note that: For (x,y) € 6(f), we have

L(x,7)(0) = H(yo, x)(1) = H(y(0), (1) = G'(¢(0), x)(1) = x;
For (x,y) € 6(f) and t € I, we have

FIH L )W) = fIH Y x)0)] = fIAf(x, y)(D)]
yi(1) = y(#);

[f o L, )

Forxel,

Li(x, fa'®)(H) = H(FE), 0)(1) = GL(f(), 0)(1) = x.

’

f

H(y1,x)(1) = H(y,x)(1) = G (y, x)(1)
H'(y,x)(1) = LO(y, x).

Hence the function L’ is LA-regular lifting function of f. Then

L)1)

for all (y,x) € L(L',e) X J.. Thatis, LO is a LA-loop function of f inducing by L}. O

Corollary 3.10. Let f : (L,a);, — (L’,ﬂl')Lo,\f be a LA-fibration with metrizable compact spaces L and L. If (L, a) is
LA-absolute retract then the LA-lifting function Ay and LA-loop function LO,, for f are not necessarily unique.
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Proof. Fory € P(L’,a’) and s € I, define two paths y,, y; € P(L’,a’) by
ys(t) = y(st) and  y(t) = y[s + (1 - s)i]
for all t € I. Note that the two functions
P(L',a') = P(P(L'), @) : ()(s) = ys and  (1)(s) = ¥/
are LA-maps. Hence define a LA-map ¥ : (6(f),a X a ) = P(L,a) by
F(x,y)(E) = Af[Ar(x, y)(D), y11(1)
forallt € I,(x,y) € 6(f). Now define a LA-map LO : (L(L’,e) X ]6,217 xa) = (J.,a) by
LO(y,x) = F (x,7)(1/2)
forall (y,x) € L(L’,e) X J.. Note that for (y,x) € L(L",e) X ],
F (x,7)(0) Af[Af(x, 70)(1), 761(1)
= AlAs y(O)(D), 1)
= MlAs(x, fa'x)(1), y1(D)

= As(x,y)(1)
= LO/\f (Vr x)/

thatis, LOx, ~1a LO and forx € J,,
LO(e, x) F(x,0)(1/2) = Ag[Af(x,e12)(1), €] ,](1)
MDD, A() = x.

Hence by Theorem(3.9), we can get a LA-lifting function L # Arof f given by the form in the proof of
Theorem(3.9). That is, the LA-loop function and LA-lifting function for f are not necessarily unique. [

We proved in the above corollary that the LA-loop function is not necessarily unique and in the following
theorem we clarify that the LA-loop function for any LA-fibration is uniquely determined up to a LA-
homotopy class.

Theorem 3.11. If LA-fibration f : (L,a);, — (L',ﬂ')LoAf has two LA-lifting functions Ay and /\’f, then LO,, and
LO,\/f are LA-homotopic.

Proof. For y € P(L’,a’) and s € I, define two paths y; and y} in P(L’,a’) by
ys(B) = y(st) and  y(t) = y(s + (1 -9)i)
for all t € I. Note that the two functions
(L") = P(P(L), @) : ()(s) = ys - and (7)(s) = 7%
are LA-maps. Hence define a LA-homotopy
H : (LL €)X Jo,a’ X a) = P(].,a)
by
H(y,x)(H) = As[A(x, y)(D), Y1)



H.A. Othman / Filomat 36:20 (2022), 6957-6967 6966

foralltel,x €],y € L(L',e). Since Ar and /\’f are regulars, then

Hy,00) = Ay, 70)(1),7°11) = Ae[A5(x,)(D), y1(1)
= As(x, (1) = LOy, (7, ),
and
Hy,001) = AAx Q) y'1(1) = A (x, y)(1),el(1)

A5(x, 7)(1) = LOx (7, %),
forallx € J,, y € L(L',e). Hence LO,, and LOA} are LA-homotopic. [J

4. LA-loop restriction functions

A topological LA-semigroup (L, a) is called a pathwise LA-connected if for each x1,x, € L, there is topolog-
ical LA-semigroup (L', a’) with ZI(L’,a’) # 0 and a LA-homotopy H : (L’,a’) — (P(L),a) such that H(x)(0) = x;
and H(x)(1) = xo for all x € L’. It is clear that any pathwise LA-connected semigroup (L,a), a space L is
pathwise connected.

Definition 4.1. Let f : (L,a);, — (L’,H')Lo,\f be a LA-fibration. For ¢, € ., the map R : (L(L’,e),c?) - (J.,a)
defined by R(y) = LO,(y,e,) for all y € L(L',e) is called a LA-loop restriction for the LA-fibration f if
e, € I(J.,a) and we denote it by RE”.

Example 4.2. In Example(3.4), if we take a = 4’ = 7;. Then the idempotent set of (L’ X L,a’ X a) is L’ X L.

Hence for every ¢, € J,, we give the LA-loop restriction RE? : (L(L', e), @) = (J,,a) for the LA-fibration
by RE'(y) = e, forall y € L(L', e).

The following theorem clarifies that the LA-loop restriction for any LA-fibration is a well-defined LA-
map

Theorem 4.3. Let f : (L,a);, — (L'/ﬂ')LoAf be a LA-fibration. Then every LA-loop restriction for the LA-fibration f
is LA-map.

Proof. Let RE”™ : (L(L’,e),?) — (J.,a) be a LA-loop restriction for the LA-fibration f. We observe that a
LA-loop restriction RE™ is restriction of the LA-loop function LO, ,on L(L',e) x {e,}. That s,

RE® = LOA, | o epxte,) -
Hence the LA-loop restriction RE™ is continuous. Since e, € I(J,, a), then for y1,y2 € L(L,e),
RE“[@(y1,72)] = LOA @ (1,72), e

= L0, L@ (1, 72), (e, 00)]

= LOAf{(;E X ﬂ)[(Vlz €), (V2/ €)1}
= ﬂ[LO/\f(Vl/ 60), LO/\fO/Z/ eO)]
= a[RE*(y1), RE“(y2)].

Hence RE™ is a LA-map. [

Theorem 4.4. Let f : (L, a);, — (L’,a’)LoAf be a LA-fibration with LA-loop restrictions RE", RE™ : (L(L',e),a’) —
(Je, a). If (Jo, a) is a pathwise LA-connected semigroup then RE™ and RE™ are LA-homotopic.
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Proof. Since (J,,a) is pathwise LA-connected semigroup, then there is a topological LA-semigroup (L”, c)
with 7(L”, ¢) # @ and a LA-homotopy G : (L, ¢) — (P(J.),a) such that

Gx)(0)=e; and G(x)(1)=e;

for all x € L”. Define the LA-homotopy H : (L(L’,e),?) — (P(J.),a) by
H(y)(t) = LOA [y, Gleo)(B)]

forall y € L(L',e),t € I, where e, € I(L"”,c) be a fixed point. Then we have
H()(0) = LOA [y, G(eo)(0)] = LOA,(y, e1) = RE" (),

and
H(y)(1) = LOx Ly, Gleo) ()] = LOA(y, €2) = REZ(y),

forall y € L(L’,e). Note that for y4,y, € L(L’,e) and forall t € [,

Hl@ (1, y2)1() LO4, [@ (y1,72), Gleo) ()]

= LOy @ (71, 72), G(cleo, €0)(H)]

= LOy @' (y1,72),alG(e,), Glen)1(H))

= LOx A (y1,72),alG(eo)(#), Gleo)(t)]}

= LOy @ x a)[(y1, Gleo)(®), (y2, Gleo) ()]}
= a{LOy,[y1, G(eo) ()], LOx, [y2, Gleo)(D)]}
= a[H(1)®, Hy) ()]

a[H(y1), H(y2)1(®).

Then H is a LA-homotopy between RE" and RE*. O
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