
Filomat 36:20 (2022), 6969–6977
https://doi.org/10.2298/FIL2220969G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Dual topology for the function space topologies for multifunctions are introduced and investi-
gated. It is found that a topology T on CM(Y,Z) is splitting (resp. admissible) if and only if its dual pair
(T+,T−) is splitting (resp. admissible). Similarly, the pair (T+,T−) is splitting (resp. admissible) if and only
if its dual T(T+,T−) is splitting (resp. admissible).

1. Introduction

In the recent past, study of function space structures have gained attention from various quarters of
researchers. In [16], different sets of conditions under which the Isbell topology, the compact-open or the
natural topologies may coincide have been discussed. A unified theory for hyperspaces and function spaces
has been investigated in [4]. Function space topologies and their dual spaces have been introduced and
studied for generalized topological spaces in [7] and [9] respectively. Function space structures between X
and Y, when one or both of X and Y are equipped with uniformities have been investigated in [11] and [10].

These studies have been further complimented by their applications in other fields. For example, the
notion of admissibility of function space topology between topological vector spaces is found to play a
key-role in obtaining solutions to various vector variational inequality problems [12, 17]. The continuous
multifunctions in the study of function spaces have been investigated by several researchers [13–15, 18–21].
At the same time, topological properties of multivalued functions have also been applied in the recent
past in various diverse fields such as in vector equilibrium problems, variational inequalities, optimization
theory, etc. [1–3, 5].

These developments have motivated us to investigate the function space topologies for multivalued
functions. In [8], we have introduced and studied the topologies on CM(Y,Z), the family of continuous
multivalued functions between topological spaces Y and Z. In the present paper, we investigate the dual
topologies for these function spaces. It is found that the open sets of the domain space, which are pre-images
of the continuous multifunctions, behave in a nice way. They can be used to define the dual topology of
CM(Y,Z). Unlike, in single-valued continuous mappings, here we get a pair of topologies: T+ on O+Z(Y) and
T− on O−Z(Y), respectively. It is found that a topology T on CM(Y,Z) is splitting (resp. admissible) if and
only if its dual pair (T+,T−) is splitting (resp. admissible). Similarly, the pair (T+,T−) is a splitting (resp.
admissible) pair if and only if its dual topology T(T+,T−) on CM(Y,Z) is splitting (resp. admissible).
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2. Preliminaries

In this section, we recall some definitions and results which will be used further to obtain the main
results.

Definition 2.1. A multifunction F : X→ Y is a point-to-set correspondence from X to Y.

We always assume that F(x) , ∅ for all x ∈ X. For each B ⊆ Y, F+(B) = {x ∈ X | F(x) ⊆ B} and F−(B) = {x ∈ X
| F(x) ∩ B , ∅}. For each A ⊆ X, F(A) =

⋃
x∈A

F(x).

The collection of all the multifunctions from X to Y is denoted by YX
M

.
The following definitions and results are taken from available literature.

Definition 2.2. Let (X, τ) and (Y, µ) be two topological spaces. Then F : X→ Y is called:

(i) upper semi continuous (or u.s.c., in brief) at x ∈ X if for each open set V ⊆ Y with F(x) ⊆ V, there exists
an open set U of X such that x ∈ U and F(U) ⊆ V;

(ii) lower semi continuous (or l.s.c, in brief) at x ∈ X if for each open set V ⊆ Y with F(x)∩V , ∅, there exists
an open set U of X such that x ∈ U and F(u) ∩ V , ∅ for every u ∈ U;

(iii) continuous at x ∈ X, if it is both u.s.c. and l.s.c. at x;
(iv) continuous (resp. u.s.c., l.s.c.) if it is continuous (resp. u.s.c., l.s.c.) at each point of X.

Theorem 2.3. Let (X, τ) and (Y, µ) be two topological spaces. Then the following conditions are equivalent for a
multifunction F : X→ Y:

(i) F is l.s.c. (resp. u.s.c.);
(ii) F−(U) (resp. F+(U)) is open in X for each open subset U of Y;

(iii) F+(A) (resp. F−(A)) is closed in X for each closed subset A of Y.

Definition 2.4. A multifunction F : X→ Y is called a closed map if F(A) is closed in Y whenever A is closed
in X.

In [8], Gupta and Sarma, introduced the notion of admissibility and splittingness on CM(Y,Z), the space
of all set-valued continuous functions as follow:

Definition 2.5. ([8]) Let (Y, τ) and (Z, µ) be two topological spaces. Let (X, λ) be another topological space.
For a multifunction G : X × Y→ Z, we define a map G∗ : X→ CM(Y,Z) by G∗(x)(y) = G(x, y).

The mappings G and G∗ related in this way are called associated maps.

Definition 2.6. ([8]) Let (Y, τ) and (Z, µ) be two topological spaces. A topology T on CM(Y,Z) is called

(i) admissible (resp. upper admissible, lower admissible) if the evaluation mapping E : CM(Y,Z) × Y → Z
defined by E(F, y) = F(y) is continuous (resp. u.s.c, l.s.c.).

(ii) splitting (resp. upper splitting, lower splitting) if for each topological space X, continuity (resp. u.s.c.,
l.s.c.) of G : X × Y→ Z implies the continuity of G∗ : X→ CM(Y,Z), where G∗ is the associated map of
G.

3. Dual topology for multifunctions

The open sets of the domain space which can be realized as pre-images of continuous multifunctions
are found to behave in a nice way. They can be used to define the so-called “dual topology” of CM(Y,Z).
Interesting relationships can be observed between the space of multifunctions and its dual. In this section,
we investigate such relationships with regard to splittingness, admissibility etc. of a space of multifunction
and its dual.
First we define, for topological spaces (Y, τ) and (Z, µ),
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O
+
Z(Y) = {F+(U) | F ∈ CM(Y,Z),U ∈ µ}
O
−

Z(Y) = {F−(U) | F ∈ CM(Y,Z),U ∈ µ}.

A topology onO+Z(Y) (resp. O−Z(Y)) is called an upper topology (resp. a lower topology) with respect toCM(Y,Z).

Definition 3.1. Let (Y, τ) and (Z, µ) be two topological spaces and CM(Y,Z) be the set of all continuous
multifunctions from Y to Z. Then for subsetsH+ ⊆ O+Z(Y),H− ⊆ O−Z(Y),H+,H− ⊆ CM(Y,Z) and U ∈ µ we
define

(H+,U) = {F ∈ CM(Y,Z) | F+(U) ∈H+},
(H−,U) = {F ∈ CM(Y,Z) | F−(U) ∈H−}
and
(H+,U) = {F+(U) | U ∈ µ,F ∈ H+},
(H−,U) = {F−(U) | U ∈ µ,F ∈ H−}.

Definition 3.2. Let (Y, τ) and (Z, µ) be two topological spaces. Let T+ and T− be an upper and a lower
topology with respect to CM(Y,Z). Then we define

S(T+) = {(H+,U) |H+ ∈ T+, U ∈ µ}
and S(T−) = {(H−,U) |H− ∈ T−, U ∈ µ}

Lemma 3.3. S(T+) (resp. S(T−)) is a subbasis for a topology on CM(Y,Z).

Proof. Let F ∈ CM(Y,Z). Then, we have F+(Z) = Y (resp. F−(Z) = Y)) which belongs toH+ (resp. H−). This
holds for all F ∈ CM(Y,Z). Therefore CM(Y,Z) =

⋃
(H+,U) (resp.

⋃
(H−,U)). Hence S(T+) (resp. S(T−)) is

a subbasis for a topology on CM(Y,Z).

The topologies onCM(Y,Z) obtained fromS(T+) andS(T−) are denoted byT(T+) andT(T−) respectively.

Definition 3.4. Let (Y, τ) and (Z, µ) be two topological spaces. Then for each pair (T+,T−) of upper and
lower topology, the topology generated by

{(H+,U) ∩ (H−,U) | U ∈ µ,H+ ∈ T+,H− ∈ T−}

on CM(Y,Z) is called the dual of the pair (T+,T−) and is denoted by T(T+,T−).

From the construction itself, it is clear that every pair of upper and lower topology generates a unique
topology on CM(Y,Z). Similarly, we show that every topology on CM(Y,Z) generates a pair of upper and
lower topology.

Definition 3.5. Let (Y, τ) and (Z, µ) be two topological spaces and let T be a topology on CM(Y,Z). Then we
define

S
+(T) = {(H+,U) | H+ ∈ T,U ∈ µ}
S
−(T) = {(H−,U) | H− ∈ T,U ∈ µ}

Lemma 3.6. S+(T) (resp. S−(T)) is a subbasis for O+Z(Y) (resp. O−Z(Y)).

Proof. Let V ∈ O+Z(Y) (resp. V ∈ O−Z(Y)). Then there exists a F ∈ CM(Y,Z) and U ∈ µ such that V = F+(U)
(resp. V = F−(U)). Now for H+ = CM(Y,Z) ∈ T (resp. H− = CM(Y,Z) ∈ T), we have V ∈ (H+,U) (resp.
V ∈ (H−,U)). Hence O+Z(Y) =

⋃
(H+,U) (resp.

⋃
(H−,U)). Hence S+(T) (resp. S−(T)) is a subbasis for

O
+
Z(Y) (resp. O−Z(Y)).

We elaborate the above lemma with the help of the following examples.
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Example 3.7. Let Y = R be the set of all real numbers with usual topology τ and let Z = Z be the set of
all integers and p be a fixed prime. Then a topology µ known as p-adic topology [22] on Z is generated by
taking as basis, the sets of the form

Uα(n) = {n + λpα | λ ∈ Z}

LetCM(R,Z) be the collection of all the continuous multifunctions fromR toZ. Consider the compact-open
topology for CM(R,Z), defined in [8], having a sub-base defined as

S
M

co = {(C,Uα(n)) | C is compact in Y and Uα(n) ∈ µ}

for some α and n ∈ Z.
Let us define

S
+(T) = {

(
(C,Uα(n))+,Uβ(m)

)
| for some α, β ∈ Z and C is a compact subset in R}

where,
(
(C,Uα(n))+,Uβ(m)

)
= {F+(Uβ(m)) | F ∈ CM(R,Z) and F(C) ⊆ Uα(n)}

Similarly, we define

S
−(T) = {

(
(C,Uα(n))−,Uβ(m)

)
| for some α, β ∈ Z and C is compact in R}

where,
(
(C,Uα(n))−,Uβ(m)

)
= {F−(Uβ(m)) | F ∈ CM(R,Z) and F(C) ⊆ Uα(n)}

It can be easily verified thatS+(T) andS−(T) form subbasis for topologies onO+Z(R) andO−Z(R) respectively,
justifying Lemma 3.6.

Similarly, we have the following:

Example 3.8. Let Y = R be the set of all real numbers with usual topology τ and let Z = Z be the set of
all integers equipped with p-adic topology on Z as in Example 3.7. Let CM(R,Z) be the collection of all the
continuous multifunctions from R to Z. Consider the open-open topology for CM(R,Z), defined in [8],
having a sub-base defined as

S
M

τ,µ = {(U,Vα(n)) | U ∈ τ and Vα(n) ∈ µ}

for some α and n ∈ Z.
As in Example 3.7, let us define

S
+(T) = {

(
(U,Vα(n))+,Vβ(m)

)
| for some α, β ∈ Z and U ∈ τ

where,
(
(U,Vα(n))+,Vβ(m)

)
= {F+(Vβ(m)) | F ∈ CM(R,Z) and F(U) ⊆ Vα(n)}

Similarly, we define

S
−(T) = {

(
(U,Vα(n))−,Vβ(m)

)
| for some α, β ∈ Z and U ∈ τ

where,
(
(U,Vα(n))−,Vβ(m)

)
= {F−(Vβ(m)) | F ∈ CM(R,Z) and F(U) ⊆ Vα(n)}

Like in Example 3.7, it can be verified that S+(T) and S−(T) form subbasis for topologies on O+Z(R) and
O
−

Z(R) respectively, justifying Lemma 3.6.

Definition 3.9. The pair (T+(T),T−(T)) is called the dual of T, where the topologies T+(T) and T−(T) are
obtained from S+(T) and S−(T) on O+Z(Y) and O−Z(Y), respectively.

Now we define splittingness and admissibility on O+Z(Y) and O−Z(Y). Then we investigate the possi-
ble relationships between a topology on CM(Y,Z) and its dual pair and vice-versa with respect to these
properties.
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Definition 3.10. LetT+ andT− be topologies onO+Z(Y) andO−Z(Y) respectively. Then the topology generated
by {H+ ∩K− |H+ ∈ T+,K− ∈ T−} on O+Z(Y) ∩ O−Z(Y) is called the topology generated by the pair (T+,T−) and
is denoted by T∗.

In the following discussion, the topology on O+Z(Y) ∩ O−Z(Y) is taken to be T∗, whereas topology µ is
immaterial for our discussion.

Definition 3.11. Let (Y, τ) and (Z, µ) be two topological spaces and (X, λ) be another topological space. Then
for a multifunction G : X×Y→ Z and its associated map G∗, the map G : X×µ→ O+Z(Y)∩O−Z(Y) is defined
by G(x,U) = [G∗(x)]+ (U) = [G∗(x)]− (U) for every U ∈ µ and x ∈ X.

Definition 3.12. Let (Y, τ) and (Z, µ) be two topological spaces and (X, λ) be another topological space. A
map M : X × µ → O+Z(Y) ∩ O−Z(Y) is called continuous with respect to the first variable if the map MU : X →
O
+
Z(Y) ∩ O−Z(Y) defined by MU(x) =M(x,U) is continuous for every x ∈ X and for each fixed U ∈ µ.

Now we are in a position to define splittingness and admissibility of a pair of upper and lower topologies.

Definition 3.13. Let (Y, τ) and (Z, µ) be two topological spaces and (X, λ) be another topological space. Then
a pair (T+,T−) is called

(i) a splitting pair (resp. upper splitting pair, lower splitting pair) if the continuity (resp. upper semi
continuity, lower semi continuity) of a map G : X × Y → Z implies the continuity with respect to the
first variable of the map G : X × µ→ O+Z(Y) ∩ O−Z(Y).

(ii) an admissible pair (resp. upper admissible pair, lower admissible pair) if for every map G∗ : X → CM(Y,Z),
the continuity with respect to the first variable of the map G : X × µ → O+Z(Y) ∩ O−Z(Y) implies the
continuity (resp. upper semi continuity, lower semi continuity) of the associated map G : X × Y→ Z.

In the remaining part of this section, we investigate how duality links splittingness and admissibility of
a topology on CM(Y,Z) and its dual and vice-versa. The first set of theorems is about the pair (T+,T−) and
its dual T(T+,T−).

Theorem 3.14. The pair (T+,T−) forms a splitting pair (resp. upper splitting pair, lower splitting pair) if and only
if its dual topology T(T+,T−) on CM(Y,Z) is splitting (resp. upper splitting, lower splitting).

Proof. Suppose, (T+,T−) forms a splitting pair (resp. upper splitting pair, lower splitting pair), that is, for
every space X, the continuity (u.s.c, l.s.c) of the map F : X × Y → Z implies the continuity with respect to
the first variable of the map F : X × µ → O+Z(Y) ∩ O−Z(Y). We have to show that the topology T(T+,T−) on
CM(Y,Z) is splitting (resp. upper splitting, lower splitting), that is for every space X, the continuity (resp,
u.s.c, l.s.c) of the map F : X×Y→ Z implies the continuity of the associated map F∗ : X→ CM(Y,Z). Thus, it
is sufficient to show that the continuity with respect to the first variable of the map F : X×µ→ O+Z(Y)∩O−Z(Y)
implies the continuity of the associated map F∗ : X→ CM(Y,Z).

Let x ∈ X, and (H+,U) ∩ (K−,U) ∈ T(T+,T−) be a subbasic open neighbourhood of F∗(x). Then
F∗(x) ∈ (H+,U) and F∗(x) ∈ (K−,U), which implies [F∗(x)]+(U) ∈ H+ and [F∗(x)]−(U) ∈ K−. Therefore,
we have FU(x) ∈ H+ and FU(x) ∈ K−. Since FU(x) ∈ H+ ∩ K−. Also F : X × µ → O

+
Z(Y) ∩ O−Z(Y)

is continuous with respect the first variable and H+ ∩ K− is an open neighbourhood of FU(x). Thus
there exists an open neighbourhood V of x such that FU(V) ⊆ H+ ∩ K−. Now, for y ∈ V, we have
FU(y) ∈ H+ ∩K−. Thus, FU(y) ∈ H+ and FU(y) ∈ K−, which implies F∗(y) ∈ (H+,U) ∩ (K−,U) for all y ∈ V.
Hence F∗(V) ⊆ (H+,U) ∩ (K−,U). Therefore F∗ is continuous.

Conversely, let T(T+,T−) be splitting (resp. upper splitting, lower splitting), we have to show that the
pair (T+,T−) is splitting pair (resp. upper splitting pair, lower splitting pair). For this, it is sufficient to
show that F : X × µ → O+Z(Y) ∩ O−Z(Y) is continuous with respect to the first variable provided that the
map F∗ : X → CM(Y,Z) is continuous. Let, for a fixed U ∈ µ and x ∈ X, H ∈ O+Z(Y) ∩ O−Z(Y) be an open
neighbourhood of F(x,U). ThenH =H+∩K−, whereH+ ∈ T+ andK− ∈ T−. That is F(x,U) ∈H =H+∩K−
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which implies F(x,U) ∈ H+ as well as F(x,U) ∈ K−. Thus [F∗(x)]+(U) ∈ H+ and [F∗(x)]−(U) ∈ K−. Hence
F∗(x) ∈ (H+,U) ∩ (K−,U). Now the map F∗ is given to be continuous and (H+,U) ∩ (K−,U) is an open
neighbourhood of F∗(x). Thus there exists an open neighbourhood V of x such that F∗(V) ⊆ (H+,U)∩(K−,U).
Now consider, y ∈ V, we have F∗(y) ∈ (H+,U) ∩ (K−,U). Therefore, F∗(y) ∈ (H+,U) and F∗(y) ∈ (K−,U).
Hence, we have FU(y) ∈H+ and FU(y) ∈ K−, that is, FU(y) ∈H+ ∩K− =H, for all y ∈ V. Hence FU(V) ⊆H.
Hence the map F is continuous with respect to the first variable. Thus, the pair (T+,T−) is a splitting pair
(resp. upper splitting pair, lower splitting pair).

Theorem 3.15. The pair (T+,T−) is an admissible pair (resp. upper admissible pair, lower admissible pair) if and
only if its dual topology T(T+,T−) on CM(Y,Z) is admissible (resp. upper admissible, lower admissible).

Proof. Let the pair (T+,T−) be an admissible pair (resp. upper admissible pair, lower admissible pair), that is
for every space X and for every map G∗ : X→ CM(Y,Z), the continuity of the map G : X×µ→ O+Z(Y)∩O−Z(Y)
with respect the first variable implies the continuity (resp. u.s.c, l.s.c) of the map G : X × Y → Z. We have
to prove that the topology T(T+,T−) is admissible (resp. upper admissible, lower admissible), that is the
continuity of G∗ : X→ CM(Y,Z) implies the continuity (resp. u.s.c, l.s.c) of the associated map G : X×Y→ Z.
Thus it is sufficient to prove that G : X × µ→ O+Z(Y) ∩ O−Z(Y) is continuous with respect to the first variable
provided the map G∗ : X→ CM(Y,Z) is continuous.

Let we have, for fixed U ∈ µ and x ∈ X, a subbasic open neighbourhoodH =H+ ∩K− of G(x,U), where
H+ ∈ T+ andK− ∈ T−. Therefore G(x,U) ∈H. That is, GU(x) ∈H =H+∩K− which implies GU(x) ∈H+ and
GU(x) ∈ K−. Therefore [G∗(x)]+(U) = GU(x) ∈ H+ and [G∗(x)]−(U) ∈ K− also. Thus G∗(x) ∈ (H+,U) as well
as G∗(x) ∈ (K−,U), which implies G∗(x) ∈ (H+,U)∩ (K−,U). Since the map G∗ is given to be continuous and
(H+,U)∩ (K−,U) is a subbasic open neighbourhood of G∗(x), therefore there exists an open neighbourhood
V of x such that G∗(V) ⊆ (H+,U) ∩ (K−,U). Now, for y ∈ V, we have G∗(y) ∈ (H+,U) ∩ (K−,U), that is
[G∗(y)]+(U) ∈ H+ and [G∗(y)]−(U) ∈ K−. Thus GU(y) ∈ H+ ∩K− for all y ∈ V. Hence, GU(V) ⊆ H+ ∩K−.
Therefore the map G is continuous with respect to the first variable. Hence the topology T(T+,T−) is
admissible (resp. upper admissible, lower admissible).

Conversely, let T(T+,T−) be given to be admissible (resp. upper admissible, lower admissible), we have
to show that the pair (T+,T−) forms an admissible pair (resp. upper admissible pair, lower admissible
pair). For this, it is sufficient to show that the continuity with respect to the first variable of the map
G : X × µ→ O+Z(Y) ∩ O−Z(Y) implies continuity of the map G∗ : X→ CM(Y,Z).

Let x ∈ X and (H+,U) ∩ (K−,U) be a subbasic open neighbourhood of G∗(x), that is G∗(x) ∈ (H+,U) ∩
(K−,U). Thus [G∗(x)]+(U) ∈ H+ and [G∗(x)]−(U) ∈ K−. Hence GU(x) ∈ H+ ∩ K−. Since the map G is
given to be continuous with respect to the first variable and H+ ∩ K− is a subbaisc open neighbourhood
of GU(x), thus there exists an open neighbourhood V of x such that GU(V) ⊆ H+ ∩ K−. Hence for y ∈ V,
we have GU(y) ∈ H+ and GU(y) ∈ K− which implies [G∗(y)]+(U) ∈ H+ and [G∗(y)]−(U) ∈ K−. Therefore
G∗(y) ∈ (H+,U) ∩ (K−,U) for all y ∈ V and hence G∗(V) ⊆ (H+,U) ∩ (K−,U). Thus the pair (T+,T−) forms
an admissible pair (resp. upper admissible pair, lower admissible pair).

Now, we provide the relationship between a topology on CM(Y,Z) and its dual.

Theorem 3.16. Topology T on CM(Y,Z) is splitting (resp. upper splitting, lower splitting) if and only if its dual
pair (T+(T),T−(T)) forms a splitting pair (resp. upper splitting pair, lower splitting pair).

Proof. Let T be a splitting (resp. upper splitting, lower splitting) topology on CM(Y,Z). We have to show
that the pair (T+(T),T−(T)) forms a splitting pair (resp. upper splitting pair, lower splitting pair). It is
sufficient to show that the continuity of the map G∗ : X → CM(Y,Z) implies the continuity of the map
G : X × µ→ O+Z(Y) ∩ O−Z(Y) with respect to the first variable.

Let x ∈ X andH ∈ T be an open neighbourhood of G∗(x). Then for any fixed U ∈ µ, (H ,U) ∈ T∗ is an open
neighbourhood of G(x,U). That is, G(x,U) ∈ (H ,U). Now G(x,U) = [G∗(x)]+(U) = [G∗(x)]−(U) ∈ (H ,U),
by definition. This implies G∗(x) ∈ H . Since the map G∗ is given to be continuous and H be an open
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neighbourhood of G∗(x), therefore there exists an open neighbourhood V of x such that G∗(V) ⊆ H . Now,
consider for y ∈ V, we have G∗(y) ∈ H , that is [G(y)]+(U) ∈ (H ,U) and [G(y)]−(U) ∈ (H ,U). Hence
G(y,U) ∈ (H ,U), for all y ∈ V. Therefore GU(V) ⊆ (H ,U) and the map G is continuous with respect to the
first variable. Hence the result.

Conversely, let the pair (T+(T),T−(T)) form a splitting pair (resp. upper splitting pair, lower splitting
pair). We have to show that the topology T on CM(Y,Z) is splitting (resp. upper splitting, lower splitting).
It is equivalent to show that the map G∗ : X → CM(Y,Z) is continuous provided the map G : X × µ →
O
+
Z(Y) ∩ O−Z(Y) is continuous with respect to the first variable.

Let x ∈ X and H be an open neighbourhood of G∗(x), that is G∗(x) ∈ H . For any fixed U ∈ µ, we have
[G∗(x)]+(U) ∈ (H ,U) ∈ T+(T) and [G∗(x)]−(U) ∈ (H ,U) ∈ T−(T). Therefore G(x,U) ∈ O+Z(Y) ∩ O−Z(Y) for a
fixed U ∈ µ. Since the map G is given to be continuous with respect to the first variable, thus there exists an
open neighbourhood V of x such that GU(V) ⊆ (H ,U). Now consider, for y ∈ V, we have GU(y) ∈ (H ,U)
which implies [G∗(y)]+(U) ∈ (H ,U) and [G∗(y)]−(U) ∈ (H ,U). Therefore G∗(y) ∈ H for every y ∈ V. Hence
the map G∗ is continuous.

In the following discussion, we explain the above result.
Let T+(T) and T−(T) be the topologies generated by S+(T) and S−(T) as discussed in Example 3.7 on

O
+
Z(R) andO−Z(R) respectively. Then the pair (T+(T),T−(T)) is dual of the compact-open topology generated

by SMco on CM(R,Z). We show that (T+(T),T−(T)) is an upper splitting pair in this case.

Proposition 3.17. Let Y = R and Z = Z be the set of real numbers and integers equipped with topologies τ and µ
respectively. Let the pair (T+(T),T−(T)) be the topologies generated by S+(T) and S−(T), as discussed in Example
3.7, on O+Z(R) and O−Z(R) respectively. Then (T+(T),T−(T)) forms an upper splitting pair.

Proof. Let (X, µ1) be any topological space. The compact-open topology defined over CM(R,Z) in Example
3.7 is upper splitting [8]. Here, we have to show that the pair (T+(T),T−(T)) forms an upper splitting pair.
For this, it is sufficient to show that the continuity of the map G∗ : X→ CM(R,Z) implies the continuity of
the map G : X × µ→ O+Z(R) ∩ O−Z(R) with respect to the first variable.

Let x ∈ X and (C,Uα(n)) ∈ T be an open neighbourhood of G∗(x). Then for any fixed Uβ(m) ∈ µ,
((C,Uα(n)),Uβ(m)) ∈ T∗ is an open neighbourhood of G(x,Uβ(m)). That is, G(x,Uβ(m)) ∈ ((C,Uα(n)),Uβ(m)).
Now G(x,Uβ(m)) = [G∗(x)]+(Uβ(m)) = [G∗(x)]−(Uβ(m)) ∈ ((C,Uα(n)),Uβ(m)), by definition. This implies
G∗(x) ∈ (C,Uα(n)). Since the map G∗ is given to be continuous and (C,Uα(n)) is an open neighbourhood
of G∗(x), therefore there exists an open neighbourhood V of x such that G∗(V) ⊆ (C,Uα(n)). Now, con-
sider for y ∈ V, we have G∗(y) ∈ (C,Uα(n)), that is [G(y)]+(Uβ(m)) ∈ ((C,Uα(n)),Uβ(m)) and [G(y)]−(Uβ(m)) ∈
((C,Uα(n)),Uβ(m)). Hence G(y,Uβ(m)) ∈ ((C,Uα(n)),Uβ(m)), for all y ∈ V. Therefore GUβ(m)(V) ⊆ ((C,Uα(n)),Uβ(m))
and the map G is continuous with respect to the first variable. Hence the result.

Similarly, we can prove that

Theorem 3.18. Topology T on CM(Y,Z) is admissible (resp. upper admissible, lower admissible) if and only if its
dual pair (T+(T),T−(T)) forms an admissible pair (resp. upper admissible pair, lower admissible pair).

Proof. The proof is left for the readers.

Now, in the following we discuss the above theorem in the light of the following result.
Let T+(T) and T−(T) be the topologies generated by S+(T) and S−(T) as discussed in Example 3.8 on

O
+
Z(R) andO−Z(R) respectively. Then the pair (T+(T),T−(T)) is the dual of the open-open topology generated

by SMτ,µ on CM(R,Z). We show that (T+(T),T−(T)) is an upper admissible pair in this case.

Proposition 3.19. Let Y = R and Z = Z be the set of real numbers and integers equipped with topologies τ and µ
respectively. Let the pair (T+(T),T−(T)) be the topologies generated by S+(T) and S−(T) as discussed in Example
3.8 on O+Z(R) and O−Z(R) respectively. Then (T+(T),T−(T)) forms an upper admissible pair.
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Proof. Let Y = R and Z = Z be the set of real numbers and integers respectively. Let the pair (T+(T),T−(T))
be the topologies discussed in Example 3.8. Here, we have to show that (T+(T),T−(T)) forms an upper
admissible pair. For this, let (X, µ1) be any topological space. We have to show that the continuity
with respect to first variable of the map G : X × µ → O+Z(R) ∩ O−Z(R) implies the continuity of the map
G∗ : X→ CM(R,Z).

Let x ∈ X, and
(
(U1,Vα(n1))+,Vβ(m)

)
∩

(
(U2,Vα(n2))−,Vβ(m)

)
∈ (T+(T),T−(T)) be a subbasic open neigh-

bourhood of G∗(x). That is, G∗(x) ∈
(
(U1,Vα(n1))+,Vβ(m)

)
and G∗(x) ∈

(
(U2,Vα(n2))−,Vβ(m)

)
. Thus,

we have [G ∗ (x)]+(Vβ(m)) ∈ (U1,Vα(n1))+ and [G ∗ (x)]−(Vβ(m)) ∈ (U2,Vα(n2))−. Therefore, we have
GVβ(m)(x) ∈ (U1,Vα(n1))+ and GVβ(m)(x) ∈ (U2,Vα(n2))−, that is, GVβ(m)(x) ∈ (U1,Vα(n1))+ ∩ (U2,Vα(n2))−.
Since the map G : X × µ → O+Z(R) ∩ O−Z(R) is given to be continuous with respect to the first variable and
(U1,Vα(n1))+ ∩ (U2,Vα(n2))− is a subbasic open neighbourhood of GVβ(m)(x), there exists an open neigh-
bourhood V of x such that GVβ(m)(V) ⊆ (U1,Vα(n1))+ ∩ (U2,Vα(n2))−. Now, for y ∈ V, we have GVβ(m)(y) ∈

(U1,Vα(n1))+ ∩ (U2,Vα(n2))−.Hence, we have G∗(V) ⊆
(
(U1,Vα(n1))+,Vβ(m)

)
∩

(
(U2,Vα(n2))−,Vβ(m)

)
. There-

fore, G∗ is continuous. Hence the result.

In the subspace topology of the function space C(Y,Z), the above results reduce to the Corollary 3.6, 3.8,
3.10, 3.15 of [6].

Remark 3.20. In the present study, we have not investigated the relationship between a topology T on
CM(Y,Z) and the dual T(T+(T),T−(T)) of (T+(T),T−(T)). Similarly, for the pair (T+,T−) on (O+Z(Y),O−Z(Y)),
its relationship with the dual of the dual topology T(T+,T−) needs to be investigated further. The same
result may be taken up as further continuation of the above work.
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