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Abstract. In this paper, we study the generalized m-quasi-Einstein metric in the context of contact
geometry. First, we prove if an H-contact manifold admits a generalized m-quasi-Einstein metric with
non-zero potential vector field V collinear with ξ, then M is K-contact and η-Einstein. Moreover, it is also
true when H-contactness is replaced by completeness under certain conditions. Next, we prove that if a
complete K-contact manifold admits a closed generalized m-quasi-Einstein metric whose potential vector
field is contact then M is compact, Einstein and Sasakian. Finally, we obtain some results on a 3-dimensional
normal almost contact manifold admitting generalized m-quasi-Einstein metric.

1. Introduction

The study of Einstein manifolds and their several generalizations have received a lot of attention in
recent decades. One such generalization is the so-called Ricci solitons, which play a crucial role in Ricci
flow. A Riemannian manifold (Mn, 1) together with vector field V is called Ricci soliton if it satisfies:

LV1 + 2S = 2λ1, (1)

whereLV denotes the Lie-derivative operator along a vector field V, S is the Ricci tensor of 1 andλ a constant.
Clearly, for Killing vector V, the soliton equation becomes Einstein i.e., S = λ1. When V = D f i.e., a gradient
of smooth function f on M, it is called a gradient Ricci soliton. For a detailed survey, we recommend Cao [6].

A generalized notion of Einstein metric and gradient Ricci soliton, called m-quasi-Einstein metric has
become an attractive topic in modern Riemannian geometry. It is mainly since an n-dimensional m-quasi-
Einstein manifold is exactly those manifolds that are the base of an (n + m)-dimensional Einstein warped
product (see [17]). A Riemannian manifold (Mn, 1) together with constant λ is said to be m-quasi-Einstein
if it satisfies:

S + ∇2 f −
1
m

d f ⊗ d f = λ1, (2)
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where 0 < m ≤ ∞ and∇2 f denotes the Hessian form of the smooth function f on M. Here, S+∇2 f− 1
m d f⊗d f =

Sm
f is known as m-Bakery-Emery Ricci tensor which arises from the warped product (M ×N, 1̄) of two Rie-

mannian manifolds (Mn, 1) and (Nm, h) with the Riemannian metric 1̄ = 1 + e−
2 f
m h. Moreover, when m = ∞,

(2) reduces to the gradient Ricci soliton, and when f is constant, it is Einstein. The m-quasi-Einstein metric
has been analyzed deeply by Case [7] and Case et al. [8].

Independently, by considering 1-form Vb instead of d f , Barros-Ribeiro Jr [1] and Limoncu [18] general-
ized m-quasi-Einstein metric as follows:

S +
1
2
LV1 −

1
m

Vb
⊗ Vb = λ1. (3)

Here, Vb is the 1-form associated with the potential vector field V. Notice that if a 1-form Vb is closed i.e.,
dVb = 0 then (3) reduces to (2) with Vb = ∇ f , where f is a smooth function on M. m-quasi-Einstein manifold
with closed 1-form Vb is called closed m-quasi-Einstein manifold. Ghosh [12] studied an m-quasi-Einstein
structure on K-contact, contact metric manifolds, and H-contact manifolds and gave several examples.
Later, Chen [11] studied it in almost cosympletic manifolds.

Extending the notion of m-quasi-Einstein, Catino [10] introduced and studied the concept of a general-
ized m-quasi-Einstein manifold. A particular case of this was proposed by Barros-Ribeiro Jr [2] which is
defined as follows:

A Riemannian manifold (Mn, 1) is said to be generalized m-quasi-Einstein if there exists a function
λ : Mn

→ R such that

S + ∇2 f −
1
m

d f ⊗ d f = λ1. (4)

If m = ∞ then (4) reduces to Ricci almost soliton. Using the terminology of Ricci soliton we say that
generalized m-quasi-Einstein metric is said to be expanding, shrinking or steady accordingly as λ < 0, λ > 0
or λ = 0 respectively. Hu et al. [14, 15] studied generalized m-quasi-Einstein manifolds with constant Ricci
curvatures and constant scalar curvature. Recently, Ghosh [13] studied generalized m-quasi-Einstein metric
in Sasakian and K-contact manifolds and proved, “Let (M2n+1, 1,m, λ) be a generalized quasi-Einstein manifold.
If 1 represents a K-contact metric and m , 1, then it is compact, Einstein, Sasakian, and isometric to the unit sphere
S2n+1.” In continuation, we studied the generalized m-quasi-Einstein metric with 1-form Vb. Ghosh [12] on
H-contact manifold proved, “Let M2n+1(ϕ, ξ, η, 1) be an H-contact manifold. If 1 represents an m-quasi-Einstein
metric with non-zero potential vector field V collinear with ξ, then M is K-contact and η-Einstein.” Generalizing
this we prove the following result.

Theorem 1.1. Let M2n+1(ϕ, ξ, η, 1) be an H-contact manifold. If 1 represents a generalized m-quasi-Einstein metric
with non-zero potential vector field V collinear with ξ, then M is K-contact and η-Einstein. Moreover, λ is constant.

In [3], Boyer and Galicki studied Einstein K-contact and η-Einstein K-contact manifolds. In particular,
they proved that a compact Einstein K-contact is Sasakian. This is also true for compact η-Einstein (S =
α1 + βη ⊗ η for constant α, β) K-contact with α > −2. These results are also valid if one relaxes compactness
by completeness (see [24]). Because of the above theorem and the Boyer-Galicki result, we can state the
following:

Corollary 1.2. Let M2n+1(ϕ, ξ, η, 1) be a complete H-contact manifold. If 1 admits shrinking generalized m-quasi-
Einstein metric with non-zero potential vector field V collinear with ξ then M is compact Sasakian and η-Einstein.

Consider a special case when λ = λ′ + ρr (λ′, ρ ∈ R) in (4), then it is said to be (m, ρ)-quasi-Einstein
manifold. In particular, if m = ∞, then it is exactly the ρ-Einstein soliton [9]. For details on (m, ρ)-quasi-
Einstein see [16, 23, 25] and references therein.

Replacing H-contactness by a compact contact metric manifold and generalizing ([23], Theorem 3) we
prove the following result.
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Theorem 1.3. Let M2n+1(ϕ, ξ, η, 1) be a complete contact metric manifold. If 1 admits a generalized m-quasi-Einstein
metric with non-zero potential vector field collinear with ξ and ||∇(σ2) − 4

3mσ
2V + 2(2n − 1)σξλ||1 ∈ L1(M, 1) then

M is K-contact and η-Einstein.

Using the similar argument as in Corollary 1.2, we can state the following:

Corollary 1.4. Let M2n+1(ϕ, ξ, η, 1) be a complete contact metric manifold. If 1 admits shrinking generalized m-quasi-
Einstein metric with non-zero potential vector field collinear with ξ and ||∇(σ2)− 4

3mσ
2V+2(2n−1)σξλ||1 ∈ L1(M, 1)

then M is compact Sasakian and η-Einstein.

Firstly we review an important definition: A vector field V on a contact metric manifold M is said to be
contact if there exists a smooth function ϱ : M→ R satisfying

(LVη)(Y) = ϱη(Y), (5)

for all Y ∈ χ(M) and if ϱ = 0, then the vector field V is called strict. In [21], the author proved that if a
K-contact metric 1 represents a Ricci almost soliton with the potential vector field V is contact and the Ricci operator Q
commutes with the constant structure ϕ, then V is killing and 1 is Einstein with constant scalar curvature 2n(2n+1).
Based on the above result, a natural question can be posed:

Does a generalized m-quasi-Einstein metric with contact potential vector field on K-contact manifold is Einstein?
We answer the above question by proving the following result.

Theorem 1.5. Let M2n+1(ϕ, ξ, η, 1) be a complete K-contact manifold. If 1 admits a closed generalized m-quasi-
Einstein metric whose potential vector field is contact then M is compact, Einstein and Sasakian. Moreover, V is
strict and λ is constant.

Finally, we studied the generalized m-quasi-Einstein metric in the framework of 3-dimensional normal
almost contact metric manifold and prove the following result.

Theorem 1.6. If a 3-dimensional normal almost contact metric manifold with β =constant admits a generalized m-
quasi-Einstein metric whose non-zero potential vector field is collinear withξ then M3 is either η-Einstein, β-Kenmotsu
or locally the product of a Kähler manifold and an interval or unit circle S1.

2. Preliminaries

In this section, we review some of the results and the definitions and properties of certain contact
structures (see [4]).

A (2n + 1)-dimensional smooth manifold M2n+1 is said to be a contact metric manifold if there exists a
global 1-form η, known as the contact form, such that η ∧ (dη)n , 0 everywhere on M, a unit vector field
ξ, called the Reeb vector field, corresponding to 1-form η such that dη(ξ, ·) = 0, a (1, 1) tensor field ϕ and
Riemannian metric 1 such that

ϕ2X = −X + η(X)ξ, η(X) = 1(X, ξ), dη(X,Y) = 1(X, ϕY), (6)

for all X,Y ∈ χ(M), where χ(M) is the Lie-algebra of all vector fields on M. The metric 1 is called the
associate metric and the structure (ϕ, ξ, η, 1) is called the contact metric structure. A Riemannian manifold
M2n+1 together with contact structure (ϕ, ξ, η, 1) is called a contact metric manifold. It follows from (6) that

ϕ(ξ) = 0, η · ϕ = 0, 1(X, ϕY) = −1(ϕX,Y),
1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), (7)

for any X,Y ∈ χ(M). Further, we define two self-adjoint operators h and l by h = 1
2 (Lξϕ) and l = R(·, ξ)ξ

respectively, where R is the Riemannian curvature of M. These operators satisfy

hξ = lξ = 0, hϕ + ϕh = 0, Tr.h = Tr.hϕ = 0. (8)
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Here, “Tr.” denotes trace. The following formulas hold on a contact metric manifold [4]

∇Xξ = −ϕX − ϕhX, (9)

Tr.l = S(ξ, ξ) = 2n − ||h||2. (10)

When unit vector ξ is Killing (i.e. h = 0 or Tr.l = 2n) then contact metric manifold is called K-contact. On
K-contact manifold the following formulas hold [4]

∇Xξ = −ϕX, (11)

R(X, ξ)ξ = X − η(X)ξ, (12)

Qξ = 2nξ, (13)

where Q is the Ricci operator associated with the Ricci tensor S and ∇ is the operator of covariant differenti-
ation of 1. A contact structure is said to be normal if the almost complex structure J on M×R is defined by
J(X, f d

dt ) = (ϕX − fξ, η(X) d
dt ), where t is the coordinate of R and f is a real function on M ×R, is integrable.

A normal contact metric manifold is called Sasakian. A Sasakian manifold is K-contact but the converse
is true only in dimension 3. Olszak [20] showed that a 3-dimensional almost contact metric manifold M is
normal if and only if ∇ξ · ϕ = ϕ · ∇ξ, or, equivalently,

∇Xξ = −αϕX + β(X − η(X)ξ), (14)

where 2α = divξ and 2β = Tr.(ϕ∇ξ), divξ is the divergence of ξ defined by divξ = Tr.{X → ∇Xξ} and
Tr.(ϕ∇ξ) = Tr.{X → ϕ∇Xξ}. On 3-dimensional normal almost contact metric manifold the following
relations hold [20]

S(Y, ξ) = −Yα − (ϕY)β − {ξα + 2(α2
− β2
}η(Y), (15)

ξα + 2αβ = 0. (16)

A vector field V is said to be harmonic vector field if it is a critical point of the energy functional E
defined by

E(V) =
1
2

∫
||dV||2dM =

n
2

vol(M, 1) +
1
2

∫
M
||∇V||2dM

on the space χ1 of all unit vector fields on M. A contact metric manifold whose Reeb vector field is harmonic
is called an H-contact manifold. In [22], Perrone proved that a contact metric manifold is an H-contact manifold,
that is ξ is a harmonic vector field, if and only if ξ is an eigenvector of the Ricci operator. This implies Qξ = (Tr.l)ξ.
This is valid for K-contact manifolds, (k, µ)-contact manifolds and unit sphere S2n+1 with standard contact
metric structure.

In the next section, we give some examples of generalized m-quasi-Einstein metrics.

3. Examples

Example 3.1. On a standard unit sphere (Sn, 10),n ≥ 2, considering the function f = −m In(τ − hv
n ), where τ

is a real parameter lying in (1/n,+∞) and hv is some height function. Then considering λ = (n − 1) −m τ−u
u ,

we find that (Sn, 10) admits generalized m-quasi-Einstein metric. For details, see [2].

Example 3.2. On the Euclidean space (Rn, 10),n ≥ 2 together with function f = −m In(τ + |x|2), where τ is
a positive real perimeter and |x| is the Euclidean norm of x, we see that u = e−

f
m = τ + |x|2 and considering

λ = −2 m
u , it admits generalized m-quasi-Einstein structure (see [2]).
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Next, we will construct an example in a warped product manifold. Let us consider M = R×σ Nn−1 with
the product metric 1 = dt2 + σ2(t)10, where 10 is a fixed metric in Nn−1 and σ is a positive function on R.

Example 3.3. For a positive m ∈ R, let us assume,

f (x, t) = f (t) = m(t − et), σ(t) = e−t

Inserting the value of σ in Eq. 2-3, 2.4 (see [26]) together with the assumption that Nn−1 is a Ricci flat
manifold we get

S + ∇2 f −
1
m

d f ⊗ d f = λ1,

where λ = et(et + 2 −m) − n. Hence M admits generalized m-quasi-Einstein metric.

Example 3.4. Consider a Hyperbolic spaceHn(−1) ⊂ Rn+1 : ⟨x, x⟩0 = −1,. Now, consider a height function
hv :Hn(−1)→ Rgiven by hv(X) = ⟨x, v⟩0 for a fixed point v ∈Hn(−1). Let us assume u = e−

f
m = τ+hv, τ > −1,

thenHn(−1) admits generalized m-quasi-Einstein metric for λ = −(n − 1) −m τ−u
u . For details, see [2].

4. Proof of main results

Proof of Theorem 1.1: A potential vector field V collinear with Reeb vector field ξ implies V = σξ, for
some smooth function σ on M. Differentiating this along any X ∈ χ(M) we get

∇XV = X(σ)ξ − σ(ϕX + ϕhX). (17)

In consequence of (17), Eq. (4) reduces to the following

X(σ)η(Y) + Y(σ)η(X) − 2σ1(ϕhX,Y)

+2S(X,Y) −
2
m
σ2η(X)η(Y) = 2λ1(X,Y), (18)

for any X,Y ∈ χ(M). Replacing X and Y by ξ in (18) and using (10) yields

ξσ + Tr.l −
σ2

m
= λ. (19)

Putting Y = ξ in (18) and using (19) we obtain

Qξ − (Tr.l)ξ = −
1
2
{Dσ − (ξσ)ξ}. (20)

Moreover, contracting (18) we obtain the following result

ξσ + r −
σ2

m
= (2n + 1)λ. (21)

By hypothesis, H-contactness implies ξ is an eigenvector of the Ricci operator at each point of M i.e.
Qξ = (Tr.l)ξ. Making use of this in (20), we get Dσ = (ξσ)ξ. By Lemma 1 in [21], σ is constant on M. Then
(18) reduces to

QX = −σhϕX +
σ2

m
η(X)ξ + λX, (22)

for any X ∈ χ(M). Differentiating (22) along arbitrary Y ∈ χ(M) and using (9) we obtain

(∇YQ)X = −σ(∇Yhϕ)X −
σ2

m
[1(X, ϕY + ϕhY)ξ

+ η(X)(ϕX + ϕhY)] + (Yλ)X. (23)
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Contracting (23) over Y and making use of (8) gives

1
2

Xr = −σ(divhϕ)X + (Xλ). (24)

Recalling that for any contact metric manifold div(ϕh)X = 2nη(X)−1(Qξ,X). By hypothesis, since Qξ = Tr.lξ,
we get div(ϕh)X = (2n − Tr.l)η(X). Applying this in the forgoing eq. (24) infers

1
2

Xr = σ(2n − Tr.l)η(X) + (Xλ). (25)

Also differentiating (21) along X ∈ χ(M) gives Xr = (2n + 1)(Xλ). Using this in (25) and replacing X by ϕX
gives 1(ϕX,Dλ) = 0, which implies Dλ = (ξλ)ξ. Then by Lemma 1 in [21], we have λ is constant and hence
Xr = 0 i.e. r is constant on M. In consequence of this (25) reduces to σ(2n − Tr.l) = 0. Thus either σ = 0
or Tr.l = 2n. Since V is non-zero implies σ , 0. Hence, Tr.l = 2n which implies the manifold is K-contact.
From (22) we see that m is η-Einstein i.e. QX = λX + σ

2

m η(X)ξ, where σ
2

m = λ − 2n. This completes the proof.
□
Proof of Theorem 1.3: By our assumption V = σξ and hence Eq. (17)-(21) are valid. Making use of (17)
generalized m-quasi-Einstein equation becomes

QX +
1
2

[1(X,Dσ)ξ + η(X)Dσ] +

σhϕX = λX +
σ2

m
η(X)ξ. (26)

Differentiate (26) along arbitrary Y ∈ χ(M) then contracting the obtain result along Y and taking X = ξ
together with div(ϕh)ξ = ||h||2 we get

1
2
{ξr + ξ(ξσ) + divDσ} − σ||h||2 =

2
m
σ(ξσ) + ξλ. (27)

Differentiating (21) along ξ yields

ξr = (2n + 1)(ξλ) +
2σ
m

(ξσ) − ξ(ξσ). (28)

Using convention divDσ = −∆σ and combining (27) and (28) we obtain

1
2
∆σ + σ||h||2 +

σ
m

(ξσ) =
1
2

(2n − 1)(ξλ). (29)

In contact metric manifold divξ = 0 and hence 1(Dσ, ξ) = ξσ = divV. Now contracting the well-known
formula ∇X(σ2V) = X(σ2)V + σ2(∇XV) over X gives

div(σ2V) = 1(∇σ2,V) + σ2divV = 3σ2ξ(σ). (30)

Multiplying (29) by σ and using (30) and (∆σ)σ = 1
2∆(σ2) + ||∆σ||2 we obtain the following relation

div(∇(σ2) −
4

3m
σ2V + 2(2n − 1)σξλ) = 4σ2

||h||2 + 2||∇σ||2, (31)

Here we have used the fact that div(ξλ) = λdivξ+ξ(λ). Applying Proposition 1 in [5], the foregoing equation
(31) infers

2σ2
||h||2 + ||∇σ||2 = 0. (32)

This implies ∇σ = 0 and h = 0, hence M is K-contact and σ is constant. Moreover, from (26) it is η-Einstein.
This completes the proof. □
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Proof of Theorem 1.5: Taking the exterior derivative of (5) and by properties of Lie-derivative we obtain

(LVdη)(X,Y) = d(LVη)(X,Y)

=
1
2

[X(ϱ)η(Y) − Y(ϱ)η(X)] + ϱdη(X,Y), (33)

for any X,Y ∈ χ(M). Taking the Lie-derivative of dη(X,Y) = 1(X, ϕY) along V and using (33) gives

(LVϕ)Y =
1
2

[Dϱη(Y) − Y(ϱ)ξ] + ϱϕY

−
2
m

Vb(ϕY)V + 2QϕY − 2λϕY. (34)

Replacing Y by ξ in generalized m-quasi-Einstein equation becomes

(LV1)(X, ξ) =
2
m

Vb(X)η(V) − 4nη(X) + 2λη(X), (35)

for any X ∈ χ(M). Combining the forgoing equation and (5) on the Lie-derivative of η(X) = 1(X, ξ) yields

1(X,LVξ) = (ϱ + 4n − 2λ)η(X) −
2
m

Vb(X)η(V), (36)

for all X ∈ χ(M). Replacing Y by ξ in (34) and making use of the fact that ϕξ = 0 implies (LVϕ)ξ = 0 we
obtain Dϱ = ξ(ϱ)ξ. By Lemma 1 in [21], we see that ϱ is constant. In consequence of this (34) becomes

(LVϕ)Y = ϱϕY −
2
m

Vb(ϕY)V + 2QϕY − 2λϕY. (37)

On the other hand, taking Lie-derivative of 1(ξ, ξ) = 1 and using (35) we get

λ = 2n + ϱ −
1
m
η(V)η(V). (38)

Now taking Lie-derivative of (6) along V we obtain

(LVϕ)ϕX + ϕ(LVϕ)X = (LVη)(X)ξ + η(X)LVξ, (39)

for all X ∈ χ(M). Making use of (5), (36) and (37) in (39) infers

(2λ − ϱ)X +
1
m

[Vb(X)V − Vb(ϕX)ϕV]

−QX + ϕQϕX − λη(X)ξ = 0. (40)

Replacing X by ξ in (40) and inserting (38) we get η(V)[V − η(V)ξ] = 0 which implies V = η(V)ξ or η(V) = 0
i.e. V = 0. Assume V , 0, then taking derivative of V = η(V)ξ along arbitrary X ∈ χ(M) and using (11)
gives ∇XV = 1(∇XV, ξ) − η(V)ϕX, which implies

dVb(X,Y) = 2η(V)1(X, ϕY) + 1(∇XV, ξ)η(Y) − 1(∇YV, ξ)η(X).

Replacing X by ϕX and Y by ϕY in the forgoing equation and using the fact that Vb is closed we get
η(V)dη(X,Y) = 0. Since dη is non-vanishing everywhere on M implies η(V) = 0, a contradiction. Hence
V = 0, consequently M is Einstein i.e. QX = λX. Making use of this in (40) shows ϱ = 0. Then (38) implies
M is Einstein with Einstein constant 2n. Suppose M is complete. Since M is complete Einstein by Myer’s
theorem [19] it is compact. Finally, applying the Boyer-Gallicki theorem [3] we can conclude that M is
Sasakian. This completes the proof. □
Proof of Theorem 1.6: In a 3-dimensional Riemannian manifold the curvature tensor is given by [4]

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X

−1(QX,Z)Y −
r
2
{1(Y,Z)X − 1(X,Z)Y}. (41)
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By our hypothesis, V = σξ, for some smooth σ. Differentiating this and using (14), the generalized m-quasi-
Einstein equation becomes

QX = (σβ +
σ2

m
)η(X)ξ + (λ − σβ)X −

1
2

[η(X)Dσ + (Xσ)ξ]. (42)

Inserting (42) in (41) and replacing Z by ξ gives

R(X,Y)ξ =
1
2

[(Yσ)η(X)ξ − (Xσ)η(Y)ξ] +
1
2

[(Xσ)Y − (Yσ)X]

+(
σ2

m
−
ξσ
2
+ 2λ − σβ −

r
2

)[η(Y)X − η(X)Y]. (43)

Replacing X by ϕX and Y by ϕY in (43) we obtain

ϕX(σ)ϕY = ϕY(σ)ϕX. (44)

Taking X = Dσ in (44) gives ϕY(σ)ϕDσ = 0 which implies Dσ = ξ(σ)ξ. Differentiating forgoing equation
along any X ∈ χ(M) infers

(∇XDσ) = X(ξσ)ξ − α(ξσ)ϕX + β[X − η(X)ξ](ξσ). (45)

Making use of the fact that 1(∇XDσ,Y) = 1(∇YDσ,X) from (45) we get

X(ξσ)η(Y) − Y(ξσ)η(X) − 2α(ξσ)1(ϕX,Y) = 0. (46)

Choosing X,Y ⊥ ξ above equation reduces to α(ξσ) = 0. Therefore, either α = 0 or ξσ = 0. I f α = 0 then
M is either β-Kenmotsu (for β , 0) or cosympletic manifold (for β = 0). Assuming the next case when
ξσ = 0, implies Dσ = 0 and hence σ is constant. In consequence, from (42) we see that M is η-Einstein. This
completes the proof. □

Replacing X by ξ in (42) and differentiating it along any Y ∈ χ(M) results in

(∇YQ)ξ = (λ +
σ2

m
)∇Yξ + Y(λ +

σ2

m
)ξ

−
1
2

[(∇YDσ) + Y(ξσ)ξ + (ξσ)(∇Yξ)]. (47)

Contracting the foregoing (47) yields

1
2
ξr = 2β(λ +

σ2

m
) + ξλ +

2σ
m

(ξσ) −
1
2

[∆σ + ξ(ξσ) + 2β(ξσ)]. (48)

Contracting (42) and then differentiating the obtained result by ξ and finally inserting it in (48) we obtain

1
2
∆σ = (ξλ) + (

σ
m
+ β)(ξσ) + 2β(λ +

σ2

m
+ ασ). (49)

For the case when α = 0 and β a non-zero constant, M is β-Kenmotsu manifold. In a β-Kenmotsu manifold
we have Qξ = −2β2ξ. Replacing X by ξ in (42) and using the forgoing equation along with Dσ = (ξσ)ξ
infers

ξσ = λ +
σ2

m
+ 2β2. (50)

Making use of the fact ∆σ = div(Dσ) = ξ(ξσ) + 2β(ξσ) and inserting (50) we get

∆σ = ξλ + 2(β +
σ
m

)(ξσ). (51)

Combining (51) and (49) infers

ξλ = −4β(λ +
σ2

m
). (52)
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Now, for the second case when σ is constant, Eq. (49) gives

ξλ = −2β(λ +
σ2

m
+ ασ). (53)

Choosing λ as constant, Eq. (52) implies either β = 0 or λ = − σ
2

m . Assume β , 0 then σ is constant.
Therefore, inserting value of λ in (50) shows β = 0, a contradiction. Hence, β = 0 and M is cosympletic.
From second case, (13) implies either β = 0 or λ+ σ

2

m +ασ = 0. Fix β , 0 then it is obvious that α is a non-zero
constant. Therefore M is α-Sasakian manifold and hence has constant scalar curvature. Hence we can state
the following:

Corollary 4.1. If a 3-dimensional normal almost contact metric manifold with β =constant admits m-quasi-Einstein
metric whose potential vector field is collinear with ξ then M3 is locally the product of a Kähler manifold and an
interval or unit circle S1 or has constant scalar curvature. Moreover, σ is constant.
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