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Cohomology Classification of Spaces with Free S1 and S3-Actions
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Abstract. This paper gives the cohomology classification of finitistic spaces X equipped with free actions of
the group G = S3 and the cohomology ring of the orbit space X/G is isomorphic to the integral cohomology
quaternion projective space HPn. We have proved that the integral cohomology ring of X is isomorphic
either to S4n+3 or S3

×HPn. Similar results with other coefficient groups and for G = S1 actions are also
discussed. As an application, we determine a bound of the index and co-index of cohomology sphere S2n+1

(resp. S4n+3) with respect to S1-actions (resp. S3-actions).

1. Introduction

Let G be a compact Lie group acting on a topological space X. For each 1 ∈ G, there exists a unique
homeomorphism ϕ1 : x 7→ 1.x. The group {ϕ1|1 ∈ G} of homeomorphisms is called transformation group
and it is denoted by (G,X). There are interesting questions related to transformation group. One such
question is whether it is possible to classify the orbit space X/G if G acts freely on X. In this generality, it
is difficult to say anything. Morita et al. [9] determined the orbit space of free G = Z2 actions on Dold
manifold P(1,n),n odd. Dey et al. [2] determined the orbit spaces of free actions of G = Z2 or S1 on the real
and complex Milnor manifolds. Kaur et al. [6] shown that if G = S3 acts freely on the mod 2 cohomology
n-sphere Sn, then n ≡ 3(mod 4) and the orbit space is the mod 2 cohomology quaternion projective space
HPn. Some more results have been proved in the literature; for example [4, 10]. On the other hand, if
the topology of the orbit space X/G is fixed, then the question becomes both tractable and interesting. In
this direction, Su [12] have addressed several such problems: First, if Z2 acts freely on a connected space
X such that the orbit space is the mod 2 cohomology RPn, then X is the mod 2 cohomology Sn. Second,
if G = Zp, p an odd prime, acts freely on a connected space X and the cohomology ring of the orbit space
X/G with coefficients in Zp is the Lens space L2n+1

p , then X is the mod p cohomology (2n + 1)-sphere S2n+1.
He also proved that if S1 acts freely on a space X such that the orbit space is the integral cohomology CPn

and the map π∗2 : H2(X/S1) → H2(X) induced by the quotient map π : X → X/S1 is trivial, then X is the
integral cohomology S2n+1. We wish to investigate X when π∗2 is nontrivial. In this paper, it is also shown
that if G = S3 acts freely on a finitistic space X with the orbit space X/G whose integral cohomology ring
is the quaternion projective spaceHPn, then the integral cohomology ring of X is either S4n+3 or S3

×HPn.
A similar result with coefficients in Q and Zp, p a prime, are also discussed. We have also proved Kaur’s
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result [6] with other coefficient groups. As an application of these cohomological calculations, we have
determined a bound of the index and co-index [7] of cohomology spheres S(q+1)n+q for a action of G = Sq,
where q = 1 or 3.

2. Preliminaries

The spaces of our concern are finitistic free G-spaces. In the year 1960, R. G. Swan introduced the idea
of finitistic spaces which are more general than finite-dimensional polyhedra. Recall that a paracompact
Hausdorff space X is said to be finitistic if every open cover of X has a finite dimensional open refinement.
Note that all compact spaces and all finite-dimensional paracompact spaces are finitistic spaces.

Let G be a compact Lie group and G ↪→ EG → BG be the universal principal G-bundle, where BG is
the classifying space of the group G. Suppose G acts freely on a finitistic space X. The associated bundle
X ↪→ (X×EG)/G→ BG is a fibre bundle with fibre X. Put XG = (X×EG)/G. Then the bundle X ↪→ XG → BG
is called the Borel fibration. We consider the Leray-Serre spectral sequence for the Borel fibration. If BG is
simply connected, then the system of local coefficients on BG is simple and the E2-term of the Leray-Serre
spectral sequence corresponding to the Borel fibration becomes

Ek,l
2 = Hk(BG; Hl(X; R)).

For the details about spectral sequences, we refer the reader to [8]. Let h : XG → X/G be the map induced
by the G-equivariant projection X × EG → X. Then h is a homotopy equivalence [3].

For G = Sq, q = 1 or 3, we assume that the associated sphere bundles G ↪→ X→ X/G are orientable. The
following results are needed to prove our results:

Proposition 2.1. ([5]) Let R denote a ring and Sn−1
→ E π

→ B be an orientable sphere bundle. The following
sequence is exact with coefficients in R

· · · → Hi(E)
ρi
−→ Hi−n+1(B) ∪

−→ Hi+1(B)
π∗i+1
−→ Hi+1(E)

ρi+1
−→ Hi−n+2(B)→ · · ·

which start with

0→Hn−1(B)
π∗n−1
−→ Hn−1(E)

ρn−1
−→ H0(B) ∪

−→ Hn(B)
π∗n
−→ Hn(E)→ · · ·

where ∪ : Hi(B)→ Hi+n(B) maps x→ x ∪ u and u ∈ Hn(B) denotes the Euler class of the sphere bundle. The above
exact sequence is called the Gysin sequence. It is easy to observe that π∗i : Hi(B) → Hi(E) is an isomorphism for all
0 ≤ i < n − 1.

Proposition 2.2. ([6]) Let A be an R-module, where R is PID, and G = Sq, q = 1 or 3, act freely on a finitistic space
X. Suppose that H j(X,A) = 0 for all j > n, then H j(X/G,A) = 0 for all j > n.

Now, we recall some definitions of indices of free G-spaces:

Definition 2.3. ([7]) Let X be a finitistic free G-space, where G = Sq, q = 1 or 3. The index of X is defined as

indGX = max{k| there exists an G-equivariant map f : S(q+1)k+q
→ X, k ≥ 0}.

Definition 2.4. ([7]) Let X be a finitistic free G-space, where G = Sq, q = 1 or 3. The co-index of X is defined
as

co-indGX = min{k| there exists an G-equivariant map f : X→ S(q+1)k+q, k ≥ 0}.

If no such k exist then co-indGX = +∞.

Recall that [5] for any commutative ring R, we have H∗(FPn; R) = R[a]/⟨an+1
⟩, H∗(FP∞; R) = R[t], where

deg a = deg t = 2 for F = C and deg a = deg t = 4 for F = H. Throughout this paper, we have considered
Čech cohomology with coefficients in R, where R = Z,Q or Zp, p a prime. Note that X ∼R Y means
H∗(X; R) � H∗(Y; R).
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3. Main theorems

Recall that the projective spaces FPn are the orbit spaces of standard free actions of G = Sq on S(q+1)n+q,
where F = C orH for q = 1 or 3, respectively. If we take a free action of Sq on itself and the trivial action on
FPn, then the orbit space of this diagonal action is FPn. Now, the natural question: Is the converse true? If
G acts freely on a finitistic space X with X/G ∼R FP

n, then whether X ∼R S(q+1)n+q or X ∼R Sq
× FPn. In the

following theorems, we have discussed these converse statements:

Theorem 3.1. Let G = S3 act freely on a finitistic connected space X with X/G ∼R HP
n. Then either X ∼R S4n+3 or

X ∼R S3
×HPn, where R = Z,Q or Zp, p a prime.

Proof. Let G ↪→ X π
→ X/G be the principal bundle associated to the free action of G on X. By the exactness

of the Gysin sequence, Hi(X) � Hi(X/G) for i = 0, 1, 2; H4i+1(X) = H4i+2(X) = 0 for all i ≥ 0 and H j(X) = 0 for
all j > 4n+ 3. Let π∗4 : H4(X/G)→ H4(X) be the map induced by the natural map π : X→ X/G. We consider
the following cases:

If the mapπ∗4 is trivial, then by the exactness of the Gysin sequence ρ4i+3,π∗4i+4 are trivial homomorphisms
for all 0 ≤ i < n. This gives that H4i+3(X) = H4i+4(X) = 0 for all 0 ≤ i < n, and H4n+3(X) � R. It is clear that
X ∼R S4n+3.

If the map π∗4 is an isomorphism, then ρ4i+3 and π∗4i are isomorphisms for all 0 ≤ i ≤ n. Let a4 ∈ H4(X)
and b4i+3 ∈ H4i+3(X) be such that π∗4(a) = a4 and ρ4i+3(b4i+3) = ai for all 0 ≤ i ≤ n, where a denotes a generator
of H∗(X/G). This implies that H4i+3(X) � R with basis {b4i+3} and H4i(X) � R with basis {ai

4} for all 0 ≤ i ≤ n.
Thus, we have

Hi(X) =

R if 0 ≤ i ≡ 0 or 3 (mod 4) ≤ 4n + 3
0 otherwise.

Now, it remains to compute the cohomology algebra of X. As BG is simply connected and H∗(BG) is torsion
free, the E2-term of the associated Leray-Serre spectral sequence for the Borel fibration X ↪→ XG → BG is
given by Ek,l

2 = Hk(BG)⊗Hl(X) which converges to H∗(XG) as an algebra [8, Theorem 5.2]. Note that the only
possible nontrivial differentials are d4r : E∗,∗4r → E∗,∗4r , 1 ≤ r ≤ n + 1. We have bib j = 0 for all i and j, b2

3 = 0
and an+1

4 = 0. Clearly, d4(1 ⊗ ai
4) = 0 for all i ≥ 0. Also, d4(1 ⊗ b3) , 0, otherwise {ti

⊗ b3} become permanent
cocycles for all i ≥ 0, which is not possible either with coefficients in R = Z, or with coefficients in a field
R = Q or Zp, p a prime.

Now, we consider two subcases. One for coefficient groups R = Q orZp, p a prime, and other, for R = Z.
Let R = Q orZp, p a prime. First, we prove that ai

4b3 , 0 for all 1 ≤ i ≤ n. Assume otherwise. Let ak
4b3 = 0

for some 1 ≤ k ≤ n. If d4(1⊗b3) = α(t⊗1) for some nonzero element α ∈ R, then αt⊗ak
4 = d4((1⊗ak

4)(1⊗b3)) = 0
which is not possible. This implies that for each 1 ≤ i ≤ n, b4i+3 = αiai

4b3 for some αi , 0 in R. Thus, the
cohomology ring of X is R[a4, b3]/⟨an+1

4 , b
2
3⟩,deg a4 = 4,deg b3 = 3. It is clear that X ∼R S3

×HPn. Now,
let R = Z. Here, we prove that ai

4b3 = ±b4i+3 for all 1 ≤ i ≤ n. On contrary, assume that a j
4b3 , ±b4 j+3

for some 1 ≤ j ≤ n. Let i0 ∈ Z be the largest integer such that ai0
4 b3 , ±b4i0+3. For all 0 ≤ i ≤ n, let

d4(1 ⊗ b4i+3) = mi(t ⊗ ai
4), where mi ∈ Z. Clearly, m0 , 0. Then E0,4

∞ = Z,E
4,0
∞ = Zm0 and Ei,4−i

∞ = 0, 1 ≤ i ≤ 3.
Consider, the filtration

0 ⊆ F4H4
⊆ F3H4

⊆ F2H4
⊆ F1H4

⊆ F0H4
⊆ H4(XG)

of H4(XG). As Ep,q
∞ � FpHp+q/Fp+1Hp+q, we get H4(XG) � Z ⊕ Zm0 . This gives that m0 = ±1. So, we have

E0,4 j
5 = Z, Ei+1,4 j

5 = Ei,4 j+3
5 = 0 for all i ≥ 0, j = 0 and i0 + 1 ≤ j ≤ n. Clearly, d4 : E0,4 j+3

4 → E4,4 j
4 is isomorphism

for i0 + 1 ≤ j ≤ n. If d4 : E0,4i0+3
4 → E4,4i0

4 is trivial, then {ti
⊗ b4i0+3}i≥0 are permanent cocycles, a contradiction.

Now, if d4 : E0,4i0+3
4 → E4,4i0

4 is nontrivial, then d4(1 ⊗ (ai0
4 b3 ± b4i0+3)) = (m0 ± mi0 )(t ⊗ ai0

4 ). Consequently,
mi0 , ±1. Thus, H j(XG) are nonzero for infinitely many values of j, again a contradiction. Therefore, a j

4b3 is
b4 j+3 or −b4 j+3 for all j. Hence, X ∼Z S3

×HPn.
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Finally, consider the case when π∗4 is nontrivial but not an isomorphism. This case is possible only
when R = Z and the Euler class u ∈ H4(X/G) is ma, where m , 0, 1,−1. Consequently, Hi(X) = Zm for
0 < i ≡ 0(mod 4) ≤ 4n, Hi(X) = Z for i = 0 or 4n+ 3; and 0 otherwise. By the associated Leray-Serre spectral
sequence, it is easy to see that H4(XG) � Z ⊕Zm, a contradiction.

By repeated application of the Gysin sequence we compute the orbit spaces of free actions of G = S3 on
a finitistic space X with X ∼R Sn.

Theorem 3.2. Let G = S3 act freely on a finitistic connected space X with X ∼R Sn. Then n = 4k+ 3, for some k ≥ 0
and X/G ∼R HP

k.

Proof. It is immediate that H0(X/G) � R and Hi(X/G) = 0, for all 1 ≤ i ≤ 3 when n > 3. Also, we get
Hi(X/G) = 0 for 0 < i ≡ j (mod 4) < n, where 1 ≤ j ≤ 3 and Hi(X/G) � R for 0 ≤ i ≡ 0(mod 4) < n. If
n ≡ j (mod 4), then for some 0 ≤ j ≤ 2, we get Hn−3(X/G) = 0 and hence Hn(X/G) , 0, which contradicts
Proposition 2.2. So, n ≡ 3 (mod 4). Let n = 4k + 3 for some k ≥ 0. For n = 3, the result is obvious. For
n > 3 and for all i > n, Hi(X/G) = 0. So, we get ak+1 = 0, where a is a generator of H4(X/G). Consequently,
Hn(X/G) = 0. Hence, our claim holds.

Su [12] has proved that the orbit space of free G = S1-actions on the integral cohomology sphere S2n+1 is
the integral cohomology complex projective space. Using Leray-Serre spectral sequence, we can easily get
the similar results with coefficients in R, where R = Q or Zp, p prime.

Theorem 3.3. Let G = S1 act freely on a finitistic connected space X with X ∼R S2n+1, where R = Q or Zp, p a
prime. Then X/G ∼R CP

n.

Su [12] has also shown that if G = S1 acts freely on a space X with the orbit space X/G ∼Z CPn and
the homomorphism π∗2 : H2(X/G) → H2(X) induced by the quotient map π : X → X/G is trivial, then
X ∼Z S2n+1. We are interested in discussing the case when π∗2 is nontrivial.

Theorem 3.4. Let G = S1 act freely on a finitistic connected space X with X/G ∼Z CPn. If the induced map
π∗2 : H2(X/G)→ H2(X) is an isomorphism, then X ∼Z S1

× CPn.

Proof. As π∗2 is an isomorphism, we have H j(X) = Z for 0 ≤ j ≤ 2n + 1; and 0 otherwise. Let x ∈ H1(X),
y ∈ H2(X) and b2i+1 ∈ H2i+1(X) be such that ρ1(x) = 1, π∗2(a) = y and ρ2i+1(b2i+1) = ai for all 1 ≤ i ≤ n, where
a is generator of H∗(X/G). Now, we calculate cohomology algebra of X. Let if possible, xy j , ±b2 j+1 for
some 1 ≤ j ≤ n and suppose i0 be such an largest integer. Since π1(BG) is trivial and H∗(BG) is torsion free,
the E2-term of Leray-Serre spectral sequence for the Borel fibration X ↪→ XG → BG is Ek,l

2 = Hk(BG) ⊗Hl(X).
Note that the possible nontrivial differentials are d2, d4, · · · d2n+2. As H1(XG) = 0, we get d2(1⊗ x) = m0(t⊗ 1),
for some m0 , 0 in Z. Let d2(1 ⊗ b2i+1) = mi(t ⊗ yi) for all 1 ≤ i ≤ n, where mi ∈ Z. Note that for 0 ≤ j ≤ n,
E0,2 j

3 = Z and E2i,2 j
3 = Zm j if m j , ±1 otherwise E2i,2 j

3 = 0 for i > 0. Also, E2i,2 j+1
3 = Z if m j = 0, otherwise

E2i,2 j+1
3 = 0 for all i ≥ 0 and 0 ≤ j ≤ n. Since H2(XG) � Z, we have d2 : E0,1

2 → E2,0
2 is an isomorphism and so

m0 = 1 or −1. Therefore, E0,2 j
3 = Z,Ei+1,2 j

3 = Ei,2 j+1
3 = 0 for all i ≥ 0 and i0 + 1 ≤ j ≤ n. If d2 : E0,2i0+1

2 → E2,2i0
2 is

trivial, then {ti
⊗ b2i0+1}i≥0 are permanent cocycles, a contradiction. So, let d2 : E0,2i0+1

2 → E2,2i0
2 is nontrivial.

As d2(1⊗ y) = 0, we get mi0 , m0. Consequently, E2i,2i0
∞ = Zmi0

for all i ≥ 0 which contradicts Proposition 2.2.
We have x2 = αy for some α ∈ Z. By the commutative property of cup product, αmust be zero. Obviously,
yn+1 = 0. Thus, we have X ∼Z S1

× CPn.

Note that in the above theorem, if π∗2 : H2(X/G) → H2(X) is nontrivial but not an isomorphism, then
the Euler class of the bundle G → X π

→ X/G is ma ∈ H2(X/G), where m , 0, 1,−1. Accordingly, Hi(X) � Z
for i = 0, 2n + 1; Hi(X) � Zm for i = 0, 2, 4, · · · , 2n; and trivial otherwise. From the Leray-Serre spectral
sequence E∗,∗r for the Borel fibration X ↪→ XG → BG, we get that Hi(X/G) , 0 for some i > 2n, a contradiction.
Therefore, in this case G cannot act freely on X.

Now, we discuss similar results with coefficients in R = Zp, p a prime or Q.
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Theorem 3.5. Let G = S1 act freely on a finitistic connected space X with the orbit space X/G ∼Zp CP
n, p a prime.

Then X ∼Zp S
2n+1 or X ∼Zp S

1
× CPn or X ∼Zp L2n+1

p .

Proof. As the coefficient group is Zp, p a prime, the map π∗2 is either trivial or an isomorphism. If π∗2 is
trivial then X ∼Zp S

2n+1. So, let π∗2 be an isomorphism. By the exactness of the Gysin sequence for the sphere
bundle G ↪→ X → X/G, Hi(X) = Zp for all 0 ≤ i ≤ 2n + 1, and trivial otherwise. It is easy to see that for
1 ≤ i ≤ n, basis for H2i(X) is {ai

2}, where a2 is nonzero element in H2(X). Let {b2i+1} denotes basis for H2i+1(X)
for 0 ≤ i ≤ n. In the Leray-Serre spectral sequence, we must have d2(1 ⊗ b1) , 0 for suitable choice of
generator b1 and d2(1 ⊗ ai

2) = 0 for all 0 ≤ i ≤ n. This implies that b2i+1 = ai
2b1 for all 0 ≤ i ≤ n. If b2

1 , 0 then
by commutative property of the cup product, p must be 2. In this case, a2 = b2

1 and hence X ∼Z2 RP
2n+1.

If b2
1 = 0 and β(b1) = a2, where β : H1(X;Zp) → H2(X;Zp) is the Bockstein homomorphism associated to

the coefficient sequence 0 → Zp → Zp2 → Zp → 0, then X ∼Zp L2n+1
p . Further, if b2

1 = 0 and β(b1) = 0 then
X ∼Zp S

1
× CPn.

Remark 3.6. The above theorem also shows that the converse of [11, Theorem 1.2] is also true if the map
π∗2 : H2(X/G) → H2(X) is nontrivial, the square of generator of H1(X) is zero and the associated Bockstein
homomorphism is nontrivial.

Similarly, for a space with the orbit space rational cohomology the complex projective space, we get

Theorem 3.7. Let G = S1 act freely on a finitistic connected space X with the orbit space X/G ∼Q CPn. Then either
X ∼Q S2n+1 or X ∼Q S1

× CPn.

4. Applications

In this section, we have discussed the index and co-index of a finitistic connected space X ∼R S(q+1)n+q

equipped with free actions of G = Sq, where q = 1 or 3 and the orbit space X/G ∼R FP
n, where F = C orH,

respectively.
By Theorem 3.1, it is clear that if X ∼R S(q+1)n+q, then the Volovikov’s index i(X) [13] is (q + 1)n + (q + 1).

Using [1, Theorem 1.1] and the fact that βk(BG,R) = 1 if k ≡ 0(mod (q+1)), we get there is no G-equivariant
map f : X→ S4 j+3 if 0 ≤ j < n. So, we have the following result:

Theorem 4.1. Let G = Sq, q = 1 or 3, act freely on a finitistic path connected space X with X ∼R S(q+1)n+q, then
co-indG X ≥ n.

Let G = Sq, q = 1 or 3, act freely on a finitistic space X with X/G ∼R FP
n, where F = C orH respectively.

Note that for the Borel fibration X ↪→ XG
η
→ BG, η ◦ h′ : X/G→ BG is a classifying map for the principal G-

bundle G ↪→ X→ X/G, where h′ : X/G→ XG is homotopy inverse of homotopy equivalence h : XG → X/G.
It is easy to see that h′∗ ◦ η∗(t) is the Witney class of the principal G-bundle G ↪→ X→ X/G. If X ∼R S(q+1)n+q

then h′∗ ◦ η∗(t) = a, where a is generator of H∗(X/G). Let f : S(q+1)k+q
→ X be any G-equivariant map, where

Sq acts on S(q+1)k+q by the standard action. Then η ◦ h′ ◦ f is a classifying map for the principal bundle
G ↪→ S(q+1)k+q

→ FPk, where f : FPk
→ X/G is a continuous map induced by f . This implies that f

∗

(b) = a,
where b ∈ Hq+1(FPk) denotes its generator. Therefore, k ≤ n. So, we have the following result:

Theorem 4.2. Let G = Sq, q = 1 or 3, act freely on a finitistic space X with X ∼R S(q+1)n+q then indG(X) ≤ n.

5. Examples

We have seen that FPn, F = C or H, is the orbit space of standard free action of G = Sq, q = 1 or 3,
respectively, on S(q+1)n+q, and the diagonal action on Sq

× FPn, where G acts freely on itself and trivially on
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FPn. This also realizes our main theorems. It is easy to see that indG(Sq
× FPn) = 0. The projection map

Sq
× FPn

→ Sq is an G-equivariant map. Thus, co-indG(Sq
× FPn) = 0.

Recall that the map defined by (λ, (z0, z1, · · · , zn))→ (λz0, λz1, · · · , λzn), whereλ ∈ S1 and zi ∈ C, 0 ≤ i ≤ n,
is the standard free action of G = S1 on S2n+1. The orbit space X/G under this action is CPn. For p a prime,
H = ⟨e2πi/p

⟩ induces a free action on S2n+1 with the orbit space S2n+1/H = L2n+1
p . Consequently, S1 = G/H acts

freely on L2n+1
p with the orbit space CPn. Recall that for p = 2, L2n+1

p = RP2n+1. This realizes Theorem 3.5.
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