Filomat 36:20 (2022), 7083–7089 https://doi.org/10.2298/FIL2220083F

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Coverings of Local Topological Groups

H. Fulya Akız^a

^a Department of Mathematics, Yozgat Bozok University, 66900 Yozgat, Turkey

Abstract. In this paper it is proved that local group structure of a local topological group which has a universal cover lifts to any covering space.

1. Introduction

The theory of covering spaces is concerned with differential geometry, Lie group theory [5, 6, 11] analysis and even algebra as well as topology. Covering spaces are also deeply intertwined with the study of homotopy groups and, in particular, the fundamental group. If *X* is a connected topological space which have a universal cover, $x_0 \in X$, and *G* is a subgroup of the fundamental group $\pi_1(X, x_0)$ of *X* at the point x_0 , then we know from [12, Theorem 10.42] that there is a covering map $p: (\widetilde{X}_G, \widetilde{x}_0) \to (X, x_0)$ of pointed spaces, with characteristic *G*. In particular, If *G* is a singleton, then *p* becomes the universal covering map. Moreover, if *X* is a topological group, then \widetilde{X}_G becomes a topological group such that *p* is a morphism of topological groups.

In [7], it is proved that the ring structure of a topological ring lifts to a simply connected covering space. This method is applied to topological R-modules in the case where the topological ring R is discrete and obtain a more general result than the one for the topological group case in [10]. In [9], these results are united to a large class of algebraic objects called topological groups with operations, including topological groups.

On the other hand, the result of universal covers of nonconnected topological groups was first studied in [13]. Also a similar algebraic result was given in [4] using crossed modules and group-groupoids which are internal groupoids in groups. In [1], some results on the covering morphisms of internal groupoids in groups with operations setting for an algebraic category C are given.

In [11] a *local group* is defined to be a set *L* with a partial composition defined on a subset \mathcal{U} of $L \times L$, an identity $e \in L$ and inverse map defined on a subset *V* of *L* provided with the associativity and inverse axioms. The local group-groupoids are defined in [8] to be a local group object in the category of groupoids or equivalently internal category in local groups and the notion of local topological group-groupoid is given in Akız [2, Definition 2.6].

This study is based on the method given by Rotman in [12]. Let *L* and *L* be connected topological spaces and $p : \tilde{L} \to L$ a simply connected covering. Let $p : (\tilde{L}, \tilde{e}) \to (L, e)$ be a covering map such that \tilde{L} is path connected and the characteristic group *G* of *p* is a subgroup of $\pi_1(L, e)$. Then we prove that the multiplication map $\mu : \mathcal{U} \to L$ and inversion map $i : V \to L$ lift to \tilde{L} .

Received: 31 January 2022; Revised: 22 April 2022; Accepted: 28 April 2022

Communicated by Ljubiša D.R. Kočinac

²⁰²⁰ Mathematics Subject Classification. Primary 18D35; Secondary 22A05, 57M10

Keywords. Covering groups, crossed module, local group, local topological group

Email address: hfulya@gmail.com (H. Fulya Akız)

2. Preliminaries

Throughout this study, all space *X* are assumed to be locally path-connected and semilocally 1-connected, so that each path component of *X* admits a simply connected cover. A covering map $p: \widetilde{X} \to X$ of connected spaces is called *universal* if it covers every covering of *X* in the sense that if $q: \widetilde{Y} \to X$ is another covering of *X* then there exists a map $r: \widetilde{X} \to \widetilde{Y}$ such that p = qr (hence *r* becomes a covering). A covering map $p: \widetilde{X} \to X$ is called *simply connected* if \widetilde{X} is simply connected. So a simply connected covering is a universal covering.

Let *X* be a topological space admitting a simply connected cover. A subset *U* of *X* is called liftable if it is open, path-connected and the inclusion $U \rightarrow X$ maps each fundamental group of *U* trivially. If *U* is liftable, and $q: Y \rightarrow X$ is a covering map, then for any $y \in Y$ and $x \in U$ such that qy = x, there is a unique map $i: U \rightarrow Y$ such that ix = y and qi is the inclusion $U \rightarrow X$. A space X is called semi-locally simply connected if each point has a liftable neighborhood and locally simply connected if it has a base of simply connected sets. So a locally simply connected space is also semi-locally simply connected.

Let $p: (X, \widetilde{x_0}) \to (X, x_0)$ be a covering map of pointed topological spaces. The subgroup $p_*(\pi_1(\overline{X}, \widetilde{x_0}))$ of $\pi_1(X, x_0)$ is called *characteristic group* of p, where p_* is the morphism induced by p (see [3, p.379] for the characteristic group of a covering map in terms of covering morphism of groupoids). If characteristic groups of two covering maps $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ and $q: (\widetilde{Y}, \widetilde{y_0}) \to (X, x_0)$ are equal, then we say p and q are equivalent, and equivalently there is a homeomorphism $f: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ such that qf = p.

We assume that X is a topological space with base point x_0 and G a subgroup of $\pi_1(X, x_0)$. Let $P(X, x_0)$ be the set of all paths of α in X with initial point x_0 . We consider an equivalence relation defined on $P(X, x_0)$ by $\alpha \simeq \beta$ if and only if $\alpha(1) = \beta(1)$ and $[\alpha \bullet \beta^{-1}] \in G$. Then the equivalence class of α is denoted by $\langle \alpha \rangle_G$ and the set of all such equivalence classes of the paths in X with initial point x_0 by \widetilde{X}_G . Define a function $p: \widetilde{X}_G \to X$ by $p(\langle \alpha \rangle_G) = \alpha(1)$. Let α_0 be the constant path at x_0 and $\widetilde{x_0} = \langle \alpha \rangle_G \in \widetilde{X}_G$. If $\alpha \in P(X, x_0)$ and U is an open neighborhood of $\alpha(1)$, then a path of the form $\alpha \bullet \lambda$, where λ is a path in U with $\lambda(0) = \alpha(1)$, is called a *continuation* of α . For an $\langle \alpha \rangle_G \in \widetilde{X}_G$ and an open neighborhood U of $\alpha(1)$, let $(\langle \alpha \rangle_G, U) = \{\langle \alpha \bullet \lambda \rangle_G : \lambda(I) \subseteq U\}$. Then the subsets $(\langle \alpha \rangle_G, U)$ form a basis for a topology on \widetilde{X}_G such that the map $p: (\widetilde{X}_G, \widetilde{x}_0) \to (X, x_0)$ is continuous [12, p.259].

We prove the local case of the following result in Theorem 3.7.

Theorem 2.1. ([12, Theorem 10.34]) Let (X, x_0) be a pointed topological space and G a subgroup of $\pi_1(X, x_0)$. If X is connected, locally path-connected, and semilocally simply connected, then $p: (\widetilde{X}_G, \widetilde{x}_0) \to (X, x_0)$ is a covering map with characteristic group G.

Remark 2.2. Let *X* be a connected, locally path-connected, and semilocally simply connected topological space and $q: (\tilde{X}, \tilde{x_0}) \rightarrow (X, x_0)$ a covering map. Let *G* be the characteristic group of *q*. Then the covering map q is equivalent to the covering map $p: (\tilde{X}_G, \tilde{x_0}) \rightarrow (X, x_0)$ corresponding to *G*.

We obtain the following result from Theorem 2.1.

Theorem 2.3. ([12, Theorem 10.42]) Suppose that X is a connected, locally path-connected, and semilocally simply connected topological group. Let $0 \in X$ be the identity element and $p: (\widetilde{X}, \widetilde{0}) \to (X, 0)$ a covering map. Then the group structure of X lifts to \widetilde{X} , i.e. \widetilde{X} becomes a topological group such that $\widetilde{0}$ is identity and $p: (\widetilde{X}, \widetilde{0}) \to (X, 0)$ is a morphism of topological groups.

3. Universal covers of local topological groups

In this section we give the definition of local topological groups. Also we give the methods of Section 2 for local topological groups and obtain some properties.

Now we emphasis the definition given in [11, Definition 2].

Definition 3.1. Let *L* be a set. A *local group* is a quintuple $\mathbf{L} = (L, \mu, \mathcal{U}, i, V)$, where

- (1) a distinguish element $e \in L$, the identity element,
- (2) a multiplication $\mu: \mathcal{U} \to L, (x, y) \mapsto x \circ y$ defined on a subset \mathcal{U} of $L \times L$ such that $(\{e\} \times L) \cup (L \times \{e\}) \subseteq \mathcal{U}$,
- (3) an inversion map $i: V \to L, x \mapsto \overline{x}$ defined on a subset $e \in V \subseteq L$ such that $V \times i(V) \subseteq \mathcal{U}$ and $i(V) \times V \subseteq \mathcal{U}$,
 - all satisfying the following properties:
 - (i) Identity: $e \circ x = x = x \circ e$ for all $x \in L$
 - (ii) Inverse: $i(x) \circ x = e = x \circ i(x)$, for all $x \in V$
 - (iii) Associativity: If (x, y), (y, z), $(x \circ y, z)$ and $(x, y \circ z)$ all belong to \mathcal{U} , then

 $x \circ (y \circ z) = (x \circ y) \circ z.$

From now on we denote such a local group by L.

Note that if $\mathcal{U} = L \times L$ and V = L, then a local group becomes a group. It means that the notion of local group generalizes that of group. Now we give the following definition (see [11, Definition 5]):

Definition 3.2. Let $(L, \mu, \mathcal{U}, i, V)$ and $(\tilde{L}, \tilde{\mu}, \tilde{\mathcal{U}}, \tilde{i}, \tilde{V})$ be local groups. A map $f: L \to \tilde{L}$ is called a *local group morphism* if

- (i) $(f \times f)(\mathcal{U}) \subseteq \widetilde{\mathcal{U}}, f(V) \subseteq \widetilde{V}, f(e) = \widetilde{e},$ (ii) $f(x \circ y) = f(x) \circ f(y)$ for $(x, y) \in \mathcal{U},$
- (iii) $f(i(x)) = \tilde{i}(f(x))$ for $x \in V$.

We study on the topological version of Definition 3.1.

Definition 3.3. ([11]) Let *L* be a local group, if *L* has a topology structure such that \mathcal{U} is open in $L \times L$, *V* is open in *L*, the maps μ and *i* are continuous, then $(L, \mu, \mathcal{U}, i, V)$ is called a *local topological group*.

It is obvious that if $\mathcal{U} = L \times L$ and V = L, then a local topological group *L* becomes a topological group.

Example 3.4. ([11, p.26]) Let X be a topological group, L be an open neighbourhood of the identity element *e*. Then we obtain a local topological group taking $\mathcal{U} = (L \times L) \cap \mu^{-1}(L)$ and $V = L \cap \overline{L}$, where $\overline{L} = \{\overline{x} | x \in L\}$.

Here the group mulitlication μ and the inversion *i* on *X* are restricted to define a local group multiplication and inverse maps on *L*.

Further if we choose \mathcal{U} and V such that

$$(\{e\} \times L) \cup (L \times \{e\}) \subseteq \mathcal{U} \subseteq (L \times L) \cap \mu^{-1}(L)$$

 $\{e\} \subseteq V \subseteq L \cap i^{-1}(L)$

and

 $V \times i(V)) \cup (i(V) \times V) \subseteq \mathcal{U}$

then we have a local topological group.

Definition 3.5. ([8, Definition 3.3]) Let $(L, \mu, \mathcal{U}, i, V)$ and $(\tilde{L}, \tilde{\mu}, \tilde{\mathcal{U}}, \tilde{i}, \tilde{V})$ be local topological groups. A continuous local group morphism $f: L \to \tilde{L}$ is called a *local topological group morphism*.

Theorem 3.6. If *L* is a local topological group, then the fundamental group $\pi_1(L, e)$ becomes a local group.

Proof. Let *L* be a local topological group with identity *e*. Hence we have the maps $\mu : \mathcal{U} \to L, \mu(x, y) = x \circ y$ and $i: V \to L, i(x) = \overline{x}$. Write \widetilde{L} for the fundamental group $\pi_1(L, e)$. Assuming $(\alpha(t), \beta(t)) \in \mathcal{U}$, the set $\widetilde{\mathcal{U}}$ of the homotopy classes of the paths can be written by

$$\mathcal{U} = \{ ([\alpha], [\beta]) : \alpha \circ \beta \text{ is defined} \}$$

and considered as a subset of $\tilde{L} \times \tilde{L}$. Then one can define the maps

$$\widetilde{\mu} \colon \widetilde{\mathcal{U}} \to \widetilde{L}, ([\alpha], [\beta]) \mapsto [\alpha \circ \beta] \tag{1}$$

and

$$\widetilde{i}: \widetilde{V} \to \widetilde{L}, [\alpha] \mapsto [i(a)], \tag{2}$$

where \widetilde{V} is the set of homotopy classes of all paths in *V*.

Here since μ and i are continuous, then $\tilde{\mu}$ and \tilde{i} are well defined. Indeed, let $\alpha \simeq \alpha', \beta \simeq \beta'$ where $\alpha \circ \beta$ and $\alpha' \circ \beta'$ are defined. Since $p_1\alpha \simeq p_1\alpha', p_2\alpha \simeq p_2\alpha'$ and $p_1\beta \simeq p_1\beta', p_2\beta \simeq p_2\beta'$ for the projection maps p_1 and p_2 , then $p_1(\alpha) \circ p_1(\beta) \simeq p_1(\alpha) \circ p_1(\beta)$ and $p_2(\alpha) \circ p_2(\beta) \simeq p_2(\alpha) \circ p_2(\beta)$. Hence we have $p_1(\alpha \circ \beta) \simeq p_1(\alpha' \circ \beta')$ and $p_2(\alpha \circ \beta) \simeq p_2(\alpha' \circ \beta')$. Then $\alpha \circ \beta \simeq \alpha' \circ \beta'$. Similarly, we assume that $\alpha \simeq \alpha'$. Since $p_1\overline{\alpha} \simeq p_1\overline{\alpha'}$ and $p_2\overline{\alpha} \simeq p_2\overline{\alpha'}$, then $\overline{\alpha'} \simeq \overline{\alpha}$.

In addition to these properties, the other details can be checked as follows:

- (i) $[1_e] \circ [\alpha] = [1_e \circ \alpha][\alpha] = [\alpha \circ 1_e][\alpha] \circ [1_e]$
- (ii) Inverse: $\widetilde{i}[\alpha] \circ [\alpha] = [\overline{\alpha}] \circ [\alpha] = [\overline{\alpha} \circ \alpha] = [1_0] = [\alpha \circ \overline{\alpha}] = [\alpha] \circ [\overline{\alpha}] = [\alpha] \circ \widetilde{i}[\alpha]$, for all $[\alpha] \in \widetilde{V}$, where $\alpha \circ \alpha'$ is defined,
- (iii) Associativity: If $([\alpha], [\beta]), ([\beta], [\gamma]), ([\alpha \circ \beta], [\gamma])$ and $([(\alpha], [\beta \circ \gamma])$ all belong to $\widetilde{\mathcal{U}}$, then

$$[\alpha] \circ ([\beta] \circ [\gamma]) = ([\alpha] \circ [\beta]) \circ [\gamma].$$

So $\pi_1(L, 0)$ becomes a local group. \Box

Here we give the interchange law in a local topological group *L*. Note that we denote the concatination of the paths by • and the local group multiplication by \circ . Also we denote the inverse path of α by α^{-1} and the local group inverse α by $\overline{\alpha}$. Assuming that $\alpha \circ \beta$, $\alpha' \circ \beta'$ and $(\alpha \bullet \beta) \circ (\alpha' \bullet \beta')$ are defined, then we have the interchange law

$$(\alpha \bullet \beta) \circ (\alpha' \bullet \beta') = (\alpha \circ \alpha') \bullet (\beta \circ \beta') \tag{3}$$

where • denotes the composition of the paths. Also we obtain that

$$(\alpha \circ \beta)^{-1} = \alpha^{-1} \circ \beta^{-1} \tag{4}$$

where α^{-1} is the inverse path such that $\alpha^{-1}(t) = \alpha(1 - t)$ for $t \in I$. On the other hand we have that

$$(\overline{\alpha})^{-1} = \overline{\alpha^{-1}} \tag{5}$$

$$\overline{(\alpha \bullet \beta)} = \overline{\alpha} \bullet \overline{\beta} \tag{6}$$

when $\alpha(1) = \beta(0)$.

We now prove Theorem 2.3 for local topological groups.

7086

Theorem 3.7. Let *L* be a local topological group and let *G* be a subgroup of $\pi_1(L, e)$. Suppose that the underlying space of *L* is connected, locally path-connected, and semilocally simply connected. Let $p: (\widetilde{L}_G, \widetilde{x}_0) \to (L, x_0)$ be the covering map corresponding to *G* as a subgroup of the additive group of $\pi_1(L, e)$ by Theorem 2.3. Then the operations of *L* lift to \widetilde{L}_G , i.e. \widetilde{L}_G is a local topological group and $p: \widetilde{L}_G \to L$ is a morphism of local topological groups.

Proof. Let P(L, e) be the set of all paths in L with initial point e. We know from the Section 2 that L_G is the set of equivalence classes via G. We have the induced multiplication

$$\widetilde{\mu} \colon \widetilde{\mathcal{U}} \to \widetilde{L}_G, (\langle \alpha \rangle_G, \langle \beta \rangle_G) \mapsto \langle \alpha \rangle_G \circ \langle \beta \rangle_G = \langle \alpha \circ \beta \rangle_G \tag{7}$$

on the subset $\widetilde{\mathcal{U}} = \widetilde{\mathcal{U}_G}$ of $\widetilde{L}_G \times \widetilde{L}_G$ such that $(\{\langle 1_e \rangle\} \times L) \cup (L \times \{\langle 1_e \rangle\}) \subseteq \widetilde{\mathcal{U}}$ and inversion map

$$i: \widetilde{V} \to \widetilde{L}_G, \langle \alpha \rangle_G \mapsto \overline{\langle \alpha \rangle_G} = \langle \overline{\alpha} \rangle_G \tag{8}$$

such that $\langle 1_e \rangle \in \widetilde{V} = \widetilde{V}_G \subseteq \widetilde{L}_G$ such that $\widetilde{V} \times i(\widetilde{V}) \subseteq \widetilde{\mathcal{U}}$ and $i(\widetilde{V}) \times \widetilde{V} \subseteq \widetilde{\mathcal{U}}$.

These maps are well defined. Indeed for $(\alpha, \alpha_1), (\beta, \beta_1) \in \mathcal{U} \subseteq L \times L$ and $(\alpha \bullet \beta, \alpha_1 \bullet \beta_1) \in \mathcal{U}$ such that $\alpha(1) = \alpha_1(1)$ and $\beta(0) = \beta_1(1)$, we have that

$$[(\alpha \circ \beta) \bullet (\alpha_1 \circ \beta_1)^{-1}] = [(\alpha \circ \beta) \bullet (\alpha_1^{-1} \circ \beta_1^{-1})]$$
(by 4)

$$= [(\alpha \bullet \alpha_1^{-1}) \circ (\alpha_1^{-1} \bullet \beta_1^{-1})]$$
 (by 3)

$$= [(\alpha \bullet \alpha_1^{-1})] \circ [(\alpha_1^{-1} \bullet \beta_1^{-1})].$$
 (by 1)

So, if $\alpha_1 \in \langle \alpha \rangle_G$ and $\beta_1 \in \langle \beta \rangle_G$, then $([\alpha \bullet \alpha_1^{-1}], [\beta \bullet \beta_1^{-1}]) \in \mathcal{U}_G$. Since *G* is a subgroup of $\pi_1(L, e)$, we have that $[\alpha \bullet \alpha_1^{-1}] \circ [\beta \bullet \beta_1^{-1}] \in G$. Hence the multiplication $\widetilde{\mu}$ is well defined. On the other hand $\alpha, \alpha_1 \in V \subseteq P(L, e)$ such that $\alpha(1) = \alpha(0)$, we have that

$$[\overline{\alpha} \bullet \overline{\alpha_1}^{-1}] = [[\overline{\alpha} \bullet \overline{\alpha_1}^{-1}]$$
 (by 5)

$$= [\overline{\alpha \bullet \alpha_1^{-1}}]$$
 (by 6)

$$= \overline{[\alpha \bullet \alpha_1^{-1}]}.$$
 (by 2)

If $[\alpha \bullet \alpha_1^{-1}] \in V_G$, then $\overline{[\alpha \bullet \alpha_1^{-1}]} \in G$. So \tilde{i} is well defined.

The other details can be checked for \widetilde{L}_G and so \widetilde{L}_G becomes a local group. We know from Theorem 2.1 that $p: (\widetilde{L}_G, \widetilde{x}_0) \to (L, x_0)$ is a covering map and \widetilde{L}_G is a topological group and p is a morphism of topological groups. So we need to prove that \widetilde{L}_G is a local topological group and p is a local topological groups morphism. We have to show that the multiplication $\widetilde{\mu}$ and the inversion map \widetilde{i} are continuous.

Let $(\langle \alpha \rangle_G, \langle \beta \rangle_G) \in \widetilde{\mathcal{U}} \subseteq \widetilde{L}_G \times \widetilde{L}_G$ and $(\widetilde{W}, \langle \alpha, \beta \rangle_G)$ be a basic open neighborhood of the element $\langle \alpha, \beta \rangle_G$. Here \widetilde{W} is an open neighborhood of $(\alpha \circ \beta)(1) = \alpha(1) \circ \beta(1)$. We know that the multiplication

$$\mu\colon \mathcal{U}\to L$$

is continuous. So there is an open neighborhood W of $(\alpha \circ \beta)(1) = \alpha(1) \circ \beta(1)$ such that $\mu(W) \subseteq \widetilde{W}$. Hence we have that

$$(W, (\langle \alpha \rangle_G, \langle \beta \rangle_G)) \subseteq (\widetilde{W}, \langle \alpha, \beta \rangle_G).$$

So the multiplication $\widetilde{\mu}$ is continuous. We now prove that the inversion map i is continuous. Let $(\overline{O}, \langle \overline{\alpha} \rangle_G)$ be a base open neighborhood of $\langle \overline{\alpha} \rangle_G$. Then \widetilde{O} is an open neighborhood of $\overline{\alpha(1)}$. Since the inversion map $i: V \to L$ is continuous, there is an open neighborhood O of $\alpha(1)$ such that $i(O) \subseteq \widetilde{O}$. Hence $(O, \langle \alpha \rangle_G)$ is an open neighborhood of $\langle \alpha \rangle_G$ and $i(O, \langle \alpha \rangle_G) \subseteq (\widetilde{O}, \langle \overline{\alpha} \rangle_G)$. Hence the inversion map i is continuous. Finally, we prove that the map $p: \widetilde{L}_G \to L, \langle \alpha, \beta \rangle_G \mapsto \alpha(1)$ satisfies the conditions in Definition 3.2 as follows.

(i) For the element (⟨α, β⟩_G) of U, since (p × p)(⟨α, β⟩_G) = (p × p)(⟨α⟩_G, ⟨β⟩_G) = (α(1), β(1)) = (α, β)(1), then (p × p)(U) ⊆ U. Also similarly p(V) ⊆ V and p(⟨1_e⟩_G) = 1_e(1) = 0.
(ii) p(⟨α ∘ β⟩_G) = α(1) ∘ β(1) = p(⟨α⟩_G) ∘ p(⟨β⟩_G).
(iii) p(i(⟨α⟩_G)) = p(⟨ā⟩_G = ā(1) = i(α(1)) = i(p⟨α⟩_G).

We now give the following result in the light of Theorem 3.7.

Theorem 3.8. Let *L* be a local topological group whose underlying space is connected, locally path connected and semi locally simply connected. Let $p: (\tilde{L}, \tilde{e}) \rightarrow (L, e)$ be a covering map such that \tilde{L} is path connected. Then the multiplication map $\mu: \mathcal{U} \rightarrow L$ and inversion map $i: V \rightarrow L$ lift to \tilde{L} .

Proof. If we choose $\tilde{L} = \tilde{L}_G$ by Remark 2.2 and in the light of Theorem 3.7, then the multiplication map $\mu: \mathcal{U} \to L$ and inversion map $i: V \to L$ lift to the maps

 $\widetilde{\mu} \colon \widetilde{\mathcal{U}} \to \widetilde{L}$

and

$$\widetilde{i}: \widetilde{V} \to \widetilde{L},$$

respectively, such that $(p \times p)(\widetilde{\mathcal{U}}) = \mathcal{U}$ and $p(\widetilde{V}) = V$. \Box

If we choose the subgroup *G* of $\pi_1(L, e)$ to be singleton in Theorem 3.7, then we obtain the following corollary.

Corollary 3.9. Let *L* be a local topological group such that the underlying space of *L* is connected, locally pathconnected and semi locally simply connected and $p: (\tilde{L}, \tilde{e}) \rightarrow (L, e)$ be a universal covering map. Then the multiplication map μ and inversion map i of *L* lifts to \tilde{L} .

Before giving Theorem 3.12, we prove the following proposition.

Proposition 3.10. Let *L* be a local topological group and *B* is a liftable neighborhood of *e* in *L*. Then there is a liftable neighborhood *A* of *e* in *L* such that $A \times A \subseteq \mathcal{U}$ and $\mu(A, A) \subseteq B$, where $\mu : \mathcal{U} \to L$.

Proof. If *L* is a local topological group and hence the multiplication map

 $\mu\colon \mathcal{U}\to L$

is continuous, then there is an open neighborhood *B* of *e* in *L* such that $A \times A \subseteq \mathcal{U}$ and $\mu(A, A) \subseteq B$. Moreover, if *B* is liftable, then *A* can be chosen as liftable. If *B* is liftable, then for each $x \in A$, the fundamental group $\pi_1(A, x)$ is mapped to the singleton by the morphism induced by the inclusion map $\iota: A \to L$. Consider that *A* is not necessarily path-connected and hence not necessarily liftable. But here, since the path component $C_e(A)$ of *e* in *A* is liftable and satisfies these conditions, *A* can be replace by the path component $C_e(A)$ of *e* in *A* and *A* is assumed to be liftable. \Box

Definition 3.11. Let $(L, \mu, \mathcal{U}, i, V)$ and $(L', \mu', \mathcal{U}', i', V')$ be local topological groups and A is an open neighborhood of e such that $A \times A \subseteq \mathcal{U}$. A continuous map $\varphi: A \to B$ is called a local morphism of local topological groups, if $\varphi(a \circ b) = \varphi(a) \circ \phi(b)$ when $a, b \in A$ such that $a \circ b \in A$.

Theorem 3.12. Let $(L, \mu, \mathcal{U}, i, V)$ and $(L', \mu', \mathcal{U}', i', V')$ be local topological groups and $q: L \to L$ a local topological group morphism, which is a covering map. Let A be an open, path-connected neighbourhood where $A \times A \subseteq \mathcal{U}$ such that $\mu(A, A) \subseteq U$ is contained in a liftable neighborhood B of e in L. Then the inclusion map $\iota: A \to L$ lifts to a local morphism $\widehat{\iota}: A \to \widetilde{L}$ in local topological groups.

Proof. Assuming that *B* is liftable, *A* lifts to \widetilde{L} by $\widehat{\iota}$: $A \to \widetilde{L}$. We need to prove that $\widehat{\iota}$ is a local morphism of local topological groups. By the lifting lemma we know that $\widehat{\iota}$ is continuous. We choose $a, b \in A$ such that $a \circ b \in A$. Considering that *A* is path connected, we also choose the paths α and β in *A* from *e* to *a* and *b*, respectively. If we assume that $\rho = \alpha \circ \beta$, then ρ is a path from *e* to $a \circ b$. Here since $\mu(A, A) \subseteq B$, $\rho = \alpha \circ \beta$ is a path in *B*. Hence the paths α , β and ρ lift to $\widetilde{\alpha}$, $\widetilde{\beta}$ and $\widetilde{\rho}$, respectively. Since *q* is a local grup morphism, we have that

$$q(\widetilde{\rho}) = \rho = \alpha \circ \beta = q(\widetilde{\alpha}) \circ q(\beta) = q(\widetilde{\alpha} \circ \beta).$$

By the unique path lifting,

$$\widetilde{\rho} = \widetilde{\alpha} \circ \widetilde{\beta},$$

since $\tilde{\alpha} \circ \tilde{\beta}$ and $\tilde{\rho}$ have the initial point $\tilde{0}$ in \tilde{L} . If we evaluate that these paths at $1 \in I$, then we have

$$\widehat{\iota}(a \circ b) = \widehat{\iota}(a) \circ \widehat{\iota}(b),$$

thus $\hat{\iota}$ is a local morphism in local topological groups. \Box

Acknowledgment

We would like to thank the referee for helpful comments and suggestions, which improved the presentation of the paper.

References

- H.F. Akız, N. Alemdar, O. Mucuk, T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J. 20 (2013) 223–238.
- [2] H. F. Akız, Covering morphisms of local topological group-groupoids, Proc. National Acad. Sci. India, Section A: Physical Sciences 88 (2018) 603–606.
- [3] R. Brown, Topology and Groupoids, Booksurge PLC, 2006.
- [4] R. Brown, O. Mucuk, Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phill. Soc. 115 (1994) 97–110.
- [5] K.C.H. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series 124, Cambridge University Press, 1987.
- K.C.H. Mackenzie, General theory of lie groupoids and lie algebroids, London Math. Soc. Lecture Note Series 213, Cambridge University Press, 2005.
- [7] O. Mucuk, Coverings and ring-groupoids, Georgian Math J. 5 (1998) 475-482.
- [8] O. Mucuk, H.Y. Ay, B. Kılıçarslan, Local group-groupoids, İstanbul University Science Faculty the Journal of Mathematics 97 (2008).
- [9] O. Mucuk, T. Şahan, Coverings and crossed modules of topological group-groupoids, Turkish J. Math. 38 (2014) 833-845.
- [10] O. Mucuk, N. Alemdar, Existence of covering topological R-modules, Filomat 27 (2013) 1121–1126.
- [11] P.J. Olver, Non-associatibe local Lie groups, J. Lie Theory 6 (1996) 23–51.
- [12] J.J. Rotman, An Introduction to Algebraic Topology, Graduate Texts in Mathematics 119, New York, NY, USA, Springer, 1988.
- [13] R.L. Taylor, Covering groups of non-connected topological groups, Proc. Amer. Math. Soc. 5 (1954) 753–768.