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Abstract. In this paper, by using relational notations, we improve and supplement a true particular case of
an inaccurate maximality theorem of Raúl Fierro from 2017, which has to be proved in addition to Zorn’s
lemma and a famous maximality principle of H. Brézis and F. Browder.

1. Introduction

In [7] , by considering an ordered set X and using the notation

S (x) =
{

y ∈ X : y ≥ x
}
,

Brézis and Browder proved the following important maximality principle as an immediate consequence of
a more general result.

Theorem 1.1. Let ϕ : X→ R be a function, bounded above, and satisfying

(1) x ≤ y and x , y imply ϕ (x) < ϕ (y) ;

(2) for any increasing sequence {xn} in X, there exists some y ∈ X such that xn ≤ y for all n .

Then, for each a ∈ X there exists ā ∈ X such that a ≤ ā and ā is maximal ( i. e., S (ā) = {ā} ) .

In [18] , by considering a preordering ⪯ on a nonempty set X and using the notation

S (x, ⪯) =
{

y ∈ X : x ⪯ y
}

for all x ∈ X, Fierro tried to prove the following closely related maximality theorem by generalizing and
supplementing a similar theorem of Park [31, Theorem 1] . ( See also [28, 29] for some more general
settings.)
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Theorem 1.2. Let x0 ∈ X. The following eight conditions are equivalent :

(1) there exists a maximal element x∗ ∈ X such that x0 ⪯ x∗ ;

(2) there exists x1 ∈ S (x0 , ⪯) such that for each chain C in S (x1 , ⪯) ,
⋂

x∈C S (x, ⪯) , ∅ ;

(3) there exist x1 ∈ S (x0 , ⪯) and a maximal chain C∗ in S (x1 , ⪯) such that
⋂

x∈C∗ S (x, ⪯) , ∅ ;

(4) for each T : S (x0 , ⪯) → 2 X such that, for each x ∈ S (x0 , ⪯) \ Tx , there exists y ∈ X \ {x}
satisfying x ⪯ y , there exists z ∈ S (x0 , ⪯) such that z ∈ Tz ;

(5) any function f : S (x0 , ⪯) → X such that x ⪯ f (x) , for all x ∈ S (x0 , ⪯) , has a fixed point ;

(6) for each T : S (x0 , ⪯) → 2 X
\ {∅} such that x ⪯ y , for all x ∈ S (x0 , ⪯) and y ∈ Tx , there

exists z ∈ S (x0 , ⪯) such that Tz = {z} ;

(7) any family F of functions f : S (x0 , ⪯) → X such that x ⪯ f (x) , for all x ∈ S (x0 , ⪯) , has a
common fixed point ;

(8) for any subset Y of X such that S (x0 , ⪯) ∩ Y = ∅ , there exists x in S (x0 , ⪯) \ Y satisfying
S (x, ⪯) = {x} .

In [23] , by considering a preorder relation S on a nonvoid set X and a function φ of X to R , and
using the notation

S (x) =
{

y ∈ X : (x, y) ∈ S
}

for all x ∈ X, the second and the third authors have proved the following relational improvement and
straightforward generalization of Theorem 1.1 of Brézis and Browder.

Theorem 1.3. Suppose that a ∈ X such that

(1) φ is bounded above on S (a) ;

(2) φ is either strictly increasing or injective and increasing on S (a) ;

(3) each increasing sequence ( xn )∞n=1 in X(S) , with x1 = a , is bounded above .

Then, there exists b ∈ S (a) such that b is a strongly maximal element of X (S) in the sense that
S (b) = {b} .

Now, knowing that the implication (3) =⇒ (4) in Theorem 1.2 of Fierro is not true without assuming
the antisymmetry of ⪯ [6] , and noticing that assertion (8) is also not very well formulated, we shall prove
a similar improved and supplemented form of a true particular case of Theorem 1.2 which has to be treated
after Zorn’s lemma [27, p. 532] and Theorem 1.3 .

2. Relations and Functions

A subset R of a product set X×Y is called a relation on X to Y. In particular, a relation R on X to itself
is called a relation on X. And, ∆X = {(x, x) : x ∈ X} is called the identity relation of X.

If R is a relation on X to Y, then for any x ∈ X and A ⊆ X the sets R (x) =
{
y ∈ Y : (x, y) ∈ R

}
and

R [ A ] =
⋃

a∈A R (a) are called the images or neighbourhoods of x and A under R , respectively.
If (x, y) ∈ R , then instead of y ∈ R (x) , we may also write x R y . However, instead of R [ A ] , we

cannot write R (A) . Namely, it may occur that, in addition to A ⊆ X, we also have A ∈ X.
Now, the sets DR = { x ∈ X : R (x) , ∅ } and R [ X ] may be called the domain and range of R , respectively.

And, if DR = X, then we may say that R is a relation of X to Y, or that R is a non-partial relation on X to Y.
If R is a relation on X to Y and U ⊆ DR, then the relation R |U = R ∩ (U×Y) is called the restriction of

R to U. Moreover, if R and S are relations on X to Y such that DR ⊆ DS and R = S |DR, then S is called
an extension of R.
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In particular, a relation f on X to Y is called a function if for each x ∈ D f there exists y ∈ Y such
that f (x) = {y} . In this case, by identifying singletons with their elements, we may simply write f (x) = y
instead of f (x) = {y} .

Moreover, a function ⋆ of X to itself is called a unary operation on X. While, a function ∗ of X2 to X is
called a binary operation on X. And, for any x, y ∈ X, we usually write x⋆ and x ∗ y instead of ⋆(x) and
∗(x, y), respectively.

If R is a relation on X to Y, then a function f of DR to Y is called a selection function of R if f (x) ∈ R(x)
for all x ∈ DR. Thus, by the Axiom of Choice [16] , we can see that every relation is the union of its selection
functions.

For a relation R on X to Y, we may naturally define two set-valued functions φR of X to P(Y) and ΦR
of P(X) to P(Y) such that φR (x) = R (x) for all x ∈ X and ΦR (A) = R [ A ] for all A ⊆ X.

Functions of X to P(Y) can be naturally identified with relations on X to Y. While, functions of P(X)
to P(Y) are more powerful tools than relations on X to Y. In [43] , they were briefly called corelations on
X to Y.

However, if U is a relation on P(X) to Y and V is a relation on P(X) to P(Y) , then it is better to say
that U is a super relation and V is a hyper relation on X to Y [34, 45] . Thus, closures (proximities) [47] are
super (hyper) relations.

Note that a super relation on X to Y is an arbitrary subset of P (X)× Y. While, a corelation on X to Y
is a particular subset of P(X)× P(Y) . Thus, set inclusion is a natural partial order for super relations, but
not for corelations.

For a relation R on X to Y, the relation, R c = (X×Y) \ R is called the complement of R . Thus, it can be
easily seen that R c (x) = R(x) c = Y \ R(x) for all x ∈ X, and R c [ A ]c =

⋂
a∈A R (a) for all A ⊆ X.

Moreover, the relation R−1 = { (y, x) ∈ Y×X : (x, y) ∈ R } is called the inverse of F . Thus, it can be
easily seen that R−1 (y) = { x ∈ X : y ∈ R (x)} for all y ∈ Y, and R−1 [ B ] = { x ∈ X : R (x) ∩ B , ∅ } for all
B ⊆ Y.

If R is a relation on X to Y, then we have R =
⋃

x∈X ( {x} × R (x)). Therefore, the values R (x), where
x ∈ X, uniquely determine R. Thus, a relation R on X to Y can also be naturally defined by specifying
R (x) for all x ∈ X.

For instance, if S is a relation on Y to Z, then the composition S◦R can be defined such that ( S◦R )(x) =
S [ R(x) ] for all x ∈ X. Thus, it can be easily seen that ( S ◦ R ) [ A ] = S

[
R [ A ]

]
also holds for A ⊆ X.

While, if S is a relation on Z to W, then the box product F ⊠G can be defined such that (R ⊠ S)(x, z) =
R (x) × S (z) for all x ∈ X and z ∈ Z . Thus, it can be shown that (R ⊠ S)[ A ] = S ◦A ◦ R−1 for all A ⊆ X×Z
[40] .

Hence, by taking A = {(x, z)} , and A = ∆Y if Y = Z , one can at once see that the box and composition
products are actually equivalent tools. However, the box product can be immediately defined for any
family of relations.

3. Preorder relations

Now, a relation R on X may be briefly defined to be reflexive if ∆X ⊆ R , and transitive if R ◦ R ⊆ R .
Moreover, R may be briefly defined to be symmetric if R ⊆ R−1 , antisymmetric if R ∩ R−1

⊆ ∆X , and total
if X2

⊆ R ∪ R−1 .
Thus, a reflexive and transitive (symmetric) relation may be called a preorder (tolerance) relation. And, a

symmetric (antisymmetric) preorder relation may be called an equivalence (partial order) relation.
For a relation R on X, we may now also naturally define R 0 = ∆X , and R n = R ◦ R n−1 if n ∈ N .

Moreover, we may also define R∞ =
⋃
∞

n=0 R n . Thus, R∞ is the smallest preorder relation on X containing
R [20] .
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For A ⊆ X, the Pervin relation RA = A2
∪ ( Ac

×X ) is an important preorder on X [33]. While, for a
pseudometric d on X, the Weil surrounding Bd

r = {(x, y) ∈ X2 : d (x, y) < r } , with r > 0 , is an important
tolerance on X [49] .

Note that SA = RA ∩ R−1
A = RA ∩RAc = A2

∪

(
Ac)2 is already an equivalence relation on X. And, more

generally if A is a cover (partition) of X, then SA =
⋃

A∈A A2 is a tolerance (equivalence) relation on X.
Now, as a straightforward generalization of the Pervin relation RA , for any A ⊆ X and B ⊆ Y, we

may also naturally consider the Hunsaker-Lindgren relation R(A,B) = (A×B) ∪ ( Ac
×Y) [22] .

However, it is now more important to note that if A = ( An

)∞
n=1

is an increasing sequence in P (X) , then

the Cantor relation RA = ∆X ∪
⋃
∞

n=1

(
An × Ac

n

)
is also an important preorder on X [30] .

Note that if R is only reflexive relation on X and x ∈ X, then AR (x) =
(

R n(x)
)∞

n=1
is already an

increasing sequence in P(X) . Thus, the preorder relation RAR(x) may also be naturally investigated.
Moreover, for a real function φ of X and a quasi-pseudo-metric d on X [17] , the Brøndsted relation

R (φ,d) = {(x, y) ∈ X2 : d (x, y) ≤ φ (y) − φ (x)} is also an important preorder on X [8] .
From this relation, by letting φ and d to be the zero functions, we can obtain the specialization and

preference relations Rd = { (x, y) ∈ X2 : d (x, y) = 0 } and Rφ = { (x, y) ∈ X2 : φ (x) ≤ φ (y)} , respectively.
( See [14, 48] .)

If R is a preorder relation on X, then having in mind the widely used abbreviation poset introduced by
Birkhoff [3] for a partially ordered set , the ordered pair X(R) = (X, R) may be called a proset (preordered
set).

More generally, if R is a relation on X, then the pair X (R) may be called a goset (generalized ordered
set) [41] . While, if R is a relation on X to Y, then the pair (X, Y)(R) =

(
(X, Y), R

)
may be called a formal

context [15, 19] .
Instead of ”formal context”, the terms ”relational space” or ”simple relator space” may also be used.

Namely, if R is a family of relations on X to Y, then the ordered pair (X, Y)(R) =
(
(X, Y), R

)
was called

a relator space [36] .
Several important notions used in posets, metric and topological spaces can be naturally generalized

to relator spaces [36, 46]. However, instead of arbitrary relators it is frequently sufficient to consider only
preorder relators [1, 38] .

If R is a relation on X to Y, then for any B ⊆ Y, we may naturally define

IntR (B) =
{
A ⊆ X : R [A ] ⊆ B

}
and intR (B) =

{
x ∈ X : {x} ∈ IntR (B)

}
.

Moreover, we may also naturally define ER = {B ⊆ Y : intR (B) , ∅ } .
Furthermore, we may also naturally define

LbR (B) =
{

A ⊆ X : A×B ⊆ R
}

and lbR (B) =
{
x ∈ X : {x} ∈ LbR (B)

}
.

However, these algebraic tools are not independent from the former topological ones. Namely, by [36] , we
have LbR = IntRc ◦CY and lbR = intRc ◦CY .

Now, if R is a relation on X, then for any A ⊆ X we may also naturally define minR (A) = A ∩ lbR (A)
and supR = minR

(
ubR (A)

)
, where ubR = lbR−1 . Thus, if R is antisymmetric, then minR (A) and supR (A)

are at most singletons.

4. Maximal elements and fixed points

In the present paper, we shall only need very few basic notions in connection with prosets which can,
in the same easy way, be defined even in a goset.

For instance, a subset A of a goset X(R) will be called a chain if the restriction of the relation R to A is
total. That is, either x R y or y R x for all x, y ∈ A.
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Moreover, we may also naturally introduce the following

Definition 4.1. An element x of a goset X(S) will be called

(1) maximal if x S y implies y S x for all y ∈ X;
(2) strongly maximal if x S y implies x = y for all y ∈ X.

Remark 4.2. Thus, x is maximal if and only if S is symmetric at x , i. e., S (x) ⊆ S−1 (x) . And, x is a strongly
maximal if and only if S (x) ⊆ {x} . Note that S is reflexive at x , i. e., x ∈ S (x) , if and only if {x} ⊆ S (x) .

In addition to (1) and (2), x may also be naturally called quasi-strongly maximal if x S y implies S (x) =
S (y) for all y ∈ X. Thus, it can be shown that x is quasi-strongly maximal if and only if S (x) ⊆ S◦ (x) ,
with S◦ =

(
S−1
◦ S c
)c

[35] .
Now, if S is reflexive and x is quasi-strongly maximal, then we can at once see that x is maximal.

Moreover, if S is antisymmetric and x is maximal, then x is strongly maximal. Therefore, in a poset the
three notions coincide.

In this respect, it is also worth noticing that S is symmetric if and only if every element of X (S) is
maximal. Moreover, x is a strongly maximal element of X (S) if and only if x S y does not hold for all
y ∈ X with y , x .

To check the latter statement, note that

S (x) ⊆ {x} ⇐⇒ {x}c ⊆ S (x)c
⇐⇒ S (x) ∩ {x}c = ∅ .

Analogously to Definition 4.1, we may also naturally introduce the following

Definition 4.3. If T is a relation on X, then an element x of X will be called a

(1) fixed point of T if x ∈ T (x) ;
(2) strong fixed point of T if T (x) = {x} .

Remark 4.4. Thus, x is fixed point of T if and only if T is reflexive at x . Moreover, x is a strong fixed
point of T if and only if x is both a fixed point of T and a strongly maximal element of X(T) .

Our present terminology can only be motivated by the latter fact. Namely, in the existing literature,
instead of ”strong fixed point” usually the terms ”stationary point”, ”invariant point” or ”endpoint” are
used [2, 24] .

In addition to Definitions 4.1 and 4.3, we may also naturally introduce

Definition 4.5. A relation T on a goset X (S) will be called

(1) intensive if for each x ∈ X there exists y ∈ T (x) such that y S x ;
(2) extensive if for each x ∈ X there exists y ∈ T (x) such that x S y .

Remark 4.6. For a function f of poset X(S) to itself, besides ”extensive”, the terms ”expansive”, ”progres-
sive”, ”inflationary” and ”noncontractive” are also frequently used.

More curiously, Davey and Pristley [15, p. 186] would even call a function f of a goset X (S) to itself
to be ”increasing” if each x ∈ X is a ”post-fixpoint” of f in the sense that x S f (x) .

Now, a function f of one goset X (R) to another Y (S) will, of course, be called increasing if x R y
implies f (x)S f (y) for all x, y ∈ X. However, to define strict increasingness, we have at least two reasonable
possibilities

Namely, for any relation R on X, instead of the usual strict relation R \ ∆X , we may also naturally
consider the relation R \R−1 [32] . Note that R \R−1

⊆ R \∆X if R is reflexive, and R \∆X ⊆ R \R−1 if R
is antisymmetric.

A simple reformulations of property (2) in Definition 4.5 gives the following
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Theorem 4.7. For a relation T on a goset X (S) , the following assertions are equivalent :

(1) T is extensive ;

(2) S−1
◦ T is reflexive on X;

(3) S (x) ∩ T (x) , ∅ for all x ∈ X.

Remark 4.8. Thus, if T is extensive on X (S) , then T is in particular non-partial on X. Moreover, if both
S and T are reflexive on X, then T is already extensive on X (S) .

The importance of strongly maximal elements is apparent from the following generalization of a simple,
but important observation of Brøndsted [9, 10] .

Theorem 4.9. If T is an extensive relation on a goset X(S) , then each strongly maximal element x of X(S) is a
fixed point of T .

Proof. Since T is extensive, there exists y ∈ T (x) such that x S y . Hence, since x is strongly maximal, we
can infer that x = y . Therefore, x ∈ T (x) , and thus x is a fixed point of T.

Thus, in particular, we can also state the following

Corollary 4.10. If f is an extensive function of a goset X(S) to itself, then each strongly maximal element x of
X(S) is a fixed point of f .

Now, by modifying an argument of Khamsi [26] , we can also prove the following partial converse to
the above theorem.

Theorem 4.11. If every extensive function of a goset X (S) to itself has a fixed point, then X(S) has a strongly
maximal element.

Proof. Assume, on the contrary, that each x ∈ X is not a strongly maximal element of X(S) . Then, by
Definition 4.1, for each x ∈ X there exists y ∈ X such that x S y , but x , y . Hence, we can infer that
y ∈ S (x) \ {x} . Define

T (x) = S (x) \ {x}

for all x ∈ X. Then, by the above observation, T is a non-partial relation on X. Thus, by the Axiom of
Choice, there exists a function f of X to itself such that

f (x) ∈ T (x) = S (x) \ {x} ⊆ S (x)

for all x ∈ X. Hence, by Definition 4.5, we can see that f is an extensive function of X (S) . Thus, by
the assumption of the theorem, there exists an x ∈ X such that f (x) = x . Hence, we can infer that
x = f (x) ∈ T (x) = S (x) \ {x} . Therefore, x < {x} , and thus x , x . This contradiction proves the assertion
of the theorem.

Thus, as a slight generalization of the dual of [26, Theorem 1] of Khamsi, we can also state

Corollary 4.12. For a goset X (S) , the following assertions are equivalent :

(1) X (S) has a strongly maximal element ;

(2) every extensive relation on X (S) has a fixed point ;

(3) every extensive function of X (S) to itself has a fixed point .

Remark 4.13. To further clarify the importance of extensive relations, we can note that a closure operation
on X (S) is, by definition, an extensive function of P (X) to itself.

Moreover, a strictly increasing function f of a well-ordered set X(S) to itself is extensive. For this, by [41,
Theorem 79] , we need only assume that S is antisymmetric and min–complete in the sense that minS (A) , ∅
if ∅ , A ⊆ X.
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5. Equivalent conditions for the existence of maximal elements

To have a true, improved particular case of Theorem 1.2 of Fierro, suggested by [31, Theorem 1] of Park,
in addition to Theorem 1.3 we can now also prove

Theorem 5.1. If S is a partial order on a nonvoid set X, then for each a ∈ X the following assertions are equivalent :

(1) there exists b ∈ S (a) such that b is a strongly maximal element of X (S) ;

(2) there exists b ∈ S (a) such that for each chain C in S (b) we have
⋂

x∈C S (x) , ∅ ;

(3) there exist b ∈ S (a) and a maximal chain C in S (b) such that
⋂

x∈C S (x) , ∅ ;

(4) for every relation T on X such that S (x) \ {x} , ∅ for all x ∈ X with x ∈ S (a) \ T (x) , there
exists b ∈ S (a) such that b is a fixed point of T ;

(5) if S (x) \ {x} , ∅ for all x ∈ S (a) , then for every relation T on X there exists b ∈ S (a) such
that b is a fixed point of T ;

(6) for every extensive function f of X to itself there exists b ∈ S (a) such that b is a fixed point of f ;

(7) for every non-partial relation T on X such that, y ∈ S (x) for all x ∈ S (a) and y ∈ T (x) \ {x} ,
there exists b ∈ S (a) such that b is a strong fixed point of T ;

(8) for every nonvoid family F of extensive functions of X to itself there exists b ∈ S (a) such that b
is a fixed point of each element f of F ;

(9) for any Y ⊆ X, such that S (x) \ {x} , ∅ for all x ∈ S (a) \ Y, we have S (a) ∩ Y , ∅ .

Proof. If assertion (1) holds, then by Remark 4.2 and the reflexivity of S , we have S (b) = {b} , Hence, we
can at once see that ∅ and {b} are the only chains in S (b) . Thus, since⋂

x∈∅ S (x) =
⋂
∅ = X , ∅ and

⋂
x∈{b} S (x) = S (b) = {b} , ∅ ,

it is clear that assertion (2) also holds.
Suppose now that assertion (2) holds. Then, there exists b ∈ X such that

⋂
x∈C S (x) , ∅ for every

chain C in S (b) . Moreover, by a generalized Hausdorff maximal principle [27, p. 529] , there exists a
maximal chain C in S (b) even if it is only assumed that S is a preorder on X . Furthermore, by the above
intersection property, we now also have

⋂
x∈C S (x) , ∅ . Therefore, assertion (3) also holds.

Suppose next that assertion (3) holds and T is as in (4). Then, by assertion (3), there exist c ∈ S (a) and
a maximal chain C in S (c) such that

⋂
x∈C S (x) , ∅ . Thus, because of the reflexivity of S , we necessarily

have C , ∅ . Namely, otherwise {c} would be a bigger chain in S (c) . Moreover, by the above intersection
property, there exists b ∈ X such that

b ∈ S (x) for all x ∈ C .

Now, by taking x ∈ C , and using the inclusions C ⊆ S (c) and c ∈ S (a) , and the transitivity of S , we can
see that

x ∈ S (c) ⊆ S [ S (a) ] ⊆ S (a) , and thus also S (x) ⊆ S [ S (a) ] ⊆ S (a) .

Hence, since x ∈ C implies b ∈ S (x) , we can see that b ∈ S (a) also holds. Next, we show that b is a fixed
point of T. For this, assume on the contrary that b < T (b) . Then, b ∈ S (a) \T (b) . Thus, by our assumption
on T , we have S (b) \ {b} , ∅ . Therefore, there exists y ∈ X such that

y ∈ S (b) and y , b .
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Now, if x ∈ C , then by the inclusion C ⊆ S (c) and the choice of b , we can see that x ∈ S (c) and b ∈ S (x) .
Hence, by using the transitivity of S , we can infer that

y ∈ S (b) ⊆ S [ S (x) ] ⊆ S (x) , and thus also y ∈ S (x) ⊆ S [ S (c) ] ⊆ S (c) .

This shows that C∪ {y} is also a chain in S (c) . Hence, by using the maximality of C in S (c) , we can infer
that y ∈ C , and thus b ∈ S (y) by the choice of b . Now, because of y ∈ S (b) and the antisymmetry of S ,
we can also state that y = b . This contradiction proves that b ∈ T (b) . Therefore, assertion (4) also holds.

It is clear that assertion (4) implies assertion (5). Namely, if S (x) \ {x} , ∅ holds for all x ∈ S (a) , then
for any relation T on X we have S (x) \ {x} , ∅ for all x ∈ X with x ∈ S (a) \ T (x) . Thus, assertion (4) can
be applied to derive the existence of a fixed point b of T in S (a) .

Therefore, suppose now that assertion (5) holds and f is as in assertion (6). Then, by the extensivity of
f , we have f (x) ∈ S (x) for all x ∈ X . Moreover, if we assume, on the contrary, that f does not have a
fixed point in S (a) , then we can also state that f (x) , x , and thus f (x) < {x} for all x ∈ S (a) . Therefore,
we actually have f (x) ∈ S (x) \ {x} , and thus S (x) \ {x} , ∅ for all x ∈ S (a) . Hence, by assertion (5), we
can infer that every relation T on X has a fixed point b in S (a) . Thus, if in particular T (x) = { f (x)} for all
x ∈ X, then T also has a fixed point b in S (a) . That is, there exists b ∈ S (a) such that b ∈ T (b) = { f (b)} ,
and thus b = f (b) . This contradiction shows that f has a fixed point in S (a) , and thus assertion (6) also
holds.

Suppose next that assertion (6) holds and T is as in assertion (7). Moreover, assume on the contrary that
T does not have a strong fixed point in S (a) . That is, T (x) , {x} for all x ∈ S (a) . Then, since T (x) , ∅ for
all x ∈ X, we necessarily have T (x) ⊈ {x} , and thus T (x) \ {x} , ∅ for all x ∈ S (a) . Hence, by the Axiom
of Choice, we can see that there exists a function f of X such that

f (x) ∈ T (x) \ {x} for all x ∈ S (a) and f (x) = x for all x ∈ S (a)c .

Now, by the assumed property of T , we can see that f (x) ∈ S (x) for all x ∈ S (a) . Moreover, by the
reflexivity of S , it is clear that we also have f (x) ∈ S (x) for all x ∈ S (a)c . Therefore, f is an extensive
function of X (S) . Thus, by assertion (6), there exists x ∈ S (a) such that f (x) = x . Hence, we can already
infer that x = f (x) ∈ T (x) \ {x} = T (x) , and thus x , x . This contradiction proves that T (b) = {b} for some
b ∈ S (a) , and thus assertion (7) also holds.

Suppose now that assertion (7) holds and F is as in assertion (8). That is, each member f of F is a
function of X to itself such that f (x) ∈ S (x) for all x ∈ X. Define T (x) =

{
f (x) : f ∈ F

}
for all x ∈ X.

Then, it is clear that T is a non-partial relation on X such that for any x ∈ X and y ∈ T (x) , we have
y ∈ S (x) . Therefore, by assertion (7), there exists b ∈ S (a) such that b is a strong fixed point of T . That is,
T (b) = {b} . Hence, we can already see that f (b) = b for all f ∈ F , and thus assertion (8) also holds.

Suppose now that assertion (8) holds. Moreover, assume on the contrary that assertion (9) does not
hold. Then, there exists Y ⊆ X, such that

S (x) \ {x} , ∅ for all x ∈ S (a) \ Y, but still S (a) ∩ Y = ∅ .

Thus, S (a) \ Y = S (a) . Therefore, we actually have S (x) \ {x} , ∅ for all x ∈ S (a) . Hence, by the Axiom of
Choice, we can see that there exists a function f of X such that

f (x) ∈ S (x) \ {x} for all x ∈ S (a) and f (x) = x for all x ∈ S (a)c .

Thus, we evidently have f (x) ∈ S (x) for all x ∈ S (a) . Moreover, by the reflexivity of S , it is clear that we
also have f (x) ∈ S (x) for all x ∈ S (a)c . Therefore, f is an extensive function of X. Thus, by the F = { f }
particular case of assertion (8), there exists b ∈ S (a) such that f (b) = b . Hence, we can already infer that
b = f (b) ∈ S (b) \ {b} , and thus b , b . This contradiction shows that assertion (9) also holds.
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Suppose now that assertion (9) holds. Define Y =
{

x ∈ X : S (x) = {x }
}

. Then, Y ⊆ X such that for all
x ∈ S (a)\Y we have S (x) , {x } . Hence, by using the reflexivity of S , we can infer that S (x) ⊈ {x} , and thus
S (x)\{x} , ∅ for all x ∈ S (a)\Y. Therefore, by assertion (9), we have S (a)∩Y , ∅ . Thus, there exists b ∈ S (a)
such that b ∈ Y, and thus S (b) = {b} . Hence, it is clear that, b S c =⇒ c ∈ S (b) =⇒ c ∈ {b} =⇒ c = b .
Therefore, b is a strongly maximal element of X (S) , and thus assertion (1) also holds.

Remark 5.2. Note that some of the above implications do not require the assumed properties of the relation
S . Moreover, only the implication (3) =⇒ (4) requires the relation S to be antisymmetric.

In [6] , we have shown that if the relation S is not supposed to be antisymmetric, then the implication
(3) =⇒ (4) need not be true. However, now having in mind Theorem 1.2 of Fierro, we can still prove the
following two additional theorems.

Theorem 5.3. If S is a preorder on a nonvoid set X, then the following assertions are true :

(a) (1) and (6)—(9) are equivalent ;

(b) (i) =⇒ (i+1) for all i ∈ { 1, 2 · · · , 8 } \ {3} .

Proof. From the proof of Theorem 5.1, we can see that assertion (b) and the implication (9) =⇒ (1) are true.
Therefore, to prove assertion (a), we need only show that (1) also implies (6). For this, assume that

assertion (1) holds and f is as in assertion (6). Then, by assertion (1) and Remark 4.2, there exists b ∈ S (a)
such that S (b) ⊆ {b} . Moreover, by the extensivity of f , we have f (b) ∈ S (b) . Therefore, f (b) ∈ {b} , and
thus f (b) = b . Thus, assertion (6) also holds.

Theorem 5.4. Suppose that S is a preorder on a nonvoid set X and, in addition to the assertions in Theorem 5.1,
consider the following two assertions :

(4*) for every relation T on X such that S (x) \ S−1 (x) , ∅ for all x ∈ X with x ∈ S (a) \ T (x) ,
there exists b ∈ S (a) such that b is a fixed point of T ;

( 5*) if S (x) \ S−1(x) , ∅ for all x ∈ S (a) , then for every relation T on X there exists b ∈ S (a)
such that b is a fixed point of T .

Then, the following implications hold :

(a) (3) =⇒ (4*) ; (b) (4) =⇒ (4*) =⇒ (5*) .

Proof. Suppose that assertion (3) holds and T is as in (4*). Then, by assertion (3), there exist c ∈ S (a) and a
maximal chain C in S (c) such that

⋂
x∈C S (x) , ∅ . Therefore, there exists b ∈ X such that

b ∈ S (x) for all x ∈ C .

Hence, as in the proof of the implication (3) =⇒ (4) in Theorem 5.1, we can infer that b ∈ S (a) . Therefore, if
we assume on the contrary that T does not have fixed point in S (a) , then b < T (b) , and thus b ∈ S (a)\T (b) .
Hence, by our former assumption on T , we can infer that S (b) \ S−1 (b) , ∅ . Therefore, there exists y ∈ X
such that

y ∈ S (b) and y < S−1(b) .

Hence, by using the maximality of C and the proof of the implication (3) =⇒ (4) in Theorem 5.1, we can
infer that b ∈ S (y) , and thus y ∈ S−1(b) . This, contradiction proves that b ∈ T (b) , and thus assertion
(4*) also holds.

The implication (4*) =⇒ ( 5*) is again quite obvious. Namely, if S (x) \ S−1(x) , ∅ holds for all x ∈ S (a) ,
then for any relation T on X we have S (x) \ S−1(x) , ∅ for all x ∈ X with x ∈ S (a) \ T (x) . Thus, assertion
(4*) can be applied to derive the existence of a fixed point b of T in S (a) .

Now, to complete the proof, it remains only to show that assertion (4) implies (4*). For this, assume that
assertion (4) is true and T is as in assertion (4*). Then, we have S (x) \ S−1(x) , ∅ for all x ∈ S (a) \ T (x) .
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Moreover, since S is reflexive on X, we can also see that x ∈ S (x) , x ∈ S−1(x) and thus {x} ⊆ S−1(x) for
all x ∈ X. Hence, we can see that S (x) \ S−1(x) ⊆ S (x) \ {x} , and thus S (x) \ {x} , ∅ for all x ∈ S (a) \ T (x) .
Therefore, by assertion (4), the relation T has a fixed point b in S (a) , and thus assertion (4*) also holds.

Remark 5.5. However, assertion (5*) seems not to be sufficiently strong enough to derive assertion (6).
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Example. If X = {1, 2} , S = X2 and T = X2
\ ∆X , then

(α) S is a total preorder, but not antisymmetric, relation on X;

(β) T is an involutive, extensive and intensive function of X onto itself without fixed points .

Moreover, for any a ∈ X, the following assertions hold :

(a) every b ∈ S (a) is a maximal, but not strongly maximal element of X (S) ;

(b) for any b ∈ S (a) and any chain C in S (b) we have
⋂

x∈C S (x) = X , ∅ ;

(c) for each b ∈ S (a) , the set C = S (b) is a maximal chain in S (b) such that
⋂

x∈C S (x) = X , ∅ ;

(d) S (x) \ {x} = X \ {x} , ∅ for all x ∈ X, but despite this the function T fails to have a fixed point .

The above assertions show, for instance, that the implication (3) =⇒ (4) in Theorem 5.1, and thus also
in Theorem 1.2, does not hold without assuming the antisymmetry of the corresponding preorders. This
statement was also proved in our former paper [6] by using a more complicated and instructive example.
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Topology and its Structures: Foundations, Theory and Application, John Wiley and Sons, submitted.
[47] W. J. Thron, Topological Structures, Holt, Rinehart and Winston, New York, 1966.
[48] A. D. Wallace, Relations on topological spaces, In: General Topology and its Relations to Modern Analysis and Algebra,

Proceeedings of the symposium held in Prague in September 1961, Academia Publishing House of the Czechoslovak Academy
of Sciences, Prague, 1962, 356–360.
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