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Abstract. In this paper, L-convex β∗-remotehood system is introduced and some characterizations of both
L-convexity and L-convex remotehood system are obtained. Further, β∗-remote mapping is presented and
some of its properties are investigated. Based on this, L-convex quasi-uniformity and L-convex quasi-
uniformity preserving mapping are introduced. It is proved that L-convex quasi-uniform space and L-
convex space are mutually induced. In addition, the category of L-convex spaces and the category of
L-convex β∗-remotehood spaces can be embedded into the category of L-convex quasi-uniform spaces.

1. Introduction

In an abstract convex space, a convex structure on a nonempty set is a family of subsets containing
the empty set and the largest set and is closed under arbitrary intersections and nested unions. Its theory
is called the abstract convex theory which involves many mathematical structures such as lattice, graph,
median algebra, metric space, poset and vector space [16].

Convex structure has been extended into fuzzy settings by many ways. Maruyama introduced L-convex
structure [3] which has being studied by many scholars [4–6, 24, 31, 34]. Also, Shi and Xiu introduced M-
fuzzifying convex structures [13]. Many subsequent studies have been done [7, 17, 22, 23]. Further, Shi
and Xiu introduced (L,M)-fuzzy convex structure which is a unified form of L-convex structure and M-
fuzzifying convex structure [14]. It characterizations have been studied recently [19, 20]. Now, these
fuzzy forms of convex structures have being applied to many fuzzy mathematical structures such as fuzzy
topology [2, 17, 18, 20, 25], fuzzy convergence [6, 7, 32, 33] and fuzzy matroid [21, 27].

Uniformity is a topology-like concept which is a convenient tool in interpreting topology. In fuzzy
settings, Hutton introduced fuzzy quasi-uniformities by fuzzy uniform operators [1]. Ying introduced M-
fuzzifying uniformities and studied relations between M-fuzzifying uniformities and M-fuzzifying topolo-
gies [28]. Rodabaugh presented the axiomatic foundations for quasi-uniformities in fuzzy real lines and
some other fuzzy settings [8, 9]. Zhang gave a comparison of various uniformities [30]. Shi established the
theory of quasi-uniformities in completely distributive lattices and fuzzy sets [10, 11]. Yue extended Shi’s
quasi-uniformity in a Kubiak-Šostak sense and showed that the category of fuzzy topological spaces can
be embedded into the category of fuzzy extension of Shi’s quasi-uniform spaces [15, 29].
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As mentioned above, quasi-uniformity is a topology-like structure which is used to interpret topology.
Then, is there any convex-like quasi-uniformity which can be used to interpret convex structure? Motivated
by this, we present this paper. The arrangement of this paper is as follows. In Section 2, we recall some
basic concepts, denotations and results related to L-convex space. In Section 3, we introduce L-convex
β∗-remotehood spaces and characterize both L-convex spaces and L-convex remotehood spaces. In section
4, we introduce L-convex quasi-uniformity and study its relations with L-convex space and L-convex β∗-
remotehood space. In section 5, we introduce L-convex quasi-uniformity preserving mapping. We find
that the category of L-convex spaces and the category of L-convex β∗-remotehood spaces can be embedded
into the category of L-convex quasi-uniform spaces.

2. Preliminaries

In this paper, X and Y are nonempty sets. L is a completely distributive lattice. The smallest (resp.
largest) element in L is denoted by ⊥ (resp. ⊤). An element a ∈ L is called a co-prime, if for all b, c ∈ L,
a ≤ b ∨ c implies a ≤ b or a ≤ c. The set of all co-primes in L\{⊥} is denoted by J(L). For any a ∈ L, there
is an L1 ⊆ J(L) such that a =

∨
b∈L1

b. A binary relation ≺ on L is defined by a ≺ b iff for each L1 ⊆ L,
b ≤
∨

L1 implies some d ∈ L1 with a ≤ d. The mapping β : L → 2L, defined by β(a) = {b ∈ L : b ≺ a},
satisfies β(

∨
i∈I ai) =

⋃
i∈I β(ai) for any {ai}i∈I ⊆ L. For any a ∈ L, we denote β∗(a) = β(a)∩ J(L). It is proved that

a =
∨
β(a) =

∨
β∗(a), β(a) =

⋃
b∈β∗(a) β(b) and β∗(a) =

⋃
b∈β∗(a) β

∗(b) [12].
An L-fuzzy set on X is a mapping A : X → L. The set of all L-fuzzy sets on X is denoted by LX. The

smallest (resp, largest) element in LX is denoted by ⊥ (resp. ⊤). A subset {Ai}i∈I ⊆ LX is called a directed
set, denoted by {Ai}

dir
i∈I ⊆ LX, if any pair of indices i, j ∈ I implies a k ∈ I such that Ai ∨ A j ≤ Ak. In this

case, we denote
∨

i∈I Ai by
∨dir

i∈I Ai. An L-fuzzy point xλ (λ ∈ L\{⊥}) is an L-fuzzy set defined by xλ(x) = λ
and xλ(y) = ⊥ for any y ∈ X\{x}. The set of all L-fuzzy points on LX is denoted by Pt(LX). Also, we denote
J(LX) = {xλ ∈ Pt(LX) : λ ∈ J(L)} and β∗(LX) = {xλ ∈ Pt(LX) : λ ∈ β∗(L)}.

For A ∈ LX, we denote F(A) = {F ∈ LX : ∃φ ∈ 2β
∗(A)

f in ,F =
∨
φ}. It is proved that that (1) F(A) is directed;

(2) B ≤ A iff F(B) ⊆ F(A) for A,B ∈ LX; (3) β∗(A) ⊆ F(A) (4)
∨
F(A) = A; (5) F(

∨dir
i∈I Ai) =

⋃
i∈I F(Ai) [19].

For a mapping φ : X → Y, φ→L : LX
→ LY is defined by φ→L (A)(y) =

∨
{A(x) : φ(x) = y} for A ∈ LX and

y ∈ Y, and φ←L : LY
→ LX is defined by φ←L (B)(x) = B(φ(x)) for B ∈ LY and x ∈ X [12].

Definition 2.1. ([3]) A subset C ⊆ LX is called an L-convexity on LX and the pair (X,C) is called an L-convex
space, if

(LC1) ⊤,⊥ ∈ C;
(LC2) ∀{Ai}i∈I ⊆ C,

∧
i∈I Ai ∈ C;

(LC3) ∀{Ai}
dir
i∈I ⊆ C,

∨dir
i∈I Ai ∈ C.

Definition 2.2. ([4]) An operator co : LX
→ LX is called an L-hull operator on LX and the pair (X, co) is called

an L-hull space, if it satisfies
(LCO1) co(⊥) = ⊥;
(LCO2) A ≤ co(A);
(LCO3) co(co(A)) = co(A);
(LCO4) co(

∨dir
i∈I Ai) =

∨
i∈I co(Ai).

Theorem 2.3. ([19]) Relations between L-convexities and L-hull operators are as follows.
(1) If (X,C) is an L-convex space, then the operator coC : LX

→ LX defined by coC(A) =
∧
{B ∈ LX : A ≤ B ∈ C}

for any A ∈ LX, is an L-hull operator on LX.
(2) If (X, co) is an L-hull space, then the set Cco = {A ∈ LX : co(A) = A} is an L-convexity on LX.
(3) coCco = co for any L-hull space (X, co).
(4) CcoC = C for any L-convex space (X, co).
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Let (X,CX) and (Y,CY) be L-convex spaces. A mapping φ : X → Y is called an L-convexity preserving
mapping, if φ←L (A) ∈ CX for any A ∈ CY. The category of L-convex spaces and L-convexity preserving
mappings is denoted by L-CS [19].

Definition 2.4. ([26]) A set R = {Rxλ : xλ ∈ J(LX)} is called an L-convex remotehood system on LX and the
pair (X,R) is called an L-convex remotehood space, where Rxλ ⊆ LX satisfies

(LCR1) ⊥ ∈ Rxλ ;
(LCR2) A ∈ Rxλ implies xλ ≰ A;
(LCR3) A ∈ Rxλ iff there is a set B ∈ LX such that xλ ≰ B ≥ A and B ∈ Ryµ for any yµ ∈ J(LX) with yµ ≰ B;
(LCR4)

∨dir
i∈I Ai ∈ Rxλ iff there is a µ ∈ β∗(λ) such that Ai ∈ Rxµ for all i ∈ I.

Let (X,RX) and (Y,RY) be L-convex remotehood spaces. A mappingφ : X→ Y is an L-convex remotehood
preserving mapping, if B ∈ (RY)φ→L (xλ) implies φ←L (B) ∈ (RX)xλ for all B ∈ LY and xλ ∈ J(LX). The category of
L-convex remotehood spaces and L-convex remotehood preserving mappings is denoted by L-CRS [26].

Theorem 2.5. ([26]) Relations between L-convex spaces and L-convex remotehood spaces are as follows.
(1) Let (X,R) be an L-convex remotehood space. The set CR = {A ∈ LX : ∀xλ ≰ A, A ∈ Rxλ } is an L-convexity on

LX.
(2) Let (X,C) be an L-convex space. Then the set RC = {RCxλ : xλ ∈ J(LX)} is an L-convex remotehood system on

LX, where Rxλ = {A ∈ LX : ∃B ∈ C, xλ ≰ B ≥ A}.
(3) L-CRS is isomorphic to L-CS.

3. L-convex β∗-remotehood space

In an L-topological space, the supremum of two L-fuzzy sets is an L-remotehood of an L-fuzzy point iff
each of them is an L-remotehood of that point [12]. However, as described in (LCR3) of Definition 2.4, in an
L-convex space, the supremum of a directed subset of L-fuzzy sets is an L-convex remotehood of an L-fuzzy
point can not imply that each L-fuzzy set is an L-convex remotehood of that point. To solve this problem,
we introduce the notion of L-convex β∗-remotehood space by which we characterize L-convex spaces and
L-convex remotehood spaces. For this, we firstly present the following lemma.

Lemma 3.1. For any xλ ∈ β∗(LX), we denote

β∗λ(L) = {η ∈ β∗(L) : λ ∈ β∗(η)}

and

ψxλ (LX) = {A ∈ LX : ∀η ∈ β∗λ(L), xη ≰ A}.

For all A,B ∈ LX and any {Ai}i∈I ⊆ LX, it follows that
(1) B ≤ A ∈ ψxλ (LX) implies B ∈ ψxλ (LX);
(2)
∨

i∈I Ai ∈ ψxλ (LX) iff Ai ∈ ψxλ (LX) for any i ∈ I;
(3) ψxλ (LX) =

⋂
η∈β∗λ(L) ψxη (LX);

(4) B ≤ A iff A ∈ ψxλ (LX) implies B ∈ ψxλ (LX) for any xλ ∈ β∗(LX).

Proof. (1). It is clear.
(2). Clearly,

∨
i∈I Ai ∈ ψxλ (LX) implies Ai ∈ ψxλ (LX) for any i ∈ I. Conversely, let Ai ∈ ψxλ (LX) for any i ∈ I.

Suppose that
∨

i∈I Ai < ψxλ (LX). Then there is an η ∈ β∗λ(L) such that xη ≤
∨

i∈I Ai. Since η ∈ β∗λ(L), there is
a θ ∈ β∗(η) such that θ ∈ β∗λ(L). Further, since xθ ≺ xη ≤

∨
i∈I Ai, there is a j ∈ I such that xθ ≤ A j. But this

contradicts A j ∈ ψxλ (LX). Therefore
∨

i∈I Ai ∈ ψxλ (LX).
(3). Clearly, ψxλ (LX) ⊆

⋂
η∈β∗λ(L) ψxη (LX). Conversely, let A ∈

⋂
η∈β∗λ(L) ψxη (LX). For any θ ∈ β∗λ(L), there

is a δ ∈ β∗(θ) such that δ ∈ β∗λ(L). Thus A ∈ ψxδ (LX) and xθ ≰ A. Hence A ∈ ψxλ (LX). Therefore⋂
η∈β∗λ(L) ψxη (LX) ⊆ ψxλ (LX).
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(4). The necessity is clear. For the sufficiency, assume that A ∈ ψxλ (LX) implies B ∈ ψxλ (LX) for any
xλ ∈ β∗(LX). Suppose that B ≰ A. There is a yµ ∈ β∗(LX) such that yµ ≺ B and yµ ≰ A. Then A ∈ ψyµ (LX)
which implies B ∈ ψyµ (LX). Since yµ ≺ B, there is an η ∈ β∗µ(L) such that yη ≤ B. But this contradicts
B ∈ ψyµ (LX). Therefore B ≤ A.

Definition 3.2. A set R̂ = {R̂xλ : xλ ∈ β∗(LX)} is called an L-convex β∗-remotehood system on LX and the pair
(X, R̂) is called an L-convex β∗-remotehood space, if for any xλ ∈ β∗(LX) the set R̂xλ ⊆ LX satisfies

(LCBR1) ⊥ ∈ R̂xλ ;
(LCBR2) A ∈ R̂xλ iff any η ∈ β∗λ(L) implies a set B ∈ ψxη (LX) such that A ≤ B ∈ R̂yµ for any yµ ∈ β∗(LX)

with B ∈ ψyµ (LX);
(LCBR3)

∨dir
i∈I Ai ∈ R̂xλ iff Ai ∈ R̂xλ for all i ∈ I.

Let (X, R̂X) and (Y, R̂Y) be L-convex β∗-remotehood spaces. A mappingφ : X→ Y is called an L-convex β∗-
remotehood preserving mapping, if B ∈ (R̂Y)φ→L (xλ) impliesφ←L (B) ∈ (R̂X)xλ for all xλ ∈ β∗(LX) and B ∈ LY. The
category of L-convex β∗-remotehood spaces and L-convex β∗-remotehood preserving mappings is denoted
by L-CBRS.

Lemma 3.3. Let (X, R̂) be an L-convex β∗-remotehood space. For any xλ ∈ β∗(LX), it is true that
(1) A ≤ B ∈ R̂xλ implies A ∈ R̂xλ ;
(2) R̂xλ =

⋂
η∈β∗λ(L) R̂xη .

Proof. (1). It directly follows from (LCBR2).
(2). Clearly, R̂xλ ⊆

⋂
η∈β∗λ(L) R̂xη by (LCBR2). Conversely, if A ∈

⋂
η∈β∗λ(L) R̂xη , then A ∈ R̂xη for any η ∈ β∗λ(L).

By (LCBR2), for any θ ∈ β∗η(L) there is a set Dθ ∈ ψxθ (LX) such that A ≤ Dθ ∈ R̂yµ for any yµ ∈ β∗(LX) with
Dθ ∈ ψyµ (LX).

Let D =
∧
η∈β∗λ(L)

∧
θ∈β∗η(L) Dθ. For any η ∈ β∗λ(L), we say that D ∈ ψxη (LX). Otherwise, xθ ≤ D for some

θ ∈ β∗η(L). There is a µ ∈ β∗(θ) such that µ ∈ β∗η(L). Hence xθ ≤ D ≤ Dµ ∈ ψxµ (LX). It is a contradiction.
Therefore D ∈ ψxη (LX).

Further, let zδ ∈ β∗(LX) with D ∈ ψzδ (LX). To prove that D ∈ R̂zδ , let ν ∈ β∗δ(L). Then zν ≰ D. Thus there are
η ∈ β∗λ(L) and θ ∈ β∗η(L) such that zν ≰ Dθ. Hence Dθ ∈ ψzν (LX) and Dθ ∈ R̂zν by the assumption. Therefore
D ∈ R̂zδ by (LCBR2).

Now, for η ∈ β∗λ(L), it follows that A ≤ D ∈ ψxη (LX) and D ∈ R̂zδ for any zδ ∈ β∗(LX) with D ∈ ψzδ (LX). So
A ∈ R̂xλ by (LCBR2). Therefore

⋂
η∈β∗λ(L) R̂xη ⊆ R̂xλ .

We study relations between L-convex spaces and L-convex β∗-remotehood spaces.

Theorem 3.4. Let (X, R̂) be an L-convex β∗-remotehood space. Then the set

C
R̂
= {A ∈ LX : ∀xλ ∈ β∗(LX),A ∈ ψxλ (LX) implies A ∈ R̂xλ }

is an L-convexity on LX.

Proof. (LC1). By (LCBR1), we know that ⊥ ∈ R̂xλ for any xλ ∈ β∗(LX). Thus ⊥ ∈ C
R̂

. Also, ⊤ ∈ C
R̂

is trivial.
(LC2). Let {Ai}i∈I ⊆ CR̂ and let xλ ∈ β∗(LX) with

∧
i∈I Ai ∈ ψxλ (LX). For any η ∈ β∗λ(L), we have xη ≰

∧
i∈I Ai.

So there is a j ∈ I such that xη ≰ A j. Thus A j ∈ ψxη (LX) which implies that Ai ∈ R̂xη . Hence
∧

i∈I Ai ∈ R̂xη by
(1) of Lemma 3.3. As a result, by (2) of Lemma 3.3, it follows that∧

i∈I

Ai ∈
⋂

η∈β∗λ(L)

R̂xη = R̂xλ

Therefore
∧

i∈I Ai ∈ CR̂.
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(LC3). Let {Ai}
dir
i∈I ⊆ CR̂ and let xλ ∈ β∗(LX) with

∨dir
i∈I Ai ∈ ψxλ (LX). Then Ai ∈ ψxλ (LX) and Ai ∈ R̂xλ for any

i ∈ I. Hence
∨dir

i∈I Ai ∈ R̂xλ by (LCBR3). Therefore
∨dir

i∈I Ai ∈ CR̂.

Theorem 3.5. Let (X, R̂X) and (Y, R̂Y) be L-convex β∗-remotehood spaces. Ifφ : X→ Y is an L-convex β∗-remotehood
preserving mapping, then φ : (X,C

R̂X
)→ (Y,C

R̂Y
) is an L-convexity preserving mapping.

Proof. Let B ∈ C
R̂Y

. To prove that φ←L (B) ∈ C
R̂X

, let xλ ∈ β∗(LX) with φ←L (B) ∈ ψxλ (LX). Then φ→L (xλ) ∈ β∗(LY)
and B ∈ ψφ→L (xλ)(LY). Thus B ∈ (R̂Y)φ→L (xλ) followed by φ←L (B) ∈ (R̂X)xλ . Hence φ←L (B) ∈ C

R̂X
. Therefore φ is an

L-convexity preserving mapping.

Theorem 3.6. Let (X,C) be an L-convex space. For any xλ ∈ β∗(LX), define

R̂
C

xλ = {A ∈ LX : ∃B ∈ C ∩ ψxλ (LX), A ≤ B}.

Then R̂C = {R̂Cxλ : xλ ∈ β∗(LX)} is an L-convex β∗-remotehood system.

Proof. (LCBR1). It is clear.
(LCBR2). If A ∈ R̂Cxλ , then there is a set B ∈ C ∩ ψxλ (LX) such that A ≤ B. Thus B ∈ ψxη (LX) for any

η ∈ β∗λ(L). In addition, for any yµ ∈ β∗(LX) with B ∈ ψyµ (LX), it is clear that B ∈ C ∩ ψyµ (LX). This shows that
B ∈ R̂Cyµ . Hence the necessity of (LCBR2) holds for R̂Cxλ .

Conversely, assume that any η ∈ β∗λ(L) implies some Bη ∈ ψxη (LX) such that A ≤ Bη ∈ R̂Cyµ for any
yµ ∈ β∗(LX) with Bη ∈ ψyµ (LX). Let η ∈ β∗λ(L). Then Bη ∈ R̂Cxη by the assumption. Thus there is a set
Eη ∈ C ∩ ψxη (LX) such that Bη ≤ Eη. Further, let E =

∧
η∈β∗λ(L) Eη. It follows that A ≤

∧
η∈β∗λ(L) Bη ≤ E and

E ∈ C ∩
⋂

η∈β∗λ(L)

ψxη (L
X) = C ∩ ψxλ (LX).

Hence A ∈ R̂Cxλ . Therefore the sufficiency of (LCBR2) holds for R̂Cxλ .
(LCBR3). Let {Ai}

dir
i∈I ⊆ LX. If

∨dir
i∈I Ai ∈ R̂

C
xλ then Ai ∈ R̂

C
xλ for any i ∈ I. Conversely, let Ai ∈ R̂

C
xλ for any

i ∈ I. There is a set Bi ∈ C ∩ ψxλ (LX) such that Ai ≤ Bi for any i ∈ I.
Let Ei =

∧
{Di ∈ C ∩ ψxλ (LX) : Ai ≤ Di} for any i ∈ I. We have Ai ≤ Ei and Ei ∈ C ∩ ψxλ (LX). Since

{Ai}
dir
i∈I is directed, the set {Ei}i∈I is also directed. Thus

∨dir
i∈I Ei ∈ C ∩ ψxλ (LX) and

∨dir
i∈I Ai ≤

∨dir
i∈I Ei. Therefore∨dir

i∈I Ai ∈ R̂
C
xλ .

In conclusion, R̂C is an L-convex β∗-remotehood system.

Theorem 3.7. Let (X,CX) and (Y,CY) be L-convex spaces. If φ : X→ Y is an L-convexity preserving mapping, then
φ : (X, R̂CX )→ (Y, R̂CY ) is an L-convex β∗-remotehood preserving mapping.

Proof. Let xλ ∈ β∗(LX) and A ∈ R̂CY
φ→L (xλ). Then there is a set B ∈ CY ∩ ψφ→L (xλ)(LY) such that A ≤ B. Thus

φ←L (B) ∈ CX ∩ ψxλ (LX) and φ←L (A) ≤ φ←L (B). Hence φ←L (B) ∈ R̂CX
xλ . Therefore φ is an L-convex β∗-remotehood

preserving mapping.

Theorem 3.8. R̂C
R̂
= R̂ for any L-convex β∗-remotehood space (X, R̂).

Proof. Let xλ ∈ β∗(LX) and A ∈ R̂CR̂xλ . There is a set B ∈ C
R̂
∩ ψxλ (LX) such that A ≤ B. Further, B ∈ C

R̂
implies

B ∈ R̂yµ for any yµ ∈ β∗(LX) with B ∈ ψyµ (LX). In particular, B ∈ R̂xλ . Hence A ∈ R̂xλ . Therefore R̂CR̂xλ ⊆ R̂xλ .
Conversely, let A ∈ R̂xλ . By (LCBR2), any η ∈ β∗λ(L) implies some Bη ∈ ψxη (LX) such that A ≤ Bη ∈ R̂yµ for

any yµ ∈ β∗(LX) with Bη ∈ ψyµ (LX).
Let B =

∧
η∈β∗λ(L) Bη. To prove that B ∈ C

R̂
, it is sufficient to prove that B ∈ R̂zδ for any zδ ∈ β∗(LX) with

B ∈ ψzδ (LX). Indeed, for any θ ∈ β∗δ(L), it is clear that zθ ≰ B. Then there is an η ∈ β∗λ(L) such that zθ ≰ Bη.
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Thus Bη ∈ ψzθ (LX) and so Bη ∈ R̂zθ by the assumption. Hence B ∈ R̂zθ . Therefore B ∈
⋂
θ∈β∗δ(L) R̂zθ = R̂zδ by

(3) of Lemma 3.3. This implies that B ∈ C
R̂

. So

A ≤ B ∈ C
R̂
∩

⋂
η∈β∗λ(L)

ψxη (L
X) = C

R̂
∩ ψxλ (LX).

Thus R̂xλ ⊆ R̂
C
R̂

xλ .
In conclusion, R̂CR̂xλ = R̂xλ for any xλ ∈ β∗(LX). Therefore R̂ = R̂C

R̂
.

Theorem 3.9. C
R̂C
= C for any L-convex space (X,C).

Proof. Let A ∈ C
R̂C

. For any xλ ∈ β∗(λ) with A ∈ ψxλ (LX), it follows that A ∈ R̂Cxλ . Thus there is a set
Bxλ ∈ C ∩ ψxλ (LX) such that A ≤ Bxλ . Let B =

∧
A∈ψxλ (LX) Bxλ . Then A ≤ B ∈ C. On the other hand, for any

yη ≰ A, there is a µ ∈ β∗(η) such that yµ ≰ A. Thus A ∈ ψyµ (LX) and Byµ ∈ ψyµ (LX) ∩ C. Hence yη ≰ Byµ ≥ B
followed by yµ ≰ B. This implies that B ≤ A. Hence A = B ∈ C. Therefore C

R̂C
⊆ C.

Conversely, let A ∈ C. For any xλ ∈ β∗(LX) with A ∈ ψxλ (LX), it is clear that A ∈ C∩ψxλ (LX). This directly
implies that A ∈ R̂Cxλ and A ∈ C

R̂C
. Thus C ⊆ C

R̂C
. This shows that C

R̂C
= C.

Based on Theorems 3.4 and 3.5, we define a functor: F : L-CBRS→ L-CS by

F((X, R̂)) = (X,C
R̂

), F(φ) = φ.

By Theorems 3.4–3.9, F is isomorphic. Thus we have the following conclusion.

Theorem 3.10. L-CBRS is isomorphic to L-CS.

Based on Theorems 2.5 and 3.6, the following example shows that L-convex β∗-remotehood system and
L-convex remotehood system are different. Although their differences may seem trivial, the difference of
β∗-remotehood systems provides some necessary conveniences in defining L-fuzzy β∗-remote mappings
and L-convex quasi-uniforms in the next section.

Example 3.11. Let X = {x} and L = [0, 1]. It is clear that C = {⊥, x 1
2
,⊤} is an L-convexity on LX. In addition,

it is easy to check the following results.
(1) RC = {RCxλ : 0 < λ < 1} is an L-convex remotehood system, where

R
C

xλ =

{
{⊥}, 0 < λ ≤ 1

2 ,
{⊥, x 1

2
}, 1

2 < λ < 1;

(2) R̂C = {R̂Cxλ : 0 < λ < 1} is an L-convex β∗-remotehood system, where

R̂
C

xλ =

{
{⊥}, 0 < λ < 1

2 ,
{⊥, x 1

2
}, 1

2 ≤ λ < 1.

Therefore R̂C and RC are different.

The following theorem gives a direct relation between L-convex β∗-remotehood systems and L-convex
remotehood systems.

Theorem 3.12. (1) Let (X, R̂) be an L-convex β∗-remotehood space. Define RR̂xλ =
⋃
µ∈β∗(λ) R̂xλ for any xλ ∈ J(LX).

Then R
R̂
= {RR̂xλ : xλ ∈ J(LX)} is an L-convex remotehood system.

(2) Let (X,R) be an L-convex remotehood space. Define R̂Rxλ =
⋂
λ≺η∈J(L) Rxη for any xλ ∈ β∗(LX). Then

R̂R = {R̂
R
xλ : xλ ∈ β∗(LX)} is an L-convex β∗-remotehood system.

(3) R̂R
R̂
= R̂ for any L-convex β∗-remotehood space (X, R̂).

(4) R
R̂R
= R for any L-convex remotehood space (X,R).

(5) L-CBRS is isomorphic to L-CRS.
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4. L-convex quasi-uniform space

In this section, we introduce the notion of L-convex quasi-uniform space and study its relations with
L-convex spaces and L-convex β∗-remotehood spaces. For this, we introduce L-fuzzy β∗-remote mappings
as follows.

A mapping f : β∗(LX)→ LX is called an L-fuzzy β∗-remote mapping, if f (xλ) ∈ ψxλ (LX) for any xλ ∈ β∗(LX).
The set of all L-fuzzy β∗-remote mappings is denoted by R(LX). For f , 1 ∈ R(LX), we denote f ≤ 1 provided
that f (xλ) ≤ 1(xλ) for any xλ ∈ β∗(LX). Clearly, the mapping f0 : β∗(LX)→ LX, defined by f0(xλ) = ⊥ for any
xλ ∈ β∗(LX), is the smallest L-fuzzy β∗-remote mapping.

For all f , 1 ∈ R(LX), { fi}i∈I ⊆ R(LX) and xλ ∈ β∗(LX), we further define
(1) (
∨

i∈I fi)(xλ) =
∨

i∈I fi(xλ);
(2) (
∧

i∈I fi)(xλ) =
∧

i∈I fi(xλ);
(3) ( f ⋄ 1)(xλ) =

∧
{ f (yµ) : 1(xλ) ∈ ψyµ (LX)}.

A subset { fi}i∈I ⊆ R(LX) is called directed if any pair of indices i, j ∈ I implies a k ∈ I such that fi ∨ f j ≤ fk.
In this case,

∨
i∈I fi is denoted by

∨dir
i∈I fi.

Lemma 4.1. Let f , 1, h ∈ R(LX) and { fi}i∈I ⊆ R(LX). We have
(1) f ⋄ 1 ∈ R(LX) and f ⋄ 1 ≤ f ∧ 1;
(2)
∨

i∈I fi ∈ R(LX) and
∧

i∈I fi ∈ R(LX);
(3) ( f ⋄ 1) ⋄ h = f ⋄ (1 ⋄ h).

Proof. (1). For any xλ ∈ β∗(LX), we have 1(xλ) ∈ ψxλ (LX) and so ( f ⋄ 1)(xλ) ≤ f (xλ). Thus f ⋄ 1 ≤ f which
implies that f ⋄ 1 ∈ R(LX).

Suppose that ( f ⋄ 1)(xλ) ≰ 1(xλ). Then there is a yµ ∈ β∗(LX) such that yµ ≺ ( f ⋄ 1)(xλ) and yµ ≰ 1(xλ). By
yµ ≰ 1(xλ), there is an η ∈ β∗(µ) such that yη ≰ 1(xλ). So 1(xλ) ∈ ψyη (LX) and

yµ ≤ ( f ⋄ 1)(xλ) ≤ f (yη) ∈ ψyη (L
X).

It is a contradiction. Hence ( f ⋄ 1)(xλ) ≤ 1(xλ). Therefore f ⋄ 1 ≤ f ∧ 1.
(2). It directly follows from (1) and (2) of Lemma 3.1.
(3). Let xλ, yµ ∈ β∗(LX). We have

yµ ≰ [( f ⋄ 1) ⋄ h](xλ) ⇔ ∃h(xλ) ∈ ψzη (L
X), yµ ≰ ( f ⋄ 1)(zη)

⇔ ∃h(xλ) ∈ ψzη (L
X), ∃1(zη) ∈ ψwθ (LX), yµ ≰ f (wθ)

⇔ ∃(1 ⋄ h)(xλ) ∈ ψwθ (LX), yµ ≰ f (wθ)
⇔ yµ ≰ [ f ⋄ (1 ⋄ h)](xλ).

Thus [( f ⋄ 1) ⋄ h](xλ) = [ f ⋄ (1 ⋄ h)](xλ). Therefore [( f ⋄ 1) ⋄ h] = [ f ⋄ (1 ⋄ h)].

Definition 4.2. A subset U ⊆ R(LX) is called an L-convex quasi-uniformity on LX and the pair (X,U) is
called an L-convex quasi-uniform space, if

(LCQU1) f0 ∈ U;
(LCQU2) f ∈ U iff there is a 1 ∈ U such that f ≤ 1 ⋄ 1;
(LCQU3) { fi}dir

i∈I ⊆ U implies
∨dir

i∈I fi ∈ U.

LetU be an L-convex quasi-uniformity on LX. A subsetB ⊆ U is called an L-convex quasi-uniform base
of U if any f ∈ U implies a 1 ∈ B such that f ≤ 1. A subset Φ ⊆ U is called an L-convex quasi-uniform
subbase of U if BΦ = {

∨dir
i∈I fi : { fi}dir

i∈I ⊆ Φ} is an L-convex quasi-uniform base of U. Clearly, an L-convex
quasi-uniform base is an L-convex quasi-uniform subbase.

Now, we construct an L-convexity by an L-convex quasi-uniformity.
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Lemma 4.3. Let (X,U) be an L-convex quasi-uniform space. For any A ∈ LX,

AU =
∨
{xλ ∈ β∗(LX) : ∀ f ∈ U, A ≰ f (xλ)}.

For all xλ ∈ β∗(LX), f ∈ U and {Ai}
dir
i∈I ⊆ LX, we have

(1) A ≤ f (xλ) implies AU ≤ 1(xλ) for any 1 ∈ U with f ≤ 1 ⋄ 1;
(2) AU ∈ ψxλ (LX) iff any η ∈ β∗λ(L) implies some 1 ∈ U such that A ≤ 1(xη);
(3) f (xλ)U ∈ ψxλ (LX);
(4) A ≤ AU ;
(5) (
∨dir

i∈I Ai)U =
∨dir

i∈I(Ai)U .

Proof. (1). Let A ≤ f (xλ) and let 1 ∈ U with f ≤ 1 ⋄ 1. Suppose that AU ≰ 1(xλ). There is a yµ ∈ β∗(LX) such
that yµ ≰ 1(xλ) and A ≰ h(yµ) for any h ∈ U. In particular, we have A ≰ 1(yµ). Also, since 1(xλ) ∈ ψyµ (LX)
by yµ ≰ 1(xλ), we have

A ≤ f (xλ) ≤ (1 ⋄ 1)(xλ) ≤ 1(yµ).

It is a contradiction. So AU ≤ 1(xλ).
(2). Let AU ∈ ψxλ (LX) and let η ∈ β∗λ(L). Suppose that A ≰ 1(xη) for any 1 ∈ U. Then xη ≤ AU and thus

AU < ψxλ (LX). But it is a contradiction. So there must be some 1 ∈ U such that A ≤ 1(xη).
Conversely, assume that any η ∈ β∗λ(L) implies some 1 ∈ U such that A ≤ 1(xη). If AU < ψxλ (LX), then

there is a δ ∈ β∗λ(L) such that xδ ≤ AU . By δ ∈ β∗λ(L), there is a µ ∈ β∗λ(L) such that µ ∈ β∗(δ). Thus xµ ≺ AU
which implies an xη ∈ β∗(LX) such that xµ ≺ xη and A ≰ 1(xη) for any 1 ∈ U. Hence η ∈ β∗λ(L) and A ≰ 1(xη)
for any 1 ∈ U. But this contradicts the assumption. Therefore AU ∈ ψxλ (LX).

(3). By (LCQU2), there is a 1 ∈ U such that f ≤ 1⋄1. For any η ∈ β∗λ(L), we have 1(xλ) ∈ ψxλ (LX) ⊆ ψxη (LX).
Thus f (xλ) ≤ (1 ⋄ 1)(xλ) ≤ 1(xη). Hence f (xλ)U ∈ ψxλ (LX) follows from (2).

(4). For any yµ ∈ β∗(A), there is an η ∈ β∗µ(L) such that yη ∈ β∗(A). In addition, 1(yµ) ∈ ψyµ (LX) for any
1 ∈ U. Thus yη ≰ 1(yµ) followed by A ≰ 1(yµ). Hence yµ ≤ AU . Therefore A =

∨
yµ∈β∗(A) yµ ≤ AU .

(5). By the definition,
∨dir

i∈I(Ai)U ≤ (
∨dir

i∈I Ai)U . Conversely, let yµ ∈ β∗(LX) with yµ ≰
∨dir

i∈I(Ai)U . Then
there is an η ∈ β∗(µ) such that yη ≰

∨dir
i∈I(Ai)U . Thus yη ≰ (Ai)U for any i ∈ I. So there is an fi ∈ U such that

Ai ≤ fi(yη).
Let Ξi = { fi ∈ U : Ai ≤ fi(yη)} for any i ∈ I. Then

∧
fi∈Ξi

fi ∈ U by (LCQU2). Since {Ai}
dir
i∈I ⊆ LX, the set

{
∧

fi∈Ξi
fi}i∈I ⊆ U is directed. Let f =

∨dir
i∈I
∧

fi∈Ξi
fi. Then f ∈ U by (LCQU3). In addition,

∨dir
i∈I Ai ≤ f (yη).

Further, by (LCQU2), there is a 1 ∈ U such that f ≤ 1 ⋄ 1.
Suppose that yµ ≤ (

∨dir
i∈I Ai)U . Then yη ≺ (

∨dir
i∈I Ai)U . Thus there is a yδ ∈ β∗(LX) such that yη ≺ yδ and∨dir

i∈I Ai ≰ h(yδ) for any h ∈ U. In particular, we have
∨dir

i∈I Ai ≰ 1(yδ). Since 1(yη) ∈ ψyη (LX), it follows that
1(yη) ∈ ψyδ (LX) and thus

dir∨
i∈I

Ai ≤ f (yη) ≤ (1 ⋄ 1)(yη) ≤ 1(yδ).

It is a contradiction. Hence yµ ≰ (
∨dir

i∈I Ai)U . Therefore (
∨dir

i∈I Ai)U ≤
∨dir

i∈I(Ai)U .

Theorem 4.4. Let (X,U) be an L-convex quasi-uniform space. Define an operator coU : LX
→ LX by

∀A ∈ LX, coU(A) = AU .

Then coU is an L-hull operator of some L-convexity denoted by CU .

Proof. We prove that coU satisfies (LCO1)–(LCO4).
Indeed, (LCO1) is clear. In addition, (LCO2) and (LCO4) directly follow from (4) and (5) of Lemma 4.3.
(LCO3). Let xλ ∈ β∗(LX) with coU(A) ∈ ψxλ (LX). By (2) of Lemma 4.3, any η ∈ β∗λ(L) implies some

f ∈ U such that A ≤ f (xη). Further, by (LCQU3), there are 1, h ∈ U such that f ≤ 1 ⋄ 1 and 1 ≤ h ⋄ h.
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Thus coU(A) ≤ 1(xλ) and coU(coU(A)) ≤ h(xλ) by (1) of Lemma 4.3. Hence coU(coU(A)) ∈ ψxλ (LX). By
the arbitrariness of xλ ∈ β∗(LX), we conclude from (4) of Lemma 3.1 that coU(coU(A)) ≤ coU(A). So
coU(coU(A)) = coU(A) as desired.

Therefore coU is an L-hull operator.

Next, we construct an L-convex quasi-uniform space from an L-convex space.

Lemma 4.5. Let (X,C) be an L-convex space. For any A ∈ LX, define a mapping fA : β∗(LX)→ LX by

fA(xλ) =
∨
{B ∈ C ∩ ψxλ (LX) : B ≤ A}

for any xλ ∈ β∗(LX). For all A ∈ LX, {Ai}
dir
i∈I ⊆ LX and {Bi}i∈I ⊆ LX, the follows statements are valid.

(1) fA ∈ R(LX);
(2) {Ai}

dir
i∈I ⊆ C implies

∨
i∈I fAi = f∨dir

i∈I Ai
;

(3)
∧

i∈I fBi = f∧
i∈I Bi ;

(4) fA ⋄ fA = fA.

Proof. (1). It directly follows from (2) of Lemma 3.1.
(2). Let xλ ∈ β∗(LX). For any yµ ∈ β∗(LX) with yµ ≺

∨
i∈I fAi (xλ), there is an i ∈ I such that yµ ≺ fAi (xλ).

Thus there is a set B ≤ Ai such that yµ ≺ B ∈ C ∩ ψxλ (LX). Hence B ≤ Ai ≤
∨dir

i∈I Ai which implies that
yµ ≤ f∨dir

i∈I Ai
(xλ). Therefore

∨
i∈I fAi (xλ) ≤ f∨dir

i∈I Ai
(xλ).

Conversely, let zη ∈ β∗(LX) with zη ≺ f∨dir
i∈I Ai

(xλ). Then there is a set D ≤
∨dir

i∈I Ai such that zη ≺ D ∈
C ∩ ψxλ (LX). By (LCO4), it follows that zη ≺ D = co(D) =

∨
F∈F(D) co(F). Thus there is an F ∈ F(D) such that

zη ≺ co(F) ≤ D ≤
∨dir

i∈I Ai. So co(F) ∈ C ∩ ψxλ (LX) by (1) of Lemma 3.1. Further, since F ∈ F(D) ⊆ F(
∨dir

i∈I Ai) =⋃
i∈I F(Ai), there is an i ∈ I such that F ∈ F(Ai). Hence co(F) ≤ Ai and zη ≤ co(F) ≤ fAi (xλ) ≤

∨
i∈I fAi (xλ).

Therefore f∨dir
i∈I Ai

(xλ) ≤
∨

i∈I fAi (xλ).
Now,

∨
i∈I fAi (xλ) = f∨dir

i∈I Ai
(xλ) for any xλ ∈ β∗(LX). Thus

∨
i∈I fAi = f∨dir

i∈I Ai
.

(3). Let xλ ∈ β∗(LX) and let yµ ∈ β∗(LX) with yµ ≺
∧

i∈I fBi (xλ). Then yµ ≺ fBi (xλ) for any i ∈ I. Thus there
is a set Di ≤ Bi such that yµ ≺ Di ∈ C∩ψxλ (LX). Thus yµ ≤

∧
i∈I Di ∈ C∩ψxλ (LX) and

∧
i∈I Di ≤

∧
i∈I Bi. Hence

yµ ≤ f∧
i∈I Bi (xλ). Therefore

∧
i∈I fBi (xλ) ≤ f∧

i∈I Bi (xλ).
Conversely, let zη ∈ β∗(LX) with zη ≺ f∧

i∈I Bi (xλ). Then there is a set B ≤
∧

i∈I Bi such that zη ≺ B ∈ C ∩
ψxλ (LX). Thus B ≤ Bi and zη ≤ fBi (xλ) for any i ∈ I. Hence zη ≤

∧
i∈I fBi (xλ). Therefore f∧

i∈I Bi (xλ) ≤
∧

i∈I fBi (xλ).
So
∧

i∈I fBi (xλ) = f∧
i∈I Bi (xλ) for any xλ ∈ β∗(LX). That is,

∧
i∈I fBi = f∧

i∈I Bi .
(4). Clearly, fA⋄ fA ≤ fA. Suppose that fA ≰ fA⋄ fA. There is an xλ ∈ β∗(LX) such that fA(xλ) ≰ ( fA⋄ fA)(xλ).

Thus there is a zη ∈ β∗(LX) such that zη ≺ fA(xλ) and zη ≰ ( fA ⋄ fA)(xλ).
By zη ≰ ( fA ⋄ fA)(xλ), there is a yµ ∈ β∗(LX) such that fA(xλ) ∈ ψyµ (LX) and zη ≰ fA(yµ). Further, by

zη ≺ fA(xλ), there is a set B ≤ A such that zη ≺ B ≤ fA(xλ) and B ∈ C ∩ ψxλ (LX). Hence B ∈ C ∩ ψyµ (LX)
followed by zη ≤ B ≤ fA(yµ). It is a contradiction. So fA ≤ fA ⋄ fA must hold. Therefore fA ⋄ fA = fA.

Theorem 4.6. Let (X,C) be an L-convex space. Define a set

UC = { f ∈ R(LX) : ∃A ∈ C, ∀xλ ∈ β∗(LX), f (xλ) ≤ fA(xλ) ∈ C}.

ThenUC is an L-convex quasi-uniformity.

Proof. We prove thatUC satisfies (LCQU1)–(LCQU3).
(LCQU1). It is clear that ⊥ ∈ C and f0(xλ) = f⊥(xλ) = ⊥ ∈ C for any xλ ∈ β∗(LX). Thus f0 ∈ UC.
(LCQU2). If f ∈ UC, then there is a set A ∈ C such that f (xλ) ≤ fA(xλ) ∈ C for any xλ ∈ β∗(LX). Since

fA ∈ UC and fA ⋄ fA = fA by (4) of Lemma 4.5, we find that f ≤ fA ⋄ fA. Therefore (LCQU2) holds forUC.
(LCQU3). Let { fi}dir

i∈I ⊆ UC. For any i ∈ I, there is a set Ai ∈ C such that fi(xλ) ≤ fAi (xλ) ∈ C for any
xλ ∈ β∗(LX). For any i ∈ I, we denote

Ξi = {Di ∈ C : ∀xλ∈β∗(LX), fi(xλ)≤ fDi (xλ) ∈ C}.



X.Y. Wu, H.M. Zhang / Filomat 36:20 (2022), 6867–6883 6876

Then Ai ∈ Ξi and
∧

Di∈Ξi
Di ∈ C by (LC2). Also, by (3) of Lemma 4.5, for any xλ ∈ β∗(LX), it follows that

fi(xλ) ≤ f∧
Di∈Ξi

Di (xλ) =
∧

Di∈Ξi

fDi (xλ) ∈ C.

Since { fi}dir
i∈I ⊆ R(LX), the set {

∧
Di∈Ξi

Di}i∈I ⊆ C is also directed. Thus
∨dir

i∈I
∧

Di∈Ξi
Di ∈ C by (LC3). In addition,

by (2) of Lemma 4.5,

dir∨
i∈I

fi(xλ) ≤ f∨dir
i∈I
∧

Di∈Ξi
Di

(xλ) =
dir∨
i∈I

f∧
Di∈Ξi

Di (xλ) ∈ C.

Hence
∨dir

i∈I fi ∈ UC.

Corollary 4.7. For any L-convex space (X,C), the set B = { fA : A ∈ C, ∀xλ ∈ β∗(LX), fA(xλ) ∈ C} is an L-convex
quasi-uniform base ofUC.

Theorem 4.8. CUC = C for any L-convex space (X,C).

Proof. Let B ∈ CUC and let yµ ∈ β∗(LX) with coUC (B) = B ∈ ψyµ (LX). By (2) of Lemma 4.3, for any η ∈ β∗µ(L),
there is an f ∈ UC such that B ≤ f (yη). Further, by f ∈ UC, there is a set A ∈ C such that f (xλ) ≤ fA(xλ) ∈ C
for any xλ ∈ β∗(LX). In particular, B ≤ f (yη) ≤ fA(yη) ∈ C ∩ ψyη (LX). Thus

co(B) ≤ co( fA(yη)) = fA(yη) ∈ C ∩ ψyη (L
X).

Further, by the arbitrariness of η ∈ β∗µ(L) and (3) of Lemma 3.1, we have

co(B) ∈
⋂

η∈β∗µ(L)

ψyη (L
X) = ψyµ (LX).

Hence co(B) ≤ B by (5) of Lemma 3.1. So B = co(B) ∈ C. Therefore CUC ⊆ C.
Conversely, for any D ∈ C, it is clear that coUC (D) ∈ C by CUC ⊆ C. Also, by (3) of Lemma 4.3, for any

xλ ∈ β∗(LX), we have coUC ( fcoUC (D)(xλ)) ∈ ψxλ (LX). Further, by fcoUC (D)(xλ) ≤ coUC (D), it follows that

coUC ( fcoUC (D)(xλ)) ≤ coUC (coUC (D)) = coUC (D).

Thus coUC ( fcoUC (D)(xλ)) ≤ fcoUC (D)(xλ) and

fcoUC (D)(xλ) = coUC ( fcoUC (D)(xλ)) ∈ CUC ⊆ C.

Therefore fcoUC (D) ∈ UC.
To prove that D ∈ CUC , let xλ ∈ β∗(LX) with D ∈ ψxλ (LX). We have

D ≤ fcoUC (D)(xλ) = coUC ( fcoUC (D)(xλ))

and coUC (D) ≤ fcoUC (D)(xλ) ∈ ψxλ (LX). This implies coUC (D) ∈ ψxλ (LX). Thus coUC (D) ≤ D by (4) of Lemma
3.1. Hence D = coUC (D) ∈ CUC . Therefore C ⊆ CUC . In conclusion, CUC = C, as desired.

Example 4.9. Let X = {x} and L = {⊥, a, b,⊤} be the diamond lattice, where a and b are incomparable. Then
β∗(LX) = {xa, xb}.

(1) LetU = { f ∈ R(LX) : f ≤ f1}, where f1(xa) = xb and f1(xb) = xa. Since f1 ⋄ f1 = f1, it is easy to check
thatU is an L-convex quasi-uniformity on LX. In addition, CU = LX andU =UCU .

(2) LetC = {⊥, xa,⊤}. ThenC is an L-convexity on LX. Further, it is easy to check that fxa (xa) = f⊤(xa) = ⊥ ∈
C and fxa (xb) = f⊤(xb) = xa ∈ C. ThusUC = { f ∈ R(LX) : f ≤ f⊤} = { f0, f⊤} is an L-convex quasi-uniformity
on LX satisfying C = CUC .
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Remark 4.10. If an L-convex quasi-uniform space (X,U) is induced by an L-convex space (X,C) (i.e.,
U =UC), then it directly follows from Theorem 4.8 thatU =UCU . However, in general, given an L-convex
quasi-uniformity U on LX, it is possible that UCU , U. For example, let X = {x} and L = {⊥, a, b,⊤} be a
diamond lattice. Define two mappings f1, f2 : β∗(LX)→ LX by f1(xb) = xa, f2(xa) = xb and f1(xa) = f2(xb) = ⊥.
Then f1, f2 ∈ R(LX) satisfying f1 = f1 ⋄ f1 and f2 = f2 ⋄ f2. Thus the set U = { f0, f1, f2} is an L-convex
quasi-uniformity on LX. In addition, CU = LX and UCU = { f ∈ R(LX) : f ≤ f⊤} = { f0, f1, f2, f⊤}, where
f⊤ ∈ R(LX) satisfies f⊤(xa) = xb and f⊤(xb) = xa. Clearly,UCU ,U.

Now, we discuss relations between L-convex quasi-uniformities and L-convex β∗-remotehood systems.
For this, we first construct an L-convex β∗-remotehood system from an L-convex quasi-uniformity.

Theorem 4.11. Let (X,U) be an L-convex quasi-uniform space. For xλ ∈ β∗(LX), define a set

R̂
U

xλ = {A ∈ LX : ∀η ∈ β∗λ(L), ∃ f ∈ U, A ≤ f (xη)}.

Then R̂U = {R̂Uxλ : xλ ∈ β∗(LX)} is an L-convex β∗-remotehood system.

Proof. Let xλ ∈ β∗(LX) and A ∈ LX. Then A ∈ R̂Uxλ iff AU ∈ ψxλ (LX) by (2) of Lemma 4.3. Next, we prove that
R̂
U
xλ satisfies (LCBR1)–(LCBR3).

(LCBR1). It is clear that ⊥ ∈ R̂Uxλ since f0 ∈ U and ⊥ ≤ f0(xη) for any η ∈ β∗λ(L).
(LCBR2). Let A ∈ R̂Uxλ . For any η ∈ β∗λ(L), we have A ≤ AU ∈ ψxλ (LX) ⊆ ψxη (LX). Further, let yµ ∈ β∗(LX)

with AU ∈ ψyµ (LX). For any θ ∈ β∗µ(L), it is clear that

yθ ≰ AU = coU(A) = coU(coU(A)) = (AU)U .

Thus, by the definition of (AU)U , there is a 1 ∈ U such that AU ≤ 1(yθ). This implies that AU ∈ R̂Uyµ . Hence

the necessity of (LCBR2) holds for R̂Uxλ .
Assume that any η ∈ β∗λ(L) implies some Bη ∈ ψxη (LX) such that A ≤ Bη ∈ R̂Uyµ for any yµ ∈ β∗(LX) with

Bη ∈ ψyµ (LX). Let η ∈ β∗λ(L). Then Bη ∈ R̂Uxη by the assumption. Thus A ≤ Bη ≤ (Bη)U ∈ ψxη (LX). Further, let
B =
∧
η∈β∗λ(L) Bη. Then A ≤ B ≤ BU and

BU ≤
∧

η∈β∗λ(L)

(Bη)U ∈
⋂

η∈β∗λ(L)

ψxη (L
X) = ψxλ (LX).

This shows that AU ≤ BU ∈ ψxλ (LX) and AU ∈ ψxλ (LX). Hence A ∈ R̂Uxλ . Therefore the sufficiency of (LCBR2)
holds for R̂Uxλ .

(LCBR3). Let {Ai}
dir
i∈I ⊆ LX. By (5) of Lemma 4.3, it follows that

dir∨
i∈I

Ai ∈ R̂
U

xλ ⇔ (
dir∨
i∈I

Ai)U ∈ ψxλ (LX)

⇔

dir∨
i∈I

(Ai)U ∈ ψxλ (LX)

⇔ ∀i ∈ I, (Ai)U ∈ ψxλ (LX)

⇔ ∀i ∈ I, Ai ∈ R̂
U

xλ .

So (LCBR3) holds for R̂Uxλ .
Therefore R̂U is an L-convex β∗-remotehood system.

Theorem 4.12. Let (X,U) be an L-convex quasi-uniform space. Then CU = CR̂U and R̂U = R̂CU .
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Proof. Firstly, we check that CU = CR̂U .
If A ∈ CU then A = coU(A). For any xλ ∈ β∗(LX) with A ∈ ψxλ (LX), we have coU(A) = AU ∈ ψxλ (LX). Thus

A ∈ R̂Uxλ and A ∈ C
R̂U

. Therefore CU ⊆ CR̂U .
Conversely, let A ∈ C

R̂U
. Then A ∈ ψxλ (LX) implies A ∈ R̂Uxλ for all xλ ∈ β∗(LX). So A ∈ ψxλ (LX) implies

coU(A) = AU ∈ ψxλ (LX) for any xλ ∈ β∗(LX). Thus coU(A) ≤ A by (4) of Lemma 3.1. Hence coU(A) = A which
implies A ∈ CU . Therefore C

R̂U
⊆ CU . Therefore C

R̂U
= CU .

Next, to verify that R̂U = R̂CU , let xλ ∈ β∗(LX). We verify that R̂Uxλ = R̂
CU
xλ .

Let A ∈ LX. By (2) of Theorem 4.4, it follows that

A ∈ R̂CUxλ ⇔ ∃B ∈ CU ∩ ψxλ (LX), A ≤ B
⇔ ∃B ∈ CU , ∀η ∈ β∗λ(L), xη ≰ B = coU(B) ≥ A
⇒ ∃B ∈ CU , ∀η ∈ β∗λ(L), ∃ f ∈ U,A ≤ B ≤ f (xη)
⇒ ∀η ∈ β∗λ(L), ∃ f ∈ U, A ≤ f (xη)

⇔ A ∈ R̂Uxλ .

Thus R̂CUxλ ⊆ R̂
U
xλ .

Conversely, let A ∈ R̂Uxλ . For any η ∈ β∗λ(L), there is an fη ∈ U such that A ≤ fη(xη) ∈ ψxη (LX).
Thus A ≤

∧
η∈β∗λ(L) fη(xη) ∈ ψxλ (LX). Hence A ∈ ψxλ (LX) and coU(A) = AU ∈ ψxλ (LX). This implies that

A ≤ coU(A) ∈ CU ∩ ψxλ (LX). So A ∈ R̂CUxλ . Therefore R̂Uxλ ⊆ R̂
CU
xλ .

Also, an L-convex quasi-uniformity can be directly constructed from an L-convex β∗-remotehood system.

Theorem 4.13. Let (X, R̂) be an L-convex β∗-remotehood space. Define a set

U
R̂
= { f ∈ R(LX) : ∀xλ ∈ β∗(LX), ∃B ∈ R̂xλ , f (xλ) ≤ B}.

ThenU
R̂

is an L-convex quasi-uniformity satisfyingU
R̂
=UC

R̂
and R̂U

R̂
= R̂.

Proof. By Theorems 3.4 and 4.6, UC
R̂

is an L-convex quasi-uniformity. To prove that U
R̂

is an L-convex
quasi-uniformity, it is sufficient to prove thatU

R̂
=UC

R̂
.

Let f ∈ U
R̂

. Then any xλ ∈ β∗(LX) implies a set B ∈ R̂xλ such that f (xλ) ≤ B. Further, by B ∈ R̂xλ

and (LCBR2), any η ∈ β∗λ(L) implies some Eη ∈ ψxη (LX) such that B ≤ Eη ∈ R̂yµ for any yµ ∈ β∗(LX) with
Eη ∈ ψyµ (LX).

Let E =
∧
η∈β∗λ(L) Eη. By (3) of Lemma 3.1, it follows that

B ≤ E =
∧

η∈β∗λ(L)

Eη ∈
⋂

η∈β∗λ(L)

ψxη (L
X) = ψxλ (LX).

Further, to prove that E ∈ C
R̂

, let yµ ∈ β∗(LX) with E ∈ ψyµ (LX). It is sufficient to prove that E ∈ R̂yµ .
For any θ ∈ β∗µ(L), it is clear that yθ ≰ E. Then there is an η ∈ β∗λ(L) such that yθ ≰ Eη. Thus Eη ∈ ψyθ (LX)

followed by E ≤ Eη ∈ R̂yθ . So E ∈ R̂yθ by (1) of Lemma 3.3 and E ∈
⋂
θ∈β∗µ(L) R̂yθ = R̂yµ by (2) of Lemma 3.3.

Therefore E ∈ C
R̂

.
Now, we obtain that E ∈ C

R̂
∩ ψxλ for any xλ ∈ β∗(LX). This implies that f (xλ) ≤ fE(xλ) = E ∈ C

R̂
for any

xλ ∈ β∗(LX). Thus f ∈ UC
R̂
. ThereforeU

R̂
⊆ UC

R̂
.

Conversely, let f ∈ UC
R̂
. Then there is a set A ∈ C

R̂
such that f (xλ) ≤ fA(xλ) ∈ C

R̂
for any xλ ∈ β∗(LX).

Notice that fA(xλ) ∈ ψxλ (LX) by (1) of Lemma 4.5. Thus fA(xλ) ∈ C
R̂

implies that fA(xλ) ∈ R̂xλ . Hence f ∈ U
R̂

.
ThereforeUC

R̂
⊆ U

R̂
.

In conclusion,U
R̂
=UC

R̂
. That is,U

R̂
is an L-convex quasi-uniformity on LX.

To prove that R̂U
R̂
= R̂, we need to prove that R̂UR̂xλ = R̂xλ for any xλ ∈ β∗(LX).
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Let A ∈ R̂UR̂xλ . Then, for any η ∈ β∗λ(L), there is an f ∈ U
R̂

such that A ≤ f (xη). Further, by f ∈ U
R̂

and
xη ∈ β∗(LX), there is a set Bη ∈ R̂xη such that f (xη) ≤ Bη. Thus A ≤ f (xη) ≤ Bη ∈ R̂xη which implies that

A ∈ R̂xη . Hence A ∈
⋂
η∈β∗λ(L) R̂xη = R̂xλ . Therefore R̂UR̂xλ ⊆ R̂xλ .

Conversely, let A ∈ R̂xλ . By (LCBR2), any θ ∈ β∗λ(L) implies a set Bθ ∈ ψxθ (LX) such that A ≤ Bθ ∈ R̂yµ for
any yµ ∈ β∗(LX) with Bθ ∈ ψyµ (LX).

Let E =
∧
θ∈β∗λ(L) Bθ. By the proof of Theorem 4.13, we have E ∈ C

R̂
∩ψxλ (LX). Define an L-fuzzy β∗-remote

mapping fxλ : β∗(LX)→ LX by: for any yµ ∈ β∗(LX),

fxλ (yµ) =
{

E, yµ ≥ xλ,
⊥, otherwise.

Then fxλ ∈ UR̂. In addition, for any η ∈ β∗λ(L), it holds that A ≤ E = fxλ (xη) and

A ≤ E ∈ C
R̂
∩ ψxλ (LX) ⊆ C

R̂
∩ ψxη (L

X).

Thus A ∈ R̂UR̂xλ . Therefore R̂xλ ⊆ R̂
U
R̂

xλ .

In conclusion, R̂UR̂xλ = R̂xλ for any xλ ∈ β∗(LX). That is, R̂U
R̂
= R̂.

5. L-convex quasi-uniform preserving mappings

In this section, we introduce L-convex quasi-uniform preserving mappings, by which, we form the
category of L-convex quasi-uniform spaces. We show that the category of L-convex spaces and the category
of L-convex β∗-remotehood spaces can be embedded into the category of L-convex quasi-uniform spaces.

Lemma 5.1. For a mapping φ : X→ Y, define (φ←L )∗ : R(LY)→ (LX)β
∗(LX) by

(φ←L )∗( f )(xλ) = (φ←L ◦ f ◦ φ→L )(xλ)

for all f ∈ R(LY) and xλ ∈ β∗(LX). The following statements are valid.
(1) (φ←L )∗( f ) ∈ R(LX) for any f ∈ R(LY);
(2) (φ←L )∗(1) ≤ (φ←L )∗(h) ⋄ (φ←L )∗(h) for all f , 1 ∈ R(LY) with 1 ≤ h ⋄ h.

Proof. (1). It is direct.
(2). Let xλ ∈ β∗(LX). For any zη ∈ β∗(LX) with zη ≰ [(φ←L )∗(h) ⋄ (φ←L )∗(h)](xλ), there is a yµ ∈ β∗(LX) such

that (φ←L )∗(h)(xλ) ∈ ψyµ (LX) and zη ≰ (φ←L )∗(h)(yµ). By (φ←L )∗(h)(xλ) ∈ ψyµ (LX), it is clear that yθ ≰ (φ←L )∗(h)(xλ)
for any θ ∈ β∗λ(L). Thus φ→L (yθ) ≰ h(φ→L (xλ)). Hence h(φ→L (xλ)) ∈ ψφ→L (yµ)(LY). Also, by zη ≰ (φ←L )∗(h)(yµ), it
follows that φ→L (zη) ≰ h(φ→L (yµ)) and

φ→L (zη) ≰ (h ⋄ h)(φ→L (xλ)) ≥ 1(φ→L (xλ)).

So zη ≰ (φ←L )∗(1)(xλ). Therefore

(φ←L )∗(1)(xλ) ≤ [(φ←L )∗(h) ⋄ (φ←L )∗(h)](xλ).

By the arbitrariness of xλ ∈ β∗(LX), it concludes that (φ←L )∗(1) ≤ (φ←L )∗(h) ⋄ (φ←L )∗(h).

Theorem 5.2. Let (Y,UY) be an L-convex quasi-uniform space and φ : X→ Y be a mapping. The set

φ←L (UY) = { f ∈ R(LX) : ∃1 ∈ UY, f ≤ (φ←L )∗(1)}

is an L-convex quasi-uniformity on LX.
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Proof. (LCQU1). Let ( f0)X be the smallest element inR(LX) and ( f0)Y be the smallest element inR(LY). Since
( f0)Y ∈ UY by (LCQU1) and φ←L (( f0)Y) = ( f0)X, it is clear that ( f0)X ∈ φ←L (UY).

(LCQU2). If f ∈ φ←L (UY), then there is a 1 ∈ UY such that f ≤ (φ←L )∗(1). By 1 ∈ UY, there is an h ∈ UY
such that 1 ≤ h ⋄ h. By (2) of Lemma 5.1, it is clear that

f ≤ (φ←L )∗(1) ≤ (φ←L )∗(h) ⋄ (φ←L )∗(h)

Since (φ←L )∗(h) ∈ (φ←L )∗(UY), (LCQU2) holds for (φ←L )∗(UY).
(LCQU3). Let { fi}dir

i∈I ⊆ φ
←

L (UY). For any i ∈ I, there is an hi ∈ UY such that fi ≤ (φ←L )∗(hi). Let

Ψi = {hi ∈ UY : fi ≤ (φ←L )∗(hi)}.

For any xλ ∈ β∗(LX), we have

fi(xλ) ≤
∧

hi∈Ψi

((φ←L )∗(hi))(xλ) = φ←L (
∧

hi∈Ψi

hi(φ→L (xλ))) = (φ←L )∗(
∧

hi∈Ψi

hi)(xλ).

So fi ≤ (φ←L )∗(
∧

hi∈Ψi
hi). Since { fi}dir

i∈I ∈ φ
←

L (UY), the set {
∧

hi∈Ψi
hi} ⊆ UY is also directed. Hence

∨dir
i∈I
∧

hi∈Ψi
hi ∈

UY and
dir∨
i∈I

fi ≤
dir∨
i∈I

(φ←L )∗(
∧

hi∈Ψi

hi) = φ←L ◦ (
dir∨
i∈I

∧
hi∈Ψi

hi) ◦ φ→L = (φ←L )∗(
dir∨
i∈I

∧
hi∈Ψi

hi).

Therefore
∨dir

i∈I fi ∈ φ←L (UY).
So φ←L (UY) is an L-convex quasi-uniformity.

Theorem 5.3. Cφ←L (UY) = φ←L (CUY ) for any L-convex quasi-uniform space (Y,UY) and any φ : X→ Y.

Proof. If A ∈ Cφ←L (UY), then A = Aφ←L (UY). To prove that A ∈ φ←L (CUY ), let xλ ∈ β∗(LX) with A ∈ ψxλ (LX). Then
φ→L (A) ∈ ψφ→L (xλ)(LY) and Aφ←L (UY) ∈ ψxλ (LX). It follows from (2) of Lemma 4.3 that any η ∈ β∗λ(L) implies an
f ∈ φ←L (UY) such that A ≤ f (xη). Further, since f ∈ φ←L (UY), there is a 1 ∈ UY such that f ≤ (φ←L )∗(1). Thus
A ≤ (φ←L )∗(1)(xη) followed by φ→L (A) ≤ 1(φ→L (xη)). Hence φ→L (A)UY ∈ ψφ→L (xλ)(LY). So φ→L (A)UY ≤ φ

→

L (A) by
(4) of Lemma 3.3. Therefore φ→L (A) ∈ CUY and φ←L (φ→L (A)) ∈ φ←L (CUY ).

Since φ→L (A)UY ∈ ψφ→L (xλ)(LY), it follows that φ←L (φ→L (A)UY ) ∈ ψxλ (LY). Thus φ←L (φ→L (A)UY ) ≤ A by (4) of
Lemma 3.3. This implies that A = φ←L (φ→L (A)UY ) ∈ φ←L (CUY ). Therefore Cφ←L (UY) ⊆ φ←L (CUY ).

Conversely, if A ∈ φ←L (CUY ), then φ→L (A) ∈ CUY . To prove that A ∈ Cφ←L (UY), let xλ ∈ β∗(LX) with
A ∈ ψxλ (LX). Then φ→L (A) ∈ ψφ→L (xλ)(LY) and

φ→L (A)UY = coCUY
(φ→L (A)) = φ→L (A) ∈ ψφ→L (xλ)(LY).

It follows from (2) of Lemma 4.3 that any η ∈ β∗λ(L) implies some 1 ∈ UY such that φ→L (A) ≤ 1(φ→L (xη)). Thus
A ≤ (φ←L )∗(1)(xη). Notice that (φ←L )∗(1) ∈ φ←L (UY). It follows from (2) of Lemma 4.3 that

coφ←L (UY)(A) = Aφ←L (UY) ∈ ψxλ (LX).

Further, it follows from (4) of Lemma 3.3 that Aφ←L (UY) ≤ A. Hence A = Aφ←L (UY) ∈ Cφ←L (UY). As a result,
φ←L (CUY ) ⊆ Cφ←L (UY). Therefore Cφ←L (UY) = φ←L (CUY ).

Next, we introduce the notion of L-convex quasi-uniform preserving mapping.

Definition 5.4. Let (X,UX) and (Y,UY) be L-convex quasi-uniform spaces. A mapping φ : X → Y is
called an L-convex quasi-uniformity preserving mapping, if any 1 ∈ UY implies some f ∈ UX such that
1(φ→L (xλ)) ∈ ψφ→L (yµ)(LY) for all xλ, yµ ∈ β∗(LX) with f (xλ) ∈ ψyµ (LX).

The category of L-convex quasi-uniform spaces and L-convex quasi-uniformitity preserving mappings
is denoted by L-CQUS.
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Theorem 5.5. Let (X,UX) and (Y,UY) be L-convex quasi-uniform spaces. For a mapping φ : X→ Y, the following
results are equivalent.

(1) φ is an L-convex quasi-uniform preserving mapping.
(2) For any 1 ∈ UY, there is an f ∈ UX such that (φ←L )∗(1) ≤ f .
(3) (φ←L )∗(Φ) ⊆ UX for any L-convex quasi-uniform subbase Φ ofUY.
(4) (φ←L )∗(B) ⊆ UX for any L-convex quasi-uniform base B ofUY.
(5) (φ←L )∗(UY) ⊆ UX.

Proof. (1) ⇒ (2). Let 1 ∈ UY. Since φ is an L-convex quasi-uniformity preserving mapping, there is an
f ∈ UX such that 1(φ→L (xλ)) ∈ ψφ→L (yµ)(LY) for all xλ, yµ ∈ β∗(LX) with f (xλ) ∈ ψyµ (LX). To prove that
(φ←L )∗(1) ≤ f , let xλ, yη ∈ β∗(LX) with yη ≰ f (xλ), we next verify that yη ≰ (φ←L )∗(1)(xλ).

Since yη ≰ f (xλ), there is a µ ∈ β∗(η) such that yµ ≰ f (xλ). Thus f (xλ) ∈ ψyµ (LX) and 1(φ→L (xλ)) ∈
ψφ→L (yµ)(LY). Hence φ→L (yη) ≰ 1(φ→L (xλ)) which implies that yη ≰ (φ←L )∗(1)(xλ). So (φ←L )∗(1)(xλ) ≤ f (xλ).
Therefore (φ←L )∗(1) ≤ f .

(2)⇒ (3). It directly follows from (LCQU2).
(3)⇒ (4). It is clear since an L-convex quasi-uniform base is an L-convex quasi-uniform subbase.
(4)⇒ (5). For any 1 ∈ UY, there is an h ∈ B such that 1 ≤ h. Then (φ←L )∗(1) ≤ (φ←L )∗(h) ∈ UX followed by

(φ←L )∗(1) ∈ UX. Thus (φ←L )∗(UY) ⊆ UX.
(5) ⇒ (1). If 1 ∈ UY, then (φ←L )∗(1) ∈ (φ←L )∗(UY) ⊆ UX. By (LCQU2), there is an f ∈ UX such that

(φ←L )∗(1) ≤ f ⋄ f ≤ f .
For all xλ, yµ ∈ β∗(LX) with f (xλ) ∈ ψyµ (LX), it is clear that (φ←L )∗(1) ∈ ψyµ (LX). Thus 1(φ→L (xλ)) ∈

ψφ→L (yµ)(LY). Therefore φ is an L-convex quasi-uniformity preserving mapping.

Theorem 5.6. Let (X,UX) and (Y,UY) be L-convex quasi-uniform spaces. If φ : X → Y is an L-convex quasi-
uniformity preserving mapping, then φ : (X,CUX )→ (Y,CUY ) is an L-convexity preserving mapping.

Proof. Let B ∈ CUY . To prove that φ←L (B) ∈ CUX , let xλ ∈ β∗(LX) with φ←L (B) ∈ ψxλ (LX). Then coCUY
(B) = B ∈

ψφ→L (xλ)(LY). It follows from (2) of Lemma 4.3 that any η ∈ β∗λ(L) implies some 1 ∈ UY such that B ≤ 1(φ→L (xη)).
Thusφ←L (B) ≤ (φ←L )∗(1)(xη). By (2) of Theorem 5.5, there is an f ∈ UX such thatφ←L (B) ≤ (φ←L )∗(1)(xη) ≤ f (xη).

We say that coCUX
(φ←L (B)) ∈ ψxλ (LX). Otherwise, coCUX

(φ←L (B)) < ψxλ (LX). It follows from (2) of Lemma
4.3 that there is an η ∈ β∗λ(L) such that φ←L (B) ≰ h(xη) for any h ∈ UX. In particular, φ←L (B) ≰ f (xη). It
is a contradiction. Thus coCUX

(φ←L (B)) ∈ ψxλ (LX). Hence φ←L (B) = coCUX
(φ←L (B)) ∈ CUX . Therefore φ is an

L-convexity preserving mapping.

Lemma 5.7. Let (X,CX) and (Y,CY) be L-convex spaces. If φ : X → Y is an L-convexity preserving mapping, then
(φ←L )∗( fA) = fφ←L (A) for any A ∈ CY.

Proof. Let xλ ∈ β∗(LX). For any D ∈ CY ∩ ψφ→L (xλ)(LY) with D ≤ A, we have φ←L (D) ∈ CX ∩ ψxλ (LX) and
φ←L (D) ≤ φ←L (A) ∈ CX. Thus

(φ←L )∗( fA)(xλ) = φ←L ( fA(φ→L (xλ)))

=
∨
{φ←L (D) : D ∈ CY ∩ ψφ→L (xλ)(LY),D ≤ A}

≤

∨
{G : G ∈ CX ∩ ψxλ (LX),G ≤ φ←L (A)}

= fφ←L (A)(xλ).

Conversely, let E ∈ CX ∩ ψxλ (LX) with E ≤ φ←L (A). Then φ→L (E) ≤ A and φ→L (E) ∈ ψφ→L (xλ)(LY). Also,
coUCY

(φ→L (E)) = coCY (φ→L (E)) ≤ A by Theorem 4.8.
Let zθ ∈ β∗(E). Then φ→L (zθ) ≤ φ→L (E) ∈ ψφ→L (xλ)(LX) which implies φ→L (zθ) ∈ ψφ→L (xλ)(LX). Define a

mapping fφ→L (zθ) : β∗(LY)→ LY by for any yµ ∈ β∗(LY),

fφ→L (zθ)(yµ) =
{
φ→L (zθ), yµ ≥ φ→L (xλ),
⊥, otherwise.
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It is clear that fφ→L (zθ) ∈ R(LY) and fφ→L (zθ)(φ→L (xλ)) ∈ ψφ→L (xλ)(LY). Further, it follows from Theorem 4.8 and (3)
of Lemma 4.3 that

coCY (φ→L (zθ)) = coCY ( fφ→L (zθ)(φ→L (xλ)) = ( fφ→L (zθ)(φ→L (xλ)))UCY
∈ CY ∩ ψφ→L (xλ)(LY).

In addition, coCY (φ→L (zθ)) ≤ coCY (φ→L (E)) ≤ A. Thus coCY (φ→L (zθ)) ≤ fA(φ→L (xλ)) which implies that

zθ ≤ φ←L (coCY (φ→L (zθ))) ≤ φ←L ( fA(φ→L (xλ))) = (φ←L )∗( fA)(xλ).

Hence E =
∨

zθ∈β∗(E) zθ ≤ (φ←L )∗( fA)(xλ). Therefore

fφ←L (A)(xλ) =
∨
{E ∈ CX ∩ ψxλ (LX) : E ≤ φ←L (A)} ≤ (φ←L )∗( fA)(xλ).

In conclusion, fφ←L (A)(xλ) = (φ←L )∗( fA)(xλ) for any xλ ∈ β∗(LX). That is, fφ←L (A) = (φ←L )∗( fA), as desired.

Theorem 5.8. Let (X,CX) and (Y,CY) be L-convex spaces. If φ : X→ Y is an L-convexity preserving mapping, then
φ : (X,UCX )→ (Y,UCY ) is an L-convex quasi-uniformity preserving mapping.

Proof. Let 1 ∈ UCY . Then there is a set A ∈ CY such that 1(zη) ≤ fA(yµ) ∈ CY for any yµ ∈ β∗(LY). Thus
φ←L (A) ∈ CX and 1(φ→L (xλ)) ≤ fA(φ→L (xλ)) ∈ CY for any xλ ∈ β∗(LX). This implies that

fφ←L (A)(xλ) = (φ←L )∗(1)(xλ) ≤ φ←L ( fA(φ→L (xλ))) = (φ←L )∗( fA)(xλ) ∈ CX.

By this result and Lemma 5.7, it follows that (φ←L )∗( fA) = fφ←L (A) ∈ UCX .
For any yµ ∈ β∗(LX) with (φ←L )∗(1A)(xλ) ∈ ψyµ (LX), it follows that

1(φ→L (xλ)) = φ→L (φ←L (1(φ→L (xλ)))) = φ→L ((φ←L )∗(1A)(xλ)) ∈ ψφ→L (yµ)(LY).

So φ : (X,UCX )→ (Y,UCY ) is an L-convex quasi-uniformity preserving mapping.

Based on Theorems 4.6 and 5.8, we define a functorU : L-CS→ L-CQUS by

U((X,C)) = (X,UC), U( f ) = f .

Based on Theorem 4.8,U is an injective functor. Thus the category L-CS can be embedded as a subcategory
into the category of L-CQUS. Further, based on Theorem 3.10, the category L-CBRS can be embedded as a
subcategory into the category of L-CQUS.

6. Conclusions

We define a new remotehood space, namely L-convex β∗-remotehood space, which can be used to char-
acterize L-convex space and L-convex remotehood space. Further, we present the notion of β∗-remotehood
mappings, based on whose properties, we further introduce L-convex quasi-uniform space. We find that L-
convexities and L-convex quasi-uniformities are mutually induced. In addition, we prove that the category
of L-convex spaces and the category of L-convex β∗-remotehood spaces can be embedded into the category
L-convex quasi-uniform spaces as subcategories.

In [11], Shi defined pointwise quasi-uniformities by fuzzy remote mappings in fuzzy set theory. As we
can see, fuzzy remote mappings are different with L-fuzzy β∗-remote mappings. But they possess similar
properties. Thus, it may be worth to discuss relations between Shi’s quasi-uniformity and L-convex quasi-
uniformity. In addition, it may also be worth to consider how to characterize L-convex quasi-uniformities
by fuzzy proximities or fuzzy metrics.
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