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Abstract. In the present article, we are going to highlight the relation between different digraphs (cycles)
of finite commutative ring Zn for a natural number n, under the map (a, b) 7→ (a + b, ab). The algorithm,
which is used to perform the calculations, has been built in MATLAB R©.

1. Introduction

The association between graphs and rings, such as unitary Cayley graph and zero divisor graph, have
been studied for long time by variety of researchers. However, here we are following a different association,
presented by A. Lipkovski in [1]. In the present paper the finite commutative ringZn is chosen to work on.
In the ring of integers Z, the set of multiples of an integer n forms an ideal, usually denoted by nZ. The
ring Zn is the quotient ring of Zmodulo the ideal nZ, that is, Z/nZ � Zn.

We usually considerZn as consisting of 0, 1, . . . ,n−1 with addition and multiplication modulo n. When
there is no confusion, we will denote the element [a] in Zn by just a, and will consider the set of classes
{0, 1, . . . ,n − 1} as a set of numbers (residues) in Z.

Let n be a natural number. Define the mapping ϕ : Zn×Zn → Zn×Zn by ϕ(a, b) = (a + b, ab). Likely, this
mapping reflects the structure of Zn. Since Zn is finite, so one can interpret ϕ as finite digraph Gn = G(Zn)
with vertices Zn ×Zn and arrows defined by ϕ.

The characteristic of the residue class ring Zn , which contains n elements, is n. Therefore, if n is not a
prime, then Zn has zero divisors and Zn[x] is not a unique factorization ring (if ab = 0, a , 0, b , 0 , then
(x − a)(x − b) = x[x − (a + b)] are two distinct non-associated factorizations of x2

− (a + b)x + ab). However, if
Zn is a domain, then it must be a field. so that Zn[x] is a UFD.

Few graphs Gn = G(Zn) can be explicitly drawn as we can see in Figures 1, 2. One can notice some
interesting properties of those graphs, such as, degrees of vertices and presence of cycles.
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2. Basic Notations and Properties

2.1. Degrees and Vertices:

In this work, we consider the degrees of vertices in G(Zn). As usual, the outgoing (incoming) degree of
a vertex (a, b) is the number of arrows going out (coming in) this vertex. Since G is a function, so it is clear
that the outgoing degree of each vertex is one. One might ask what the incoming degree of the vertex (a, b)
is. As it was shown in [1], the incoming degree of (a, b) equals the number of different roots of x2

− ax + b.

Definition 2.1. Let G be any digraph. A walk of length k in G is a sequence of vertices v0, v1, ..., vk−1 of G such that
for each i = 1, 2, ..., k , the edge ei has tail vi−1 and head vi. A walk is closed if v0 = vk−1. A path in G is a walk in
which all the vertices are distinct.

Note that a cycle is a closed walk, where v0 = vk−1 and the vertices v0, v1, ..., vk−1 are distinct from each
other, thus the definition of length is still applicable.

In this article, the sequence

(a1, b1)→ (a2, b2)→ ...→ (ak, bk)

of arrows in G defines a cycle of length k (or k-cycle) if (ak + bk, akbk) = (a1, b1), and (ai + bi, aibi) , (a j, b j) for

all j ≤ i < k. In addition,
−→
Ck will refer to directed cycle with vertices 0, 1, ..., k − 1.

In the Figure 1, we notice that there are cycles of length one; this holds for the vertices (ai, 0) for all
1 ≤ i ≤ k. More precisely, there are exactly n cycles of length 1 in G(Zn).

2.2. Related Properties:

A homomorphism of G to H, is a mapping f : V(G) → V(H) from G to H, such that it preserves edges,
that is, if for any edge (u, v) of G,

(
f (u), f (v)

)
is an edge of H. We write simply G→ H.

If f is any homomorphism of G to H, then the digraph with vertices f (v), v ∈ V(G), and edges
f (v) f (w), vw ∈ E(G) is a homomorphic image of G. Note that f (G) is a subgraph of H, and that f : G→ f (G)
is a surjective homomorphism.

In particular, homomorphisms of G to H map paths in G to walks in H, and hence do not increase
distance (the minimum length of paths connecting two vertices).

Proposition 2.1. Let G and H be digraphs, and f : G→ H a homomorphism. If v1, v2, ..., vk−1 is a walk in G, then
f (v0), f (v1), ..., f (vk−1) is a walk in H, of the same length ([5]).

Corollary 2.1. A mapping f : V(
−→
Ck) → V(G) is a homomorphism of

−→
Ck to G if and only if f (1), f (2), ..., f (k) is a

cycle in G.

Observe that a set of vertices is independent in G if it contains no pair of adjacent vertices. In terms of
the associated partition, we have the following condition. A given digraph G satisfies G→

−→
Ck if and only if

the vertices of G can be partitioned into k independent sets S0,S1, ...,Sk−1 so that each edge of G goes from
Si to Si+1 for some i = 0, 1, ..., k − 1 (with addition modulo k).

Recalling that a cycle is a homomorphic image of a cycle, we can reformulate the last result as follows.

Corollary 2.2. A digraph G satisfies G→
−→
Ck if and only if the length of every closed walk in G is divisible by k.

3. Further Properties

Theorem 3.1. f = {([a]n, [a]m) ∈ Zn ×Zm | a ∈ Z} is a function f : Zn → Zm iff m | n.

Proof. See [3] page 89.
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Let m and k be relatively prime numbers, such that n = m · k,m < k. Define a map

h1 : Zn → Zm

that maps representatives 0 ≤ a < n inZn to (a mod m) inZm. Since m divides n, then h1 is a homomorphism.
Moreover, kerh1 = mZn < Zn, and | kerh1 |= k.

Similarly, the same holds for h2 : Zn → Zk.
Observe that mappings h1 and h2 induce mappings of corresponding graphs, which will be denoted

again by h1 and h2.
We will denote the longest cycle in the digraph G(Zn) by

−→
Cln , and all our discussion later will be based

on the construction of h1 and h2. Furthermore, we will refer to Zn, Zm and Zk as sets of natural numbers.

Proposition 3.1. Let
−→
Cln and

−→
Clm be two directed cycles in G(Zn) and G(Zm) respectively. If

−→
Cln 7→

−→
Clm then we have

that lm divides ln.

Proof. Suppose that
−→
Cln is a s-cycle; that is,

(a1, b1)→ (a2, b2)→ ...→ (as, bs).

Since h1 is a homomorphism, then

(h1(a1), h1(b1))→ (h1(a2), h1(b2))→ ...→ (h1(as), h1(bs))

is a cycle in G(Zm), and

(h1(a1), h1(b1)) = (h1(as + bs), h1(as.bs))
= (h1(as) + h1(bs), h1(as).h1(bs)) (1)

Since h1 connects k elements in Zn into every element a ∈ Zm, so that gives us two cases:

1. If (h1(a1), h1(b1)) = (h1(a2), h1(b2)). Then by (1), this process will be repeated for all (h1(ai), h1(bi)),
i = 2, ..., s . Thus lm = 1 and ln = s · lm.

2. If (h1(a1), h1(b1)) = (h1(a j), h1(b j)), for some 2 < j < s. Then (h1(ai), h1(bi)), i < j are all different. So
according to (1) ln = t · lm, for 1 ≤ t < s. Hence ln is divisible by lm.

If we suppose that α | β, α , 1 (α might equal to β), then it is not proved yet that the maps f1 and f2
send the longest cycle

−→
Cγ in G(Zn) to longest cycles

−→
Cα and

−→
C β in G(Zp) and G(Zq) respectively. Because the

cycles in G(Zp) and G(Zq) which are smaller than
−→
Cα and

−→
C β might have a pre-image which is a cycle with

length longer than the pre-image of
−→
Cα and

−→
C β themselves. For instance, in G(Z47) the longest cycle is

−→
C 12,

and in G(Z11) the longest cycle is
−→
C 6. While in G(Z517) the longest cycle is

−→
C 30. Because there is a cycle

−→
C 10

in G(Z47) that has a pre-image with
−→
C 6 in G(Z517); that is exactly a multiple of these two. The computer

calculations show that for n from 1 to 200 this exception case does not exist. However, if cycles
−→
C ε and

−→
Cθ

in G(Zp) and G(Zq) respectively are divisors of
−→
Cα and

−→
C β or they are loops, so the case like in G(Z517) can

not happen again. Therefore, 1 < ε < α, 1 < θ < β, and ε | α, θ | β is considered in the following results.

Proposition 3.2. The maps h1 and h2 send the longest directed cycle
−→
Cln to the longest directed cycles

−→
Clm , and

−→
Clk

respectively.

Proof. Suppose that
−→
C ln is the longest cycle in G(Zn) of length s. Since h1 is a homomorphism, then h1(

−→
C ln )

is a cycle in G(Zm) (by Corollary 1). According to Proposition 2, we have two cases:

1. If ln is equal to lm. Then, any other cycle
−→
C ld in G(Zm) of length ld, cannot be longer than lm, because

all cycles in the pre-image of this cycle will be longer than ln.
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2. If ln is greater than lm. Suppose that there is another cycle
−→
C ld in G(Zm) of length ld, such that

ln > ld > lm. In this case lk cannot be 1, where lk is the length of the longest cycle in G(Zk). (If lk = 1,
then ln must equal to lm). Since h1 is a homomorphism, then according to Corollary 1, any cycle in the
pre-image of the cycle

−→
C ld , let us say

−→
C lr has a length greater than or equal to ld. We know that the

length of
−→
C lr is a multiple of lk as well. So the cycle

−→
C lr terminates exactly at one of the multiples of ld

and lk. It is obvious that the least common multiple of ld and lk is greater than ln. Thus,
−→
C lr has length

longer than the longest cycle
−→
C ln , which is a contradiction. Hence the proof follows.

Corollary 3.1. All directed cycles
−→
Cp, for all primes p are incomparable, i.e.,

−→
Cp →

−→
Cq if and only if p = q.

In the following we will use the so-called Chinese Remainder Theorem:

Theorem 3.2. Let n1, . . . ,nr ∈ N be pairwise relatively prime numbers, i.e. gcd
(
ni,n j

)
= 1 for i , j. Let

n = n1 · · · · · nr. Then the map

ψ : Zn −→ Zn1 × · · · ×Znr , [x] 7→ ([x mod n1] , . . . , [x mod nr])

is an isomorphism of rings.

Proof. See e.g. [4].

Theorem 3.3. Let m, k ∈ N be relatively prime numbers, i.e., gcd(m, k) = 1. Let n = m · k. Then, the length of the
longest cycle

−→
Cln is the least common multiple of lm and lk, where lm and lk are the lengths of the longest cycles

−→
Clm

and
−→
Clk respectively.

Proof. We will use Theorem 1. and the argument below it. Consider that
−→
Cln is a s-cycle, that is

(a1, b1)→ (a2, b2)→ ...→ (as, bs).

Then, h1(
−→
Cln ) is a cycle in G(Zm). Similarly, h2(

−→
Cln ) is a cycle in G(Zk). So according to Propositions 2 and 3,

we have the following cases:

1. If (a1, b1) ∈ Zm ×Zm ⊂ G (Zn). Then, both h1 and h2 send (a1, b1) to the same vertex, so that the cycle
−→
Cln must terminate at the first multiple of lm and lk, because (a1, b1) is a unique original vertex of
(h1(a1), h1(b1)) and (h2(a1), h2(b1)).

2. If (a1, b1) < Zm ×Zm. Then, the map h1 sends the element t inZn to element t mod m inZm. Similarly,
the map h2 sends the element t in Zn to element t mod k in Zk. Since m and k are two different
modules, by Chinese Remainder Theorem, two different vertices (h1(a1), h1(b1)) and (h2(a1), h2(b1))
uniquely determine the original vertex (a1, b1). Thus the length of

−→
Cln terminates exactly at the first

multiple of the lengths of
−→
Clm and

−→
Clk . Hence the proof follows.

Theorem 3.4. Let p1, ..., pr ∈N be pairwise relatively prime numbers, i.e., gcd(pi, p j) = 1 for i , j. Let n = p1 · ... ·pr.
Then the longest cycle

−→
Cn in G(Zn) has a length ln = lcm(lp1 , lp2 , ..., lpr ), where lp1 , lp2 , ..., lpr are the lengths of the

longest cycles in G(Zp1 ), G(Zp2 ), ..., G(Zpr ) respectively.

Proof. The proof follows directly by Theorem 3 and the Chinese Remainder Theorem.

Proposition 3.3. The length of the longest cycle
−−→
Clpm can be either pm−1 or α · lp for some α > 1, where lp is the of the

length of the longest cycle
−→
Clp .
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Proof. Let p be a prime number, and m > 1 be any integer. The function h : Zpm → Zp which is defined by
h(a) = a mod p is a homomorphism, and kerh = pZpm < Zpm , where | kerh |= pm−1.

Suppose that

(a1, b1)→ (a2, b2)→ ...→ (as, bs)

is the longest cycle
−−→
Clpm in G(Zpm ). Therefore, if b1 ∈ kerh, then h(

−−→
Clpm ) will be (a, 0), a = h(a1) ∈ Zp. Since

then, lpm = pm−1 (because pm−1 is the number of elements in Zpm which are congruent to a mod p), where lpm

is the length of the cycle
−−→
Cpm .

If b1 < kerh, then a1 won’t be in kerh neither. Thus we have a cycle h(
−−→
Cpm ) with length more that 1. According

to theorem 3, we observe that the length of the cycle h(
−→
Clp ) divides lpm . Hence lpm = αlp for some α > 1.

Note that, at the moment there is no way to determine the value of α in the second case. For instance,
when n = 5, 5-cycle is the longest cycle in G(Z25). At the same time, 4-cycle is the longest cycle in G(Z5).
When n = 11, 30-cycle is the longest cycle in G(Z121). At the same time, 6-cycle is the longest cycle in G(Z11).

Let n ∈ N and n = pn1
1 pn2

2 ...p
n j

j be the decomposition of n into different primes. Then, according to
Theorem 2, Zn is isomorphic to Zpn1 ×Zpn2 × ... ×Zpnj .

Theorem 3.5. Let n ∈ N and n = pn1
1 pn2

2 ...p
nr
r be the decomposition of n into primes, such that pi , p j for i , j.

Then, the longest cycle
−→
Cn of G(Zn) has a length ln = lcm(lpn1

1
, lpn2

2
, ..., lpnr

r
), where lpn1

1
, lpn2

2
, ..., lpnr

r
are the lengths of

the longest cycles in G(Zpn1 ), G(Zpn2 ), ..., G(Zpnr ) respectively.

Proof. The proof comes by using Chinese Remainder Theorem, the preceding argument and Theorem 4.

4. Graphs and Computer Calculations

Table 1 presents the computer calculations for n from 1 to 100. Some notations are used, such as Serial
Number (S.NO), Longest cycle (L.C) and Number of cycles (NO.C). The calculations were performed on a
PC using the MATLAB R©

Here are two graphs G(Z5) and G(Z4). These graphs include 1-cycle, 2-cycle and 4-cycle. The compo-
nents of these graphs are different in their number and appearance.

Figure 1: G(Z5)
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Figure 2: G(Z4)
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S. NO L.C NO.C S. NO L.C NO.C S. NO L.C NO.C S. NO L.C NO.C
1 1 1 26 4 2 51 10 3 76 8 6
2 1 2 27 9 3 52 4 6 77 6 7
3 1 3 28 2 7 53 14 1 78 4 6
4 2 1 29 14 1 54 9 6 79 28 1
5 4 1 30 4 6 55 12 2 80 8 36
6 1 6 31 18 1 56 4 14 81 27 9
7 1 7 32 16 8 57 8 3 82 22 2
8 4 2 33 6 3 58 14 2 83 12 1
9 3 2 34 10 2 59 17 1 84 2 21

10 4 2 35 4 7 60 4 18 85 20 2
11 6 1 36 6 2 61 17 1 86 11 2
12 2 3 37 24 1 62 18 2 87 14 3
13 4 1 38 8 2 63 3 14 88 12 4
14 1 14 39 4 3 64 32 16 89 51 1
15 4 3 40 4 30 65 4 22 90 12 4
16 8 4 41 22 1 66 6 6 91 4 7
17 10 1 42 1 42 67 39 1 92 10 6
18 3 4 43 11 1 68 10 6 93 18 3
19 8 1 44 6 6 69 10 3 94 12 2
20 4 6 45 12 2 70 4 14 95 8 9
21 1 21 46 10 2 71 10 1 96 16 24
22 6 2 47 12 1 72 12 4 97 23 1
23 10 1 48 8 12 73 30 1 98 7 12
24 4 6 49 7 6 74 24 2 99 6 21
25 5 4 50 5 8 75 5 12 100 10 4

Table 1: The table of results
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