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Abstract. In this paper we present two different results in the theory of Cauchy-Stieltjes Kernel (CSK)
families. We firstly provide the construction of free Sheffer systems with the theory of CSK families. We
associate a free additive convolution semigroup of probability measures to any free Sheffer systems and
we prove that this is the only one that leads to an orthogonal free Sheffer systems. We also show that
the orthogonality of free Sheffer systems occurs if and only if the associated free additive convolution
semigroup of probability measures generates CSK families with quadratic variance function. Secondly,
we are interested in the study of boolean additive convolution. Based on the criteria of convergence for
a sequence of variance functions we give an approximation of elements of the CSK family generated by
the boolean Gaussian distribution and an approximation of elements of the CSK family generated by the
boolean Poisson distribution.

1. Introduction

The theory of natural exponential families has received a great deal of attention in the classical probability
and statistical literature and it remains a very interesting topic. This is in particular due to the fact that
the most common distribution belong either to natural exponential families or to general exponential
families. It is well known that the definition of a real natural exponential families is based on the kernel
(θ, x) 7−→ exp(θx). In the framework of free probability theory and in analogy with the theory of natural
exponential families, a theory of Cauchy-Stieltjes Kernel (CSK) families has been recently introduced, it is
based on the Cauchy-Stieltjes kernel 1/(1 − θx). The study of CSK families is initiated in [3] for compactly
supported probability measures ν and in [4] the authors have extended the results established in [3] to allow
probability measures with unbounded support. In the present paper we continue the study of CSK families.
In section 2, we provide the construction of free Sheffer system with the theory of CSK families. We associate
a free additive convolution semigroup of probability measures to any free Sheffer system and we prove that
this is the only one that leads to an orthogonal free Sheffer system. We also show that the orthogonality of
free Sheffer system occurs if and only if the associated free additive convolution semigroup of probability
measures generates CSK families with quadratic variance function. In section 3, we approximate elements
of the CSK family generated by the centered boolean Gaussian distribution and elements of the CSK family
generated by the boolean Poisson distribution. In the rest of this section, we recall a few features about
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CSK families. Our notations are the ones used in [5], [8],[10], [12] and [13].
Let ν be a non-degenerate probability measure with support bounded from above. Then

Mν(θ) =

∫
1

1 − θx
ν(dx) (1)

is defined for all θ ∈ [0, θ+) with 1/θ+ = max{0, sup supp(ν)}.
For θ ∈ [0, θ+), we set

P(θ,ν)(dx) =
1

Mν(θ)(1 − θx)
ν(dx).

The set
K+(ν) = {P(θ,ν)(dx);θ ∈ (0, θ+)}

is called the one-sided CSK family generated by ν.
Let kν(θ) =

∫
xP(θ,ν)(dx) denote the mean of P(θ,ν). According to [4, page 579-580] the map θ 7→ kν(θ) is

strictly increasing on (0, θ+), it is given by the formula

kν(θ) =
Mν(θ) − 1
θMν(θ)

. (2)

The image of (0, θ+) by kν is called the (one sided) domain of the mean of the family K+(ν), it is denoted
(m0(ν),m+(ν)). This leads to a parametrization of the family K+(ν) by the mean. In fact, denoting by ψν the
reciprocal of kν, and writing for m ∈ (m0(ν),m+(ν)), Q(m,ν)(dx) = P(ψν(m),ν)(dx), we have that

K+(ν) = {Q(m,ν)(dx); m ∈ (m0(ν),m+(ν))}.

Now let B = B(ν) = max{0, sup supp(ν)} = 1/θ+ ∈ [0,∞). It is shown in [4] that the bounds m0(ν) and m+(ν)
of the one-sided domain of means (m0(ν),m+(ν)) are given by

m0(ν) = lim
θ→0+

kν(θ) and m+(ν) = B − lim
z→B+

1
Gν(z)

,

where Gν(z) is the Cauchy transform of ν given by

Gν(z) =

∫
1

z − x
ν(dx). (3)

It is worth mentioning here that one may define the one-sided CSK family for a measure ν with support
bounded from below. This family is usually denoted K−(ν) and parameterized by θ such that θ− < θ < 0,
where θ− is either 1/A(ν) or −∞ with A = A(ν) = min{0, inf supp(ν)}. The domain of the means for K−(ν) is
the interval (m−(ν),m0(ν)) with m−(ν) = A − 1/Gν(A).
If ν has compact support, the natural domain for the parameter θ of the two-sided CSK family K (ν) =
K+(ν) ∪K−(ν) ∪ {ν} is θ− < θ < θ+.
We come now to the notions of variance and pseudo-variance functions. The variance function

m 7→ Vν(m) =

∫
(x −m)2Q(m,ν)(dx) (4)

is a fundamental concept both in the theory of natural exponential families and in the theory of CSK families
as presented in [3]. Unfortunately, if ν hasn’t a first moment which is for example the case for a 1/2-stable
law, all the distributions in the CSK family generated by ν have infinite variance. This fact has led the
authors in [4] to introduce a notion of pseudo-variance function defined by

Vν(m) = m
(

1
ψν(m)

−m
)
, (5)
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If m0(ν) =
∫

xdν is finite, then (see [4]) the pseudo-variance function is related to the variance function by

Vν(m)
m

=
Vν(m)

m −m0
. (6)

In particular,Vν = Vν when m0(ν) = 0.
The generating measure ν is uniquely determined by the pseudo-variance functionVν. In fact, if we set

z = z(m) = m +
Vν(m)

m
, (7)

then the Cauchy transform satisfies

Gν(z) =
m
Vν(m)

. (8)

Also the distribution Q(m,ν)(dx) may be written as Q(m,ν)(dx) = fν(x,m)ν(dx) with

fν(x,m) :=


Vν(m)

Vν(m)+m(m−x) , m , 0 ;
1, m = 0, Vν(0) , 0 ;
V′ν(0)
V′ν(0)−x , m = 0, Vν(0) = 0 .

(9)

To close this section we recall the effect on a CSK family of applying an affine transformation to the
generating measure. Consider the affine transformation ϕ : x 7−→ (x − λ)/β, where β , 0 and λ ∈ R and let
ϕ(ν) be the image of ν by ϕ. In other words, if X is a random variable with law ν, then ϕ(ν) is the law of
(X − λ)/β, or ϕ(ν) = D1/β(ν � δ−λ), where Dr(µ) denotes the dilation of measure µ by a number r , 0, that
is Dr(µ)(U) = µ(U/r). The point m0 is transformed to (m0 − λ)/β. In particular, if β < 0 the support of the
measure ϕ(ν) is bounded from below so that it generates the left-sided familyK−(ϕ(ν)). For m close enough
to (m0 − λ)/β, the pseudo-variance function is

Vϕ(ν)(m) =
m

β(mβ + λ)
Vν(βm + λ). (10)

In particular, if the variance function exists, then Vϕ(ν)(m) = 1
β2 Vν(βm + λ).

Note that using the special case where ϕ is the reflection ϕ(x) = −x, on can transform a right-sided CSK
family to a left-sided family. If ν has support bounded from above and its right-sided CSK family K+(ν)
has domain of means (m0,m+) and pseudo-variance functionVν(m), then ϕ(ν) generates the left-sided CSK
familyK−(ϕ(ν)) with domain of means (−m+,−m0) and pseudo-variance functionVϕ(ν)(m) = Vν(−m).

2. Free Sheffer systems

In this section, we associate a free additive convolution semigroup of probability measures to any free
Sheffer systems. We also characterize free Sheffer system based on orthogonality condition. We first recall
what we call free additive convolution semigroup of probability measures. Let ν be a probability measure
on R, and consider its Stieltjes transform Gν given by (3). It was proved in [7] that the inverse G−1

ν of Gν is
defined on a domain of the form

{z ∈ C : <z > c, |z| < M},

where c and M are two positive constants.
The R-transform of ν is defined in the same domain by

Rν(z) = G−1
ν (z) − 1/z.

The free additive convolution µ�ν of the probability measures µ, ν on Borel sets of the real line is a uniquely
defined probability measure µ � ν such that

Rµ�ν(z) = Rµ(z) + Rν(z)
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for all z in an appropriate domain (see [7, Sect. 5] for details).
A probability measure ν on the real line is �−infinitely divisible, if for each n ∈ N, there exists probability
measure µn on the real line such that

ν = µn � ..... � µn︸          ︷︷          ︸
n times

.

For α > 0, we denote by = ν�α the free convolution power of a probability measure ν, which is given by
Rν�α (z) = αRν(z). Convolution power of order α ∈ [1,∞) exists by [2, Sect. 2]. Convolution power of order
α > 0 exists for �-infinitely divisible laws.

In other words, if ν is �−infinitely divisible distribution, this means that there exists a free additive
convolution semigroup (ν�t)t≥0 of probability measures, characterized by the properties that ν�0 = δ0,
ν�t � ν�s = ν�t+s, ν�1 = ν and

Rν�t (z) = tRν(z). (11)

Now, we specify what we call free Sheffer system (see [1] for more details).

Definition 2.1. A polynomial set {Tn(x, t) : n ∈ N, t > 0} is called a semigroup-free Sheffer systems if it is defined
by a generating function of the form

H(x, t, z) =

+∞∑
n=0

Tn(x, t)zn =
1

1 + tu(z)Rν(u(z)) − xu(z)
, (12)

where z 7−→ u(z) can be expanded in a formal power series such that u(0) = 0, u′(0) = 1 and ν is an �-infinitely
divisible probability measure on R.

One sees via (11) that a free Sheffer systems is connected to a free additive convolution semigroup of
probability measures (ν�t)t>0. We are interested in finding the correspondence between such a free Sheffer
systems and the families of associated probability distributions.
Before presenting our results concerning free Sheffer systems, we introduce the following result given by
[4, Proposition 3.8] which lists properties of the R-transform that we need.

Proposition 2.2. Suppose Vν is a pseudo-variance function of the CSK family K+(ν) generated by a probability
measure ν with b = sup supp(ν) < ∞. Then

(i) Rν is strictly increasing on (0,Gν(b)).

(ii) For m ∈ (m0,m+)

Rν

(
m
Vν(m)

)
= m. (13)

(iii) lim
z↘0
Rν(z) = m0 ≥ −∞.

(iv) lim
z↘0

zRν(z) = 0. (The only new contribution is the case m0 = −∞).

Remark 2.3. According to [4, Corollary 3.9], the function m 7−→ m/Vν(m) is strictly increasing and smooth function
on (m0,m+). Furthermore, m/Vν(m) −→ 0 as m −→ m0.
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2.1. Construction of free Sheffer systems
We provide the construction of free Sheffer systems with the theory of CSK families. We associate a free

additive convolution semigroup of probability measures to any free Sheffer system. Let {ν�t : t ≥ 0} be a
family of centered compactly supported probability measures associated to a free Lévy process (Xt)t≥0. To
such a family of probability measures we associate a family of polynomials from the Taylor expansion of
the function fν�t (x,m) of the form (9). The following result provides the construction of free Sheffer systems
from a free additive convolution semigroup of probability measures. We will see that this is the unique one
leading to an orthogonal free Sheffer systems.

Theorem 2.4. Let n ∈ N and let {ν�t : t > 0} be a free additive convolution semigroup of non degenerate centered
probability measures with compact support generating a type of CSK familyK (ν). Define

Pn(x, t) =
1
n!

∂n

∂mn fν�t (x,m)
∣∣∣∣∣
m=0

. (14)

Then {Tn(x, t) = tnPn(x, t) : n ∈N, t > 0} form a semigroup-free Sheffer systems.

Proof. Using the same reasoning in [11, Proposition 2.1], one see that Pn(x, t) given by (14) are polynomials
in x of degree n. Hence, it is the same for Tn(x, t). From [11, Lemma 2.2], there exists r > 0 such that for all
z ∈] − r, r[,

+∞∑
n=0

Tn(x, t)zn = fν�t (x, tz) =
Vν�t (tz)

Vν�t (tz) + tz(tz − x)

On the other hand the effect on the pseudo-variance function of the free additive convolution power is
given by [4, Proposition 3.10]. More precisely, it was shown that for α > 0 and for m close enough to
m0(ν�α) = αm0(ν),

Vν�α (m) = αVν(m/α). (15)

This implies that
+∞∑
n=0

Tn(x, t)zn =
tVν(z)

tVν(z) + tz(tz − x)
.

That is
+∞∑
n=0

Tn(x, t)zn =
1

1 + tz2/Vν(z) − xz/Vν(z)
.

Hence equation (12) occurs with u(z) = z/Vν(z) and formula (13).

Next, we link all semigroup-free Sheffer systems to a unique free additive convolution semigroup of
probability measures following the classical orthogonality.

Theorem 2.5. Let {Sn(x, t) : n ∈ N, t > 0} be a semigroup-free Sheffer system. Then there exists a unique free
additive convolution semigroup of probability measures {ν�t, t > 0} such that {Sn(x, t) : n ∈N} is ν�t

−orthogonal.

Proof. By taking generating function in∫
R

Sn(x, t)Sp(x, t)ν�t(dx) = δnpcn,

(δnp = 1 when n = p and 0 for n , p) and setting n = 0 we obtain∫
R

1
1 + tu(z)Rν(u(z)) − xu(z)

ν�t(dx) = c0 = 1.
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This implies that
Gν�t (1/u(z) + tRν(u(z))) = u(z).

That is

(1/u(z) + tRν(u(z)))Gν�t (1/u(z) + tRν(u(z))) = 1 + tu(z)Rν(u(z)). (16)

Put y = 1/u(z) + tRν(u(z)). We have that y −→ ∞, when z −→ 0. This is due to the fact that u(0) = 0
and limz↘0 Rν(z) = m0(ν) = 0. This together with (16) implies that limy−→∞ yGν�t (y) = 1. According to [7,
Proposition 5.1], Gν�t (.) is indeed a Cauchy-Stieltjes transform. It characterizes of unique manner each ν�t

of {ν�t : t > 0}.

2.2. Characterization of free Sheffer systems
We prove that the orthogonality of the free Sheffer polynomials occurs if and only if the correspond-

ing semigroup of probability measures generates quadratic CSK families. We restrict our attention to
�−infinitely divisible probability measures. The following theorem shows an intrinsic construction of the
semigroup-free Sheffer systems.

Theorem 2.6. Consider {ν�t : t > 0} a free additive convolution semigroup of non degenerate centered probability
measures with compact support. For all t > 0 let a polynomial sequence {Sn(x, t) : n ∈ N} be ν�t

−orthogonal. Then
the following statements are equivalents:

(i) {Sn(x, t) : n ∈N} form a semigroup-free Sheffer systems.

(ii) There exists γ ∈ R\{0} such that Sn(x, t) = (γt)nPn(x, t) for all (n, t) ∈N× (0,+∞), where polynomials Pn(x, t)
are given by (14).

Proof. (i) ⇐ (ii) According to Theorem 2.4 the family {tnPn(x, t) : n ∈ N, t > 0} form a semigroup-free
Sheffer systems. We have that, for |z| small enough,

+∞∑
n=0

Sn(x, t)zn =

+∞∑
n=0

tnPn(x, t)(γz)n =
1

1 + tu(γz)Rν(u(γz)) − xu(γz)
.

For z′ = γz, we get the desired result in (i).
(i) ⇒ (ii) The desired result is obtained in the same spirit as [11, Theorem 3.5]. From [11, Lemma 2.2],

there exists r > 0 such that for all z ∈] − r, r[∫  +∞∑
n=0

Sn(x, t)zn

 ν�t(dx) =

+∞∑
n=0

zn
∫

Sn(x, t)ν�t(dx) =

∫
S0(x, t)ν�t(dx) = 1.

In addition, by writing the generating function of Sn(x, t) as in (12), we have∫ ∑
n∈N

Sn(x, t)zn

 ν�t(dx) =

∫
1

1 + u(z)Rν�t (u(z)) − xu(z)
ν�t(dx) =

1
u(z)

Gν�t (Rν�t (u(z)) + 1/u(z)).

Hence,

u(z) = Gν�t (Rν�t (u(z)) + 1/u(z)). (17)

Proceeding in a similar manner, we have∫ ∑
n∈N

Sn(x, t)S1(x, t)zn

 ν�t(dx) =

(∫
(S1(x, t))2ν�t(dx)

)
z. (18)
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It is well known (see [1]) that if {Sn(x, t) : n ∈ N} is a free Sheffer system then Sn(x, t) is a polynomial of
degree n in x and of degree n in t. Then α ∈ R\{0} and β ∈ R exists such that

S1(x, t) = αtx + β. (19)

Since ∫
S1(x, t)S0(x, t)ν�t(dx) =

∫
S1(x, t)ν�t(dx) = 0

and ν�t is a centered probability measure, then we obtain β = 0. In addition∫
(S1(x, t))2ν�t(dx) =

∫
(αt)2x2ν�t(dx) = α2t2Vν�t (0).

Furthermore, by using (17)-(19), we obtain(∫
(S1(x, t))2ν�t(dx)

)
z =

∫
1

1 + u(z)Rν�t (u(z)) − xu(z)
S1(x, t)ν�t(dx)

=

∫
αtx

Gν�t (Rν�t (u(z)) + 1/u(z))[Rν�t (u(z)) + 1/u(z) − x]
ν�t(dx)

=

∫
αtx

Mν�t

(
1

Rν�t (u(z))+1/u(z)

) [
1 − x

Rν�t (u(z))+1/u(z)

]ν�t(dx)

=

∫
αtxP(

1
R
ν�t (u(z))+1/u(z) ,ν

�t
)(dx)

= αtkν�t

(
1

Rν�t (u(z)) + 1/u(z)

)
.

We deduce that

α2t2Vν�t (0)z = αtkν�t

(
1

Rν�t (u(z)) + 1/u(z)

)
.

Therefore, with γ = αVν�t (0), we have

ψν�t (γtz) =
1

Rν�t (u(z)) + 1/u(z)
.

Finally, we obtain ∑
n∈N

Sn(x, t)zn =
1

Gν�t (1/ψν�t (γtz))[1/ψν�t (γtz) − x]
= fν�t (x, γtz).

This ends the proof of (ii).

Now, we provide the CSK -version of Pommeret’s results given in [16]. We give the characterization of free
Sheffer systems by classical orthogonality condition.

Theorem 2.7. Let ν be a non degenerate centered compactly supported and �-infinitely divisible probability measure.
Let {Sn(x, t) : n ∈ N, t > 0} be a semigroup-free Sheffer systems associated to ν. Then the ν�t

−orthogonality of the
semigroup-free Sheffer system occurs if and only ifK (ν) is a quadratic CSK family.

Proof. Assume that (Sn(x, t))n∈N are ν�t
−orthogonal. From Theorem 2.6, there exists γ ∈ R\{0} such that

Sn(x, t) = (γt)nPn(x, t) for all (n, t) ∈ N × (0,+∞), where polynomials Pn(x, t) are given by (14). To show that
the CSK family K (ν) is quadratic, we may fix t = 1. The remainder is easily obtained from [11, Theorem
3.2].
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Conversely, suppose that CSK family K (ν) is quadratic. From the formula of variance functions, under
power of free additive convolution, given by (15), it is easy to see that if the variance function Vν(.)
is quadratic, the variance function Vν�t (.) is also quadratic. Thus we content to show that polynomials
(Sn(x, 1))n∈N are ν−orthogonal. From the fact that {Sn(x, t) : n ∈N, t > 0} is a semigroup-free Seffer systems
associated to ν it is easy to see (according to Theorem 2.5) that u(z) = z/Vν(z), and

+∞∑
n=0

Sn(x, 1)zn =
1

1 + u(z)Rν(u(z)) − xu(z)
= fν(x, z). (20)

The ν−orthogonality of polynomials (Sn(x, 1))n∈N follows from [11, Theorem 3.2].

It is worth mentioning that the authors in [6] describe several operations that allow us to construct
additional variance functions from known ones. They construct a class of examples which exhausts all
cubic variance functions, and provide examples of polynomial variance functions of arbitrary degree.
They also relate CSK families with polynomial variance functions to generalized orthogonality. There is
a substantial literature on generalized orthogonality and finite-step recursions for polynomials. Reference
[6] introduce the following generalized orthogonality condition.

Definition 2.8. Fix d ∈ N and a probability measure ν with moments of all orders. We say that polynomials {Pn}

are (ν; d)-orthogonal if
∫

Pn(x)ν(dx) = 0 for all n ≥ 1, and∫
Pn(x)Pk(x)ν(dx) = 0 for all n ≥ 2 + (k − 1)d, k = 1, 2 . . . .

It is clear that for measures with infinite support, (ν; 1)-orthogonality is just the standard orthogonality.
For d = 2, we recover [9, Definition 3.1]. The concept of d-orthogonality introduced in [18] is different
as even for d = 1 it has no positivity requirements for the functional/measure. When d > 2, condition of
pseudo-orthogonality in [14, 15] is also different.

Basing on the notion of (ν; d)-orthogonality for a sequence of polynomials, authors in [6] gives the
generalization of [11, Theorem 3.2] to d > 1, see [6, Theorem 3.2] for more details.

Now, we state the characterization of free Sheffer systems by generalized orthogonality. We omit the
proof because it similar to the proof of Theorem 2.7.

Theorem 2.9. Let ν be a non degenerate centered compactly supported and �-infinitely divisible probability measure.
Let {Sn(x, t) : n ∈ N, t > 0} be a semigroup-free Sheffer systems associated to ν. Then the semigroup-free Sheffer
systems {Sn(x, t)} is (ν�t; d)−orthogonal if and only if the variance function of the CSK family K (ν) is a polynomial
function in the mean m of degree at most d + 1.

3. Approximations in CSK families

Our results in this section are related to boolean additive convolution of probability measures. We give
an approximation of elements of the CSK family generated by the centered boolean Gaussian distribution.
We also approximate elements of the CSK family generated by the boolean Poisson distribution. The
calculation of the limiting distributions is based on the corresponding variance functions. This is due to
a technical result using convergence of a sequence of variance functions. For completeness, we state the
following result:

Proposition 3.1. [3, Proposition 4.2] Suppose Vνn is a family of analytic functions which are variance functions
of a sequence of CSK families {K (νn) : n ≥ 1}. If Vνn −→ V uniformly in a (complex) neighborhood of m0 ∈ R
and V(m0) > 0, then there is δ > 0 such that V = Vν is a variance function of a CSK family K (ν), generated
by a probability measure ν parameterized by the mean m ∈ (m0 − δ,m0 + δ). Moreover, if a sequence of measures
µn ∈ K (νn) such that m1 =

∫
xµn(dx) ∈ (m0 − δ,m0 + δ) does not depends on n, then µn

n→+∞
−−−−−→ µ in distribution,

where µ ∈ K (ν) has the same mean
∫

xµ(dx) = m1.
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3.1. Boolean additive convolution.
For a probability measure ν on R, its Cauchy transform Gν is defined by (3). The boolean additive

convolution is determined by the K-transform Kν of ν which is defined as

Kν(z) = z −
1

Gν(z)
, for z ∈ C+. (21)

The function Kν is usually called self energy and it represent the analytic backbone of boolean additive
convolution. For two probabilities measures µ and ν, the boolean additive convolution µ] ν is determined
by

Kµ]ν(z) = Kµ(z) + Kν(z), for z ∈ C+, (22)

and µ ] ν is again a probability measure.
A probability measure ν on R is infinitely divisible in the boolean sense if for each n ∈ N, there exists a
probability measure νn on R such that

ν = νn ] ..... ] νn︸         ︷︷         ︸
n times

.

Note that all probability measure ν on R are ]-infinitely divisible, see [17, Theorem 3.6].
In [12], the author study boolean additive convolution from the perspective of CSK families. A formula is
given for pseudo-variance function (or variance function Vν in case of existence) under boolean additive
convolution power. In particular , it is shown in [12, Theorem 2.3] that if ν is a real probability measure
with m0 < +∞, then for α > 0 we have

Vν]α (m) = αVν(m/α) + m(m − αm0)(1/α − 1). (23)

In this section the aim is to give some approximations in CSK families.

3.2. Approximation of Boolean Gaussian CSK family.
According to [17], the centered Boolean Gaussian distribution µ0,σ2 with variance σ2 (or symmetric

Bernoulli distribution)

µ0,σ2 =
1
2

(δ−σ + δσ),

has a self energy or a Cauchy transform

Kµ0,σ2 (z) =
σ2

z
or Gµ0,σ2 (z) =

1
z − σ2/z

,

respectively. We have, for all θ ∈ (−1/σ, 1/σ)

Mµ0,σ2 (θ) =
1

1 − θ2σ2 and kµ0,σ2 (θ) = θσ2.

The inverse of the function kµ0,σ2 (.) is ψµ0,σ2 (m) = m/σ2 for all m ∈ (−σ, σ) = kµ0,σ2 ((−1/σ, 1/σ)). With m0 = 0,
the variance function of the CSK family generated by µ0,σ2 is

Vµ0,σ2 (m) = Vµ0,σ2 (m) = σ2
−m2.

The two sided CSK family generated by µ0,σ2 is given by

K (µ0,σ2 ) =
{
Q(m,µ0,σ2 )(dx) = µm,σ2 (dx) =

1
2σ

[(σ −m)δ−σ + (σ + m)δσ] : m ∈ (−σ, σ)
}
.

The familyK (µ0,σ2 ) consists of Boolean Gaussian distributions with mean m ∈ (−σ, σ). The following result
gives an approximation of elements of the CSK familyK (µ0,σ2 ).
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Theorem 3.2. Suppose the variance function Vν of a CSK family K (ν) is analytic and strictly positive in a neigh-
borhood of m0 = 0. Then there is δ > 0 such that if, for α > 0, L(Yα) ∈ K (να), with να = D1/α(ν]α), has mean
E(Yα) = m/

√
α with |m| < δ, then

√
αYα

α→+∞
−−−−−→ µm,σ2 in distribution,

where σ2 = Vν(0).

Proof. Since L(Yα) is in the CSK familyK (να) having variance function of the form

Vνα (m) = Vν(m)/α + (1/α − 1)m2,

then L(
√
αYα) is in the CSK family having variance function of the form

Vα(m) = Vν(m/
√
α) + (1/α − 1)m2.

We use Proposition 3.1 to the sequence of variance functions

Vα(m) α→+∞
−−−−−→ Vν(0) −m2.

From proposition 3.1, we deduce that there is δ > 0 such that if |m| < δ and E(Yα) = m/
√
α, then with

σ2 = Vν(0),
L(
√
αYα) α→+∞

−−−−−→ µm,σ2 ∈ K (µ0,σ2 ) in distribution.

3.3. Approximation of Boolean Poisson CSK family.

For N ∈N, s > 0 and 0 < λ < N, consider

µN = (1 −
λ
N

)δ0 +
λ
N
δs.

We have that for all θ ∈ (−∞, 1
s ),

MµN (θ) = 1 −
λ
N

+
λ/N

1 − θs
and kµN (θ) =

λs
N −Nθs + λθs

.

As the inverse of the function kµN (.), we have that for all m ∈ (0, s) = kµN ((−∞, 1
s )),

ψµN (m) =
λs −Nm

sm(λ −N)
.

Formula (5) implies that the pseudo-variance function of the two sided CSK familyK (µN) is

VµN (m) =
Nm2(m − s)
λs −Nm

.

With m0(µN) = λs/N, we see from (6) that the variance function of the two sided CSK familyK (µN) is

VµN (m) = m(s −m).

The CSK family generated by µN is given by

K (µN) =
{
Q(m,µN)(dx) =

s −m
s

δ0 +
m
s
δs : m ∈ (0, s)

}
.
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The boolean Poisson distribution π(s)
λ with jump size s and parameter λ (s, λ ≥ 0) is given by

π(s)
λ =

1
λ + 1

[δ0 + λδs(λ+1)].

We have for all θ ∈ (−∞, 1
s(λ+1) )

Mπ(s)
λ

(θ) =
1 − θs

1 − θs(1 + λ)
and kπ(s)

λ
(θ) =

λs
1 − θs

.

As the inverse of the function kπ(s)
λ

(.), we have that for all m ∈ (0, s(1 + λ)) = kπ(s)
λ

((−∞, 1
s(λ+1) )),

ψπ(s)
λ

(m) =
m − λs

sm
.

Formula (5) implies that the pseudo-variance function of the two sided CSK familyK (π(s)
λ ) is

Vπ(s)
λ

(m) =
m2(s(λ + 1) −m)

m − λs
.

With m0(π(s)
λ ) = λs, we see from (6) that the variance function of the two sided CSK familyK (π(s)

λ ) is

Vπ(s)
λ

(m) = m(s(λ + 1) −m).

The CSK family generated by π(s)
λ is given by

K (π(s)
λ ) =

{
Q(m,π(s)

λ )(dx) =
s(λ + 1) −m

(λ + 1)s
δ0 +

m(s(λ + 1) −m)
(λ + 1)s2 δs(λ+1) : m ∈ (0, s(λ + 1))

}
.

Theorem 3.3. For N ∈N, s > 0 and 0 < λ < N, let

µN = (1 −
λ
N

)δ0 +
λ
N
δs,

and consider the CSK family generated by µ]N
N , with mean m0(µ]N

N ) = λs and variance function Vµ]N
N

(.). We have
that

Q(m,µ]N
N )

N→+∞
−−−−−→ Q(m,π(s)

λ ), in distribution.

for all m in a neighborhood of m0 = λs. In particular we get the boolean Poisson limit theorem

µ]N
N

N→+∞
−−−−−→ π(s)

λ , in distribution.

Proof. We have that m0(µ]N
N ) = λs = m0(π(s)

λ ). There exists ε > 0 such that (m−(µ]N
N ),m+(µ]N

N ))∩(m−(π(s)
λ ),m+(π(s)

λ )) =
(λs − ε, λs + ε). For all m ∈ (λs − ε, λs + ε)∫

xQ(m,µ]N
N )(dx) = m =

∫
xQ(m,π(s)

λ )(dx).

Using variance functions and formula (23), we have for all m ∈ (λs − ε, λs + ε)

Vµ]N
N

(m) = NVµN (m/N) + m(m −Nm0(µN))(1/N − 1)

= m(s −m/N) + m(m − sλ)(1/N − 1)
N→+∞
−−−−−→ ms(λ + 1) −m2 = Vπ(s)

λ
(m).
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This together with Proposition 3.1 applied to the sequence of measure Q(µ]N
N ,m) gives that

Q(m,µ]N
N )

N→+∞
−−−−−→ Q(m,π(s)

λ ), in distribution,

for all m ∈ (λs − ε, λs + ε). In particular for m = λs we get the boolean Poisson limit theorem

µ]N
N

N→+∞
−−−−−→ π(s)

λ , in distribution.
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