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Abstract. The object of the present paper is to generalize W2-curvature tensor of para-Kenmotsu manifold
with the help of a new generalized (0,2) symmetric tensorZ introduced by Mantica and Suh [11]. Various
geometric properties of generalized W2-curvature tensor of para-Kenmotsu manifold have been studied. It
is shown that a generalized W2 φ-symmetric para-Kenmotsu manifold is an Einstein manifold.

1. Introduction

The W2 and E-tensor fields were introduced by G.P. Pokhariyal and R.S. Mishra [15] in 1970. They
studied these tensor fields and their relativistic significance in a Riemannian manifold. Further, in 1980,
G.P. Pokhariyal [14] carried out the study of these tensor fields in a Sasakian manifolds. Later on, in 1986,
properties of W2 and E-tensor fields were further explored by K. Matsumoto, S. Ianus and I. Mihai [12] on
P-Sasakian manifolds . The W2-curvature tensor has been studied by many other authors such as U.C. De
and A. Sarkar [7], A. Yildiz and U.C. De [21] and many others. The W2-curvature tensor is defined by [15]

W2(X,Y,U) = R(X,Y,U) +
1

n − 1
[1(X,U)QY − 1(Y,U)QX], (1)

where Q is a Ricci tensor of type (1,1), i.e., S(X,Y) = 1(QX,Y); S being the type (0,2) Ricci tensor. Afterwards
several researchers have carried out the study of W2-curvature tensor in a variety of directions such as
[13, 18, 19].

Several years ago, the notion of paracontact metric structures were introduced in [8]. Since the publi-
cation of [3–5, 22], paracontact metric manifolds have been studied by many authors in recent years. The
importance of para-Kenmotsu geometry, have been pointed out especially in the last years by several pa-
pers highlighting the exchanges with the theory of para-Kähler manifolds and its role in semi-Riemannian
geometry and mathematical physics [6, 9, 10, 17].

2020 Mathematics Subject Classification. Primary 53C15; 53C25
Keywords. W2-curvature tensor, para-Kenmotsu manifold, Einstein manifold, η-Einstein manifold, Generalized W2-curvature

tensor
Received: 23 February 2021; Revised: 10 July 2021; Accepted: 21 July 2021
Communicated by Mića S. Stanković
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In this paper, we consider the generalized W2-curvature tensor of para-Kenmotsu manifolds and study
some properties of generalized W2-curvature tensor. The organisation of the paper is as follows: After
preliminaries on para-Kenmotsu manifold in section 2, we briefly describe the generalized W2-curvature
tensor on a para-Kenmotsu manifold in section 3 and also study some properties of the generalized W2-
curvature tensor in a para-Kenmotsu manifold. In section 4, we prove that a generalized W2 semi-symmetric
para-Kenmotsu manifold is an η-Einstein manifold. Further in the section 5, we show that a generalized
W2 Ricci semi-symmetric para-Kenmotsu manifold is either an Einstein manifold or ψ = 0 on it. In the last
section, we prove that a generalized W2 φ-symmetric para-Kenmotsu manifold is an Einstein manifold.

2. Preliminaries

The notion of an almost para-contact manifold was introduced by I. Sato [16]. An n-dimensional
differentiable manifold Mn is said to have almost para-contact structure (φ, ξ, η), where φ is a tensor field of
type (1, 1), ξ is a vector field known as characteristic vector field and η is a 1-form satisfying the following
relations

φ2(X) = X − η(X)ξ, (2)

η(φX) = 0, (3)

φ(ξ) = 0 (4)

and

η(ξ) = 1. (5)

A differentiable manifold with an almost para-contact structure (φ, ξ, η) is called an almost para-contact
manifold. Further, if the manifold Mn has a semi-Riemannian metric 1 satisfying

η(X) = 1(X, ξ) (6)

and

1(φX, φY) = −1(X,Y) + η(X)η(Y), (7)

then the structure (φ, ξ, η, 1) satisfying conditions (2) to (7) is called an almost para-contact Riemannian
structure and the manifold Mn with such a structure is called an almost para-contact Riemannian manifold
[1, 16].

On a para-Kenmotsu manifold [2, 17], the following relations hold:

(∇Xφ)Y = 1(φX,Y)ξ − η(Y)φX, (8)

∇Xξ = X − η(X)ξ, (9)

(∇Xη)Y = 1(X,Y) − η(X)η(Y), (10)

η(R(X,Y,Z)) = 1(X,Z)η(Y) − 1(Y,Z)η(X), (11)

R(X,Y, ξ) = η(X)Y − η(Y)X, (12)

R(X, ξ,Y) = −R(ξ,X,Y) = 1(X,Y)ξ − η(Y)X, (13)

S(φX, φY) = −(n − 1)1(φX, φY), (14)

S(X, ξ) = −(n − 1)η(X), (15)

Qξ = −(n − 1)ξ, (16)
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r = −n(n − 1), (17)

for any vector fields X,Y,Z, where Q is the Ricci operator, i.e., 1(QX,Y) = S(X,Y), S is the Ricci tensor and r
is the scalar curvature.

In [2], Blaga has given an example of para-Kenmotsu manifold:

Example 2.1. [2] We consider the three dimensional manifold M3 = {(x, y, z) ∈ R3, z , 0}, where (x, y, z) are the
standard co-ordinates in R3. The vector fields

e1 :=
∂
∂x
, e2 :=

∂
∂y
, e3 := −

∂
∂z

are linearly independent at each point of the manifold.
Define

φ :=
∂
∂y
⊗ dx +

∂
∂x
⊗ dy, ξ := −

∂
∂z
, η := −dz,

1 := dx ⊗ dx − dy ⊗ dy + dz ⊗ dz.

Then it follows that

φe1 = e2, φe2 = e1, φe3 = 0,

η(e1) = 0, η(e2) = 0, η(e3) = 1.

Let ∇ be the Levi-Civita connetion with respect to metric 1. Then, we have

[e1, e2] = 0, [e2, e3] = 0, [e3, e1] = 0.

The Riemannian connection ∇ of the metric 1 is deduced from Koszul’s formula

21(∇XY,Z) = X(1(Y,Z)) + Y(1(Z,X)) − Z(1(X,Y))
− 1(X, [Y,Z]) + 1(Y, [Z,X]) + 1(Z, [X,Y]).

Then Koszul’s formula yields

∇e1 e1 = −e3, ∇e1 e2 = 0, ∇e1 e3 = e1,

∇e2 e1 = 0, ∇e2 e2 = e3, ∇e2 e3 = e2,

∇e3 e1 = e1, ∇e3 e2 = e2, ∇e3 e3 = 0.

These results show that the manifold satisfies

∇Xξ = X − η(X)ξ,

for ξ = e3. Hence, the manifold under consideration is para-Kenmotsu manifold of dimension three.

A para-Kenmotsu is said to be an η-Einstein manifold if its Ricci tensor S is of the form

S(X,Y) = a1(X,Y) + bη(X)η(Y), (18)

for any vector fields X,Y, where a and b are functions on Mn.
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3. Generalized W2-curvature tensor of a para-Kenmotsu manifold

In this section, we give a brief account of generalized W2-curvature tensor of a para-Kenmotsu manifold
and study various geometric properties of it.

Now we consider W2-curvature tensor field for the para-Kenmotsu manifold which is given by the
following relation

W2(X,Y,U) = R(X,Y,U) +
1

(n − 1)
[1(X,U)QY − 1(Y,U)QX]. (19)

Also, the (0, 4) type tensor field ′W2 is given by

′W2(X,Y,U,V) = ′R(X,Y,U,V) +
1

(n − 1)
[1(X,U)S(Y,V) − 1(Y,U)S(X,V)] (20)

where

′W2(X,Y,U,V) = 1(W2(X,Y,U),V)

and

′R(X,Y,U,V) = 1(R(X,Y,U),V)

for arbitrary vector fields X,Y,U,V.

Differentiating covariantly equation (19) with respect to V, we get

(∇VW2)(X,Y)U = (∇VR)(X,Y)U +
1

(n − 1)
[1(X,U)(∇VQ)Y − 1(Y,U)(∇VQ)X]. (21)

Divergence of W2-curvature tensor given by equation (19), is

(divW2)(X,Y)U = (divR)(X,Y)U +
1

(n − 1)
[1(X,U)(div(Q)Y) − 1(Y,U)(div(Q)X)]. (22)

But

(divR)(X,Y)U = (∇XS)(Y,U) − (∇YS)(X,U), (23)

By equations (22) and (23), gives

(divW2)(X,Y)U = [(∇XS)(Y,U) − (∇YS)(X,U)] +
1

(n − 1)
[1(X,U)(div(Q)Y) − 1(Y,U)(div(Q)X)]. (24)

A new generalized (0, 2) symmetric tensorZ is defined by Mantica and Suh [11]

Z(X,Y) = S(X,Y) + ψ1(X,Y), (25)

where ψ is an arbitrary scalar function.
From equation (25), we have

Z(φX, φY) = S(φX, φY) + ψ1(φX, φY), (26)

which, on using equations (7) and (14), gives

Z(φX, φY) = [ψ − (n − 1)][−1(X,Y) + η(X)η(Y)]. (27)
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From equation (20), we have

′W2(X,Y,U,V) = ′R(X,Y,U,V) +
1

(n − 1)
[1(X,U)S(Y,V) − 1(Y,U)S(X,V)]. (28)

In view of equation (25), the above equation reduces to

′W2(X,Y,U,V) = ′R(X,Y,U,V) +
1

(n − 1)
[Z(Y,V)1(X,U) −Z(X,V)1(Y,U)]

+
ψ

(n − 1)
[1(Y,U)1(X,V) − 1(Y,V)1(X,U)].

(29)

We now put

′W∗

2(X,Y,U,V) = ′R(X,Y,U,V) +
1

(n − 1)
[1(X,U)Z(Y,V) − 1(Y,U)Z(X,V)]. (30)

Then from the equation (29), we get

′W∗

2(X,Y,U,V) = ′W2(X,Y,U,V) −
ψ

(n − 1)
[1(X,V)1(Y,U) − 1(Y,V)1(X,U)]. (31)

The tensor field ′W∗

2 defined by equation (30) is called the generalized W2-curvature tensor of para-
Kenmotsu manifold.

Obviously if ψ=0, then from equation (31), we have

′W∗

2(X,Y,U,V) = ′W2(X,Y,U,V). (32)

Thus, we may write the following theorem.

Theorem 3.1. If the scalar function ψ vanishes on the para-Kenmotsu manifold, then the W2-curvature tensor and
generalized W2-curvature tensor coincide.

Theorem 3.2. Generalized W2-curvature tensor ′W∗

2 of a para-Kenmotsu manifold is

(a) skew symmetric in the first two slots,
(b) skew symmetric in the last two slots,
(c) symmetric in the pair of slots.

Proof: (a) From equation (31), we have

′W∗

2(Y,X,U,V) = ′W2(Y,X,U,V) −
ψ

(n − 1)
[1(X,U)1(Y,V) − 1(Y,U)1(X,V)]. (33)

Now adding equations (31) and (33) and using the fact that

′W2(X,Y,U,V) + ′W2(Y,X,U,V) = 0,

we get

′W∗

2(X,Y,U,V) = − ′W∗

2(Y,X,U,V),

which shows that the generalized W2-curvature tensor ′W∗

2 is skew symmetric in the first two slots.
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(b) Again, from equation (31), we have

′W∗

2(X,Y,V,U) = ′W2(X,Y,V,U) −
ψ

(n − 1)
[1(Y,V)1(X,U) − 1(X,V)1(Y,U)]. (34)

Now adding equations (31) and (34) and using the fact that

′W2(X,Y,U,V) + ′W2(X,Y,V,U) = 0,

we obtain

′W∗

2(X,Y,U,V) = − ′W∗

2(X,Y,V,U),

which shows that the generalized W2-curvature tensor ′W∗

2 is skew symmetric in the last two slots.

(c) From equation (31), interchanging pair of slots, we have

′W∗

2(U,V,X,Y) = ′W2(U,V,X,Y) −
ψ

(n − 1)
[1(U,Y)1(V,X) − 1(U,X)1(V,Y)]. (35)

In view of the fact that

′W2(X,Y,U,V) = ′W2(U,V,X,Y),

we get from equations (31) and (35)

′W∗

2(X,Y,U,V) = ′W∗

2(U,V,X,Y),

which shows that the generalized W2-curvature tensor ′W∗

2 is symmetric in pair of slots.

Theorem 3.3. Generalized W2-curvature tensor of a para-Kenmotsu manifold satisfies Bianchi’s first identity.

Proof: From equation (31), we have

W∗

2(X,Y,U) = W2(X,Y,U) −
ψ

(n − 1)
[1(Y,U)X − 1(X,U)Y)]. (36)

Writing two more equations by cyclic permutations of X,Y and U in the above equation, we get

W∗

2(Y,U,X) = W2(Y,U,X) −
ψ

(n − 1)
[1(U,X)Y − 1(Y,X)U)] (37)

and

W∗

2(U,X,Y) = W2(U,X,Y) −
ψ

(n − 1)
[1(X,Y)U − 1(U,Y)X)]. (38)

Adding equations (36), (37) and (38) and using the fact that

W2(X,Y,U) + W2(Y,U,X) + W2(U,X,Y) = 0,

we get

W∗

2(X,Y,U) + W∗

2(Y,U,X) + W∗

2(U,X,Y) = 0,

which shows that the generalized W2-curvature tensor of a para-Kenmotsu manifold satisfies Bianchi’s first
identity.
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Theorem 3.4. Generalized W2-curvature tensor of a para-Kenmotsu manifold satisfies the following identities:

(a) W∗

2(ξ,Y,U) = −W∗

2(Y, ξ,U) =

[
n − 1 + ψ

n − 1

]
η(U)Y +

1
(n − 1)

[η(U)QY − ψ1(Y,U)ξ] (39)

(b) W∗

2(X,Y, ξ) =

[
n − 1 + ψ

n − 1

]
[η(X)Y − η(Y)X] +

1
(n − 1)

[η(X)QY − η(Y)QX] (40)

(c) η(W∗

2(U,V,Y)) =
ψ

(n − 1)
[1(U,Y)η(V) − 1(V,Y)η(U)]. (41)

Proof: (a) Putting X = ξ in the equation (36), we have

W∗

2(ξ,Y,U) = W2(ξ,Y,U) −
ψ

(n − 1)
[1(Y,U)ξ − 1(ξ,U)Y],

which, on using equations (6), (13), (16), (19), yields the desired result.

(b) Again, putting U = ξ in the equation (36), we have

W∗

2(X,Y, ξ) = W2(X,Y, ξ) −
ψ

(n − 1)
[1(Y, ξ)X − 1(X, ξ)Y].

Now, using equations (6), (12), (19) in the above equation, we obtain the required result.

(c) Taking the inner product with ξ in equation (36), we have

η(W∗

2(U,V,Y)) = η(W2(U,V,Y)) −
ψ

(n − 1)
[1(V,Y)η(U) − 1(U,Y)η(V)],

which, on using equations (11), (16), (19), gives the desired result.

4. Generalized W2 semi-symmetric para-Kenmotsu manifold

Definition 4.1. A para-Kenmotsu manifold is said to be semi-symmetric if it satisfies the condition

R(X,Y) · R = 0, (42)

where R(X,Y) is considered as the derivation of the tensor algebra at each point of the manifold.

Definition 4.2. A para-Kenmotsu manifold is said to be generalized W2 semi-symmetric if it satisfies the condition

R(X,Y) ·W∗

2 = 0, (43)

where W∗

2 is the generalized W2-curvature tensor and R(X,Y) is considered as the derivation of the tensor algebra at
each point of the manifold.

Theorem 4.3. A generalized W2 semi-symmetric para-Kenmotsu manifold is an η-Einstein manifold.
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Proof: Consider (R(ξ,X) ·W∗

2)(U,V,Y) = 0,

for any vector fields X,Y,U,V, where W∗

2 is generalized W2-curvature tensor.
Then we have

0 = R(ξ,X,W∗

2(U,V,Y)) −W∗

2(R(ξ,X,U),V,Y) −W∗

2(U,R(ξ,X,V),Y) −W∗

2(U,V,R(ξ,X,Y)). (44)

In view of the equation (13), the above equation takes the form

0 = η(W∗

2(U,V,Y))X −′ W∗

2(U,V,Y,X)ξ − η(U)W∗

2(X,V,Y) + 1(X,U)W∗

2(ξ,V,Y)
− η(V)W∗

2(U,X,Y) + 1(X,V)W∗

2(U, ξ,Y) − η(Y)W∗

2(U,V,X) + 1(X,Y)W∗

2(U,V, ξ).

Taking the inner product of above equation with ξ and using equations (5), (16), (31), (39), (40) and (41), we
get

′W2(U,V,Y,X) = −
ψ

(n − 1)
[1(X,U)η(V)η(Y) − 1(X,V)η(U)η(Y)]

+

[
n − 1 + ψ

(n − 1)

]
1(X,U)η(V)η(Y) − 1(X,U)η(Y)η(V)

−

[
n − 1 + ψ

(n − 1)

]
1(X,V)η(U)η(Y) + 1(X,V)η(Y)η(U).

By virtue of equation (20), the above equation reduces to

′R(U,V,Y,X) = −
1

(n − 1)
[1(Y,U)S(X,V) − 1(Y,V)S(X,U)].

Let {ei : i = 1, 2, ...,n} be an orthonormal basis with ∇ei e j = 0. Putting X = U = ei in the above equation and
taking summation over i, we get

S(Y,V) = −n1(Y,V) + η(Y)η(V).

This shows that the generalized W2 semi-symmetric para-Kenmotsu manifold is an η-Einstein mani-
fold.

5. Generalized W2 Ricci semi-symmetric para-Kenmotsu manifold

Definition 5.1. A para-Kenmotsu manifold M is said to be Ricci semi-symmetric if the condition

R(X,Y) · S = 0, (45)

holds for all vector fields X,Y.

Definition 5.2. A para-Kenmotsu manifold is said to be generalized W2 Ricci semi-symmetric if the condition

W∗

2(X,Y) · S = 0, (46)

holds for all vector fields X,Y, where W∗

2 is generalized W2-curvature tensor of a para-Kenmotsu manifold.

Theorem 5.3. A generalized W2 Ricci semi-symmetric para-Kenmotsu manifold is either an Einstein manifold or
ψ = 0 on it.
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Proof: Consider

(W∗

2(ξ,X) · S)(U,V) = 0,

which gives

S(W∗

2(ξ,X,U),V) + S(U,W∗

2(ξ,X,V)) = 0.

Using equations (15), (16) and (39) in the above equation, we get

ψ

(n − 1)
[S(X,V)η(U) + S(X,U)η(V)] + ψ[1(X,U)η(V) + 1(X,V)η(U)] = 0.

Putting U = ξ in the above equation and using (5), (6) and (15), we get

ψ[S(X,V) + 1(X,V)(n − 1)] = 0,

which gives either ψ = 0 or

S(X,V) = −(n − 1)1(X,V).

This shows that the generalized W2 Ricci semi-symmetric para-Kenmotsu manifold is an Einstein manifold.

6. Generalized W2 φ-symmetric para-Kenmotsu manifold

Definition 6.1. A para-Kenmotsu manifold Mn is said to be locally φ-symmetric if

φ2((∇VR)(X,Y,U)) = 0, (47)

for all vector fields X,Y,U,V orthogonal to ξ.

Definition 6.2. A para-Kenmotsu manifold is said to be φ-symmetric if

φ2((∇VR)(X,Y,U)) = 0, (48)

for all vector fields X,Y,U,V.

These notions were introduced by Takahashi for Sasakian manifold [20]. Analogous to these definitons, we
consider

Definition 6.3. A para-Kenmotsu manifold Mn is said to be a generalized W2 locally φ-symmetric para-Kenmotsu
manifold if

φ2((∇VW∗

2)(X,Y,U)) = 0, (49)

for all vector fields X,Y,U,V orthogonal to ξ.

Definition 6.4. A para-Kenmotsu manifold Mn is said to be a generalized W2 φ-symmetric para-Kenmotsu manifold
if

φ2((∇VW∗

2)(X,Y,U)) = 0, (50)

for all vector fields X,Y,U,V.

Theorem 6.5. A generalized W2 φ-symmetric para Kenmotsu manifold is an Einstein manifold.
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Proof: Taking the covariant derivative of equation (36) with respect to the vector field V, we obtain

(∇VW∗

2)(X,Y,U) = (∇VW2)(X,Y,U) −
dr(ψ)

(n − 1)
[1(Y,U)X − 1(X,U)Y]. (51)

Using equation (21) in the above equation, it yields

(∇VW∗

2)(X,Y,U) = (∇VR)(X,Y,U) −
dr(ψ)

(n − 1)
[1(Y,U)X − 1(X,U)Y]

+
1

(n − 1)
[1(X,U)(∇VQ)Y − 1(Y,U)(∇VQ)X],

(52)

Assume that the para-Kenmotsu manifold is generalized W2 φ-symmetric, i.e., satisfies

φ2((∇VW∗

2)(X,Y,U)) = 0,

for all vector fields, which on using equation (2), gives

(∇VW∗

2)(X,Y,U) = η((∇VW∗

2)(X,Y,U))ξ.

Using equation (52) in the above equation, we get

(∇VR)(X,Y,U) −
dr(ψ)

(n − 1)
[1(Y,U)X − 1(X,U)Y)] +

1
(n − 1)

[1(X,U)(∇VQ)Y − 1(Y,U)(∇VQ)X]

= η((∇VR)(X,Y,U))ξ −
dr(ψ)

(n − 1)
[1(Y,U)η(X) − 1(X,U)η(Y)]ξ

+
1

(n − 1)
[1(X,U)η((∇VQ)Y) − 1(Y,U)η((∇VQ)X)]ξ,

Taking the inner product of the above equation with W, we get

1((∇VR)(X,Y,U),W) −
dr(ψ)

(n − 1)
[1(Y,U)1(X,W) − 1(X,U)1(Y,W)]

+
1

(n − 1)
[1(X,U)1((∇VQ)Y,W) − 1(Y,U)1((∇VQ)X,W)]

= η((∇VR)(X,Y,U))η(W) −
dr(ψ)

(n − 1)
[1(Y,U)η(X)η(W)

−1(X,U)η(Y)η(W)] +
1

(n − 1)
[1(X,U)η((∇VQ)Y)η(W)

−1(Y,U)η((∇VQ)X)η(W)],

Putting X = W = ei in the above equation and taking the summation over i, we obtain

(∇VS)(Y,U) +
1

(n − 1)
[1((∇VQ)Y,U) − 1(Y,U)1((∇VQ)ei, ei)]

−dr(ψ)1(Y,U) − η((∇VR)(ei,Y,U))η(ei) −
1

(n − 1)
[η((∇VQ)Y)η(U)

−1(Y,U)η((∇VQ)ei)η(ei)] +
dr(ψ)

(n − 1)
[1(Y,U) − η(Y)η(U)] = 0.

Taking U = ξ in the above equation, we have

(∇VS)(Y, ξ) − η((∇VR)(ei,Y, ξ))η(ei) − dr(ψ)η(Y)

−
1

(n − 1)
[dr(V)η(Y) − η((∇VQ)ei)η(ei)η(Y)] = 0.

(53)
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The second term on L.H.S. of equation (53) takes the form and denoting it by E which is of the form

E = η((∇VR)(ei,Y, ξ))η(ei) = 1((∇VR)(ei,Y, ξ), ξ)1(ei, ξ).

In this case E vanishes. Namely we have

1((∇VR)(ei,Y, ξ), ξ) = 1(∇VR(ei,Y, ξ), ξ) − 1(R(∇Vei,Y, ξ), ξ)
− 1(R(ei,∇VY, ξ), ξ) − 1(R(ei,Y,∇Vξ), ξ).

(54)

Since ∇Xei = 0 and using equation (12) in (54), we get

1(R(ei,∇VY, ξ), ξ) = 0.

In view of 1(R(ei,Y, ξ), ξ) + 1(R(ξ, ξ,Y), ei) = 0, we have

1(∇VR(ei,Y, ξ), ξ) + 1(R(ei,Y, ξ),∇Vξ) = 0.

Using this fact in equation (54), we get

1((∇VR)(ei,Y, ξ), ξ) = 0. (55)

Also

η((∇VQ)ei)η(ei) = 1((∇VQ)ei, ξ)1(ei, ξ) = 1((∇VQ)ξ, ξ).

Using equations (9) and (15), we get

η((∇VQ)ei)η(ei) = 0. (56)

Using equations (55) and (56) in (53), we have

(∇VS)(Y, ξ) = dr(ψ)η(Y) +
1

(n − 1)
dr(V)η(Y). (57)

Taking Y = ξ in the above equation and using equations (5) and (15), we get

dr(ψ) = −
dr(V)

(n − 1)
, (58)

which shows that r is constant. Now, we have

(∇VS)(Y, ξ) = ∇VS(Y, ξ) − S(∇VY, ξ) − S(Y,∇Vξ).

Then by using (9), (10), (15) in the above equation, it follows that

(∇VS)(Y, ξ) = −S(Y,V) − (n − 1)1(Y,V). (59)

So from equations (57), (58) and (59), we get

S(Y,V) = −(n − 1)1(Y,V),

which shows that Mn is an Einstein manifold.
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