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Abstract. The authors discuss mainly that the Riemannian manifold Mn admitting a unit preserving
circle field ξ in the present paper. A sufficient and necessary condition is given that Riemannian manifold
Mn is an Einstein manifold by imposing some conditions on W2 curvature tensor. Further, this paper
obtains the algebra representation of curvature tensors of a W2-recurrent Riemannian manifold Mn given
by Rαβγδ =

1
d2 [dβdγRαδ − dβdδRαγ + dαdδRβγ − dαdγRβδ].

1. Introduction

The study of Einstein field equations, Einstein manifolds can be traced back to the 1930s. Einstein
manifolds are not only interesting in themselves but are also related to many important topics of Riemannian
geometry. For the study of Einstein manifold, the famous geometer Wong Yung-Chow [25–28], in the early
1940s, published earlier their research works in the top international mathematical journals such as Ann.
Math., Professor Wong studied and proved that the family of totally umbilical hypersurfaces with constant
mean curvatures can be contained in an Einstein space. Henceforth many scholars have devoted themselves
to the study of geometric and physical characteristics of non Einstein spaces admitting the family of totally
umbilical hypersurfaces. They had done a lot of researches on non Einstein space which contains all kinds
of conditions being equivalent to hypersurface clusters, and had made a lot of praiseworthy achievements.
For instance, Tyuzi Adati [1] introduced the idea of preserving circle vector fields via a torse-forming field
ηα (not necessarily timelike vector field)

∇βη
α = hδαβ + uβηα, huβ − hβ = pηβ (1.1)

and studied the geometry and physics of subprojective spaces via this preserving circle vector field; T.
Adati and T. Miyazawa [4, 5] studied a recurrent space using the preserving circle fields, and described
the flatness of such Riemannian spaces. In 1978, T. Miyazawa [19] obtained the topologies of conformal
symmetric spaces and posed some relationships between this class of spaces and Einstein space.
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Later, I. Sato [23] studies the geometrical and physical of properties of manifolds with contact like
structures. T. Adati and A. Handatu [2] studied the geometries of P-Sasakian manifolds by the preserving
circle vector fields, and investigated the properties of recurrent P-Sasakian manifolds. Almost at the same
time, T. Adati and K. Matsmoto [3] obtained the geometry of a conformally symmetric P-Sasakian manifold,
and first proposed the concept of ξ-Einstein manifold(i.e. quasi-Einstein manifold). In 1983, Zhonglin Li
[15] considered the conformally recurrent Riemannian space by an equivalence between a preserving circle
vector field and a family of totally umbilical hypersurfaces, and arrived at Mn is conformally falt if and only
if it is of ξ-Einstein. This implies that the study of Riemannian manifolds or semiriemannian manifolds with
preserving circular fields is very helpful to understand the essential characteristics of ξ-Einstein spaces.

Although the study of Einstein manifolds is in full swing, the research of quasi Einstein manifolds is
relatively backward. As described in [2, 15], it was not until the 1970s and 1980s that the study of quasi
Einstein manifolds was published. After that, the research on the geometry and physical characteristics of
quasi Einstein manifolds is more and more in-depth, and has made remarkable achievements.

Along with this and related research ideas, many experts and scholars in the field of geometry and
physics have focused their attention on the problem of the properties of quasi-Einstein spaces with some
geometry structure and made a series of distinctive research results in recent years. For example, Li Zhonglin
[16], M. C. Chaki and R. K. Maity [6] investigated the geometry of quasi-Einstein manifolds admitting a
preserving circle vector field, respectively; U. C. De et al [7–9] studied the special quasi-Einstein manifolds,
and obtained some interesting results. S. Mallick et al [17] considered and arrived at some geometric
properties of mixed Einstein manifolds; Zhao and Yang [30] considered and obtained the properties of
quasi-Einstein manifolds by the quasi-Einstein field equations; F. Fu et al [11, 12] studied recently the
quasi Einstein and mixed super-Einstein manifolds associated with W2 curvature tensors, and got the
corresponding geometric and physical characterizations, where W2 curvature tensor plays an important
role in describing the flatness of mixed super-Einstein manifolds.

A W2 manifold introduced by G. P. Pokhariyal and R. S. Mishra [22] in 1970 is essentially a Weyl
projective manifold [29]. G. P. Pokhariyal [21] had studied the basic geometrical characteristics of such
curvature tensors. It is with W2 curvature tensor that G. P. Pokhariyal and R. S. Mishra [22] characterized
relativistic significance. C. A. Mantica and L. G. Molinari [18] derived that a Lorentzian manifold associated
with W2 curvature tensor (called briefly W2-Lorentzian manifold) is GRW if and only if there exists a timelike
torse-forming vector field being the eigenvector of Ricci tensor Rαβ. And Z. Li [15] proved that a Riemannian
manifold Mn admits a family of umbilical hypersurfaces if and only if there exists a unit torse-forming field
ξ with ⟨ξ, ξ⟩ = e(= ±1) on Mn.

Motivated by those celebrated works stated above, we will in this paper intend to study the geometric
and physical properties of W2-symmetric and -recurrent manifolds. With the help of the theory of circle
preserving field and the theory of transformation groups, we give the fine characterizations of Einstein and
ξ-Einstein properties of the W2-recurrent and -symmetric manifolds.

The present paper is organized as follows. In Section 3 we investigate the W2-symmetric manifolds,
and discuss the Einstein properties of this W2-symmetric manifold. Section 4 will focus on the curvature
properties of a W2-recurrent manifold. Section 5 contributes some interesting examples.

2. Preliminaries

Let Mn be a Riemannian manifold, and Nn−1 be a hypersurface with the fundamental quadratic form
ψ = 1i jdxidx j immersed in Mn with the quadratic form ψ = aαβdyαdyβ. Nn−1 is defined by σ(yα) = const, or
yα = yα(x1, · · · , xn−1), (α = 1, 2, · · · ,n). Then we have from [10] the following

1i j = aαβ
∂yα

∂xi

∂yβ

∂x j =̂aαβyα,i y
β
, j, 1

i jyα,i y
β
, j = aαβ − eξαξβ, (2.1)

and

aαβyα,iξ
β = 0, ξβ, j = −Ωl j1

lmyβ,m − {
β
µν}y

µ
, jξ

ν, (α, β, µ, ν = 1, · · · ,n) (2.2)
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where aαβξα = ξβ =
σβ
σ , σβ =

∂σ
∂yβ , and σ̄ =

√
eσγσγ, σγ = aαγσγ, e = ξαξα = ±1.

Further, if Nn−1 is a totally umbilical hypersurface, then there holds

Ω jl =
Ω

n − 1
1 jl. (2.3)

From (2.2) and (2.3), it is not hard to show from [15] that there holds

Lemma 2.1. Let Mn be a Riemannian manifold admitting a family of totally umbilical hypersurfaces, and ξβ(= aαβξα)
be an unit normal vector field to the family of hypersurfaces, then there holds

∇αξβ = −Haαβ + νβξα, (νβ is a vector) (2.4)

Proof. By a direct computation, one can achieve Lemma 2.1.

In particular, if H = const, then we arrive at

ξαRαβ = Tξβ, (α, β, γ, · · · ,n). (2.5)

ξαξβ∇λRαβ = eTλ, T =
1
2

[R − R̄ + (n − 1)(n − 2)eH2], (2.6)

where R, R̄ are the scalar curvatures of Mn and Nn−1, respectively, and T is the Ricci principal curvature
corresponding to the vector ξ, Tλ = ∂λT.

Definition 2.1. A vector field ξα is said to be a torse-forming field if it satisfies

∇βξ
α = hδαβ + uβξα.

Further, a torse-forming field ξβ is called a preserving circle field if satisfies huβ − hβ = pξβ.

From Lemma 2.1, we can derive that there holds the following

Lemma 2.2. Mn admits a unit torse-forming fieldξ if and only if Mn admits a family of totally umbilical hypersurfaces,
and the orthogonal trajectory is geodesic.

In this case, ξα are exactly the normal vector fields of these hypersurfaces, and there holds

∇αξβ = −H(aαβ − eξαξβ). (2.7)

According to Lemma 2.1 and Lemma 2.2, it is easy to show that

Lemma 2.3. Mn admits a unit preserving circle field ξ if and only if Mn admits a family of totally umbilical
hypersurfaces with constant mean curvature H(, 0), and the orthogonal trajectories are geodesics.

3. W2-Symmetric Manifolds

In this subsection, we will study the Einstein characteristics of W2-symmetric manifolds.
As we all know W2-curvature tensor is given by

W2(X,Y)Z = R(X,Y)Z +
1

n − 1
[1(X,Z)QY − 1(Y,Z)QX], (3.1)

where Q is the Ricci operator, that is, 1(QX,Y) = R(X,Y) for all X,Y. In the local coordinate system,
W2-curvature can be written as

W2αβγδ = Rαβγδ +
1

n − 1

(
aαγRβδ − aβγRαδ

)
. (3.2)

The W2 curvature tensor introduced by G. P. Pokhariyal and R. S. Mishra in [22] can describe effectively
the existence of the nonnull electrovariance, and extend Pirani formulation of gravitational waves to Einstein
space [21, 22]. A Riemannian manifold Mn is called W2-flat if W2 curvature vanishes, i.e. W2αβγδ = 0.

In addition, we say that Mn is a W2-symmetric manifold if there holds

∇λW2αβγδ = 0. (3.3)



D. Zhao, T. Ho / Filomat 36:4 (2022), 1195–1202 1198

Theorem 3.1. Let Mn be a Riemannian manifold admitting a unit preserving circle field ξ, then Mn is an Einstein
manifold if and only if ξαW2αβγδ = 0.

Proof. By the Ricci identity,

ξαRαβγδ = ∇γ∇δξβ − ∇δ∇γξβ, (3.4)

Then, by a direct computation, we have

ξαIαβγδ = 0, (3.5)

aβγIαβγδ = Rαδ − Taαδ, (3.6)

−HIαβγδ + ξα∇λRαβγδ −
Tλ

n − 1
(aβγξδ − aβδξγ) = 0, (3.7)

where Iαβγδ = Rαβγδ − T
n−1 (aβγaαδ − aαγaβδ).

Let W2αβγδ = Iαβγδ+ T
n−1 (aβγaαδ− aαγaβδ)+ 1

n−1 (aαγRβδ− aβγRαδ). From the condition ξαW2αβγδ = 0 and (3.5),
we obtain

ξγRβδ = Tξγaβδ. (3.8)

Formula (3.8) implies that there holds

Rβδ = Taβδ. (3.9)

In other words, Riemannian manifold Mn is an Einstein manifold.
On the other hand, if Mn is an Einstein manifold, one has

W2αβγδ = Rαβγδ +
1

n − 1
(aαγRβδ − aβγRαδ)

= Rαβγδ −
R

n(n − 1)
(aβγaαδ − aαγaβδ)

= Iαβγδ. (3.10)

Formula (3.10) shows that Theorem 3.1 is tenable.

Theorem 3.2. Let Mn be a Riemannian manifold admitting a unit preserving circle vector field ξ, then Mn is a
W2-flat manifold if and only if ξαW2αβγδ = 0.

Proof. According to ξαW2αβγδ = 0, and Theorem 3.1, we get Rαβ = Taαβ = R
n aαβ. This implies that there hold

the following
Tλ = 0, ξα∇λRαβγδ = 0.

By Ricci identity (3.4), i.e., ξαRαβγδ = ∇γ∇δξβ − ∇δ∇γξβ, Formula (3.7), and notice that H , 0, it is not hard
to see that there holds

W2αβγδ = 0. (3.11)

This shows that Mn is a W2-flat manifold.
On the other hand, if Mn is W2-flat, then one has

Rαβγδ = −
1

n − 1
(aαγRβδ − aβγRαδ).

which means that Mn is an Einstein manifold. Further, it’s not hard for us to verify that Formula ξαW2αβγδ = 0
is tenable.

By Formula (3.3), it is easy to see that there holds
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Theorem 3.3. If Mn is a symmetric Riemannian manifold, then it is a W2-symmetric manifold.

A Riemannian manifold Mn is said to be a quasi-Einstein manifold[6, 16, 20] if its Ricci tensor Rαβ satisfies

Rαβ = Aaαβ + Bξαξβ, (1 ≤ α, β, · · · , λ, µ, ν, · · · ,≤ n), (3.12)

where ξ is a unit vector field (also called a fundamental element), and A,B are two scalar functions. A
quasi-Einstein manifold is also called a ξ-Einstein manifold, or a Robertson-Walker (RW) spacetime.

It is obvious that ξ is the isotropic Ricci principal direction with Ricci principal curvature R
n .

Furthermore, if Mn is a quasi-Einstein manifold, one has

Theorem 3.4. Let Mn be a Riemannian manifold, then Mn is W2- symmetric quasi-Einstein manifold if and only if
Mn is an Einstein manifold or ξ is a parallel vector field.

From [16], we know that Theorem 3.4 is tenable if the following Proposition 3.5 is tenable.

Proposition 3.5. Let Mn be a ξ-Einstein manifold, then a vector η is the Ricci principal direction vector if and only
if η ⊥ ξ or η ∥ ξ.

Proof. In fact, if η is a Ricci principal direction, then we get

ηαRαβ = Tηβ, (3.13)

Making a contraction with η to ξ-Einstein equation Rαβ = Aaαβ + Bξαξβ, we have

Tηβ = Aηβ + Bηαξαξβ, (3.14)

Considering the contraction with ξβ to (3.14), we get

(T − A − B)ξβηβ = 0.

This implies that η ⊥ ξ (T , A + B), where A,B are defined as (3.12).
Similarly, making a contraction with ξ to ξ-Einstein equation Rαβ = Aaαβ + Bξαξβ, then we get

ξαRαβ = Aξβ + Bξβ = (A + B)ξβ. (3.15)

From (3.13), (3.15) means that ξ is also a Ricci principal direction, i.e., η ∥ ξ.
On the other hand, if η ⊥ ξ, then we know

0 = a(η, ξ) = ηαξβaαβ = ηαξα.

Making a contraction with η to ξ-Einstein equation, we obtain

ηαRαβ = Aaαβηα + Bξαξβηα = Aηβ. (3.16)

Formula (3.16) shows that η is a Ricci principal direction.
Further, if η ∥ ξ, one can assume that η = λξ without loss of generality, then we have

ηαRαβ = Aaαβηα + Bξαξβηα

= Aηβ + Bλξαξαξβ
= Aηβ + Bλξβ = (A + B)ηβ. (3.17)

In other words, η is a Ricci principal direction.

Next, the present paper refers to Wong’s idea in [25], and considers the general curvature tensor defined
below, then we can make the following
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Theorem 3.6. A semi-Riemannian manifold (Mn, a) associated with a curvature tensorW by

Wαβγδ = Rαβγδ + d
(
aαγRβδ − aβγRαδ + aβδRαγ − aαδRβγ

)
+ pR

(
aαδaβγ − aβδaαγ

)
(3.18)

admits a family of totally umbilical hypersurfaces, where d, p are two constants, R is the scalar curvature, then (Mn, a)
is a quasi-Einstein manifold if and only if ξαWαβγδ = 0.

Proof. In fact, by Lemma 2.1, Lemma 2.3 and Formula (3.5), we derive that there holds

ξαWαβγδ = d(Rβδξγ − Rβγξδ) − (pR +
T

n − 1
− dT)(aβδξγ − aβγξδ). (3.19)

Formula (3.19) implies that (3.12) is equivalent to the condition ξαWαβγδ = 0. This ends the proof of
Theorem 3.6.

Remark 3.1. It is obvious that Theorem 3.6 is also tenable for a W2 Lorentzian manifold. For the general curvature
tensor (3.18), if d = p = 0, thenWαβγ

µ = Rαβγµ; if d = 0, p = − 1
n(n−1) , thenWαβγ

µ is a concircle curvature tensor;
if d = 1

n−2 , p =
1

(n−1)(n−2) ,Wαβγ
µ is a conformal curvature tensor.

4. W2-Recurrent manifolds

In this subsection, we will investigate the Einstein properties of W2-recurrent manifolds.

Definition 4.1. If the W2 curvature of Riemannian manifold Mn satisfies the following

∇λW2αβγδ = dλW2αβγδ (dλ , 0), (4.1)

then we call the Riemannian manifold Mn a W2-recurrent manifold, and dλ the W2-recurrent vector, and denote this
manifold by RW shortly.

Theorem 4.1. Assume that Mn is a RW Riemannian manifold, then its curvature tensor can be written as

Rαβγδ =
1
d2 [dβdγRαδ − dβdδRαγ + dαdδRβγ − dαdγRβδ], (4.2)

where dγdγ=̂d2.

Proof. From ∇λW2αβγδ = dλW2αβγδ, we have

∇λRαβγδ +
1

n − 1
(aαγ∇λRβδ − aβγ∇λRαδ)

= dλRαβγδ +
1

n − 1
dλ(aαγRβδ − aβγRαδ). (4.3)

Making a contraction operation to aβγ for Equation (4.3), one gets

∇λRαδ = dλRαδ, ∇λR = dλR. (4.4)

Formula (4.4) confirms the following facts

∇λRαβγδ = dλRαβγδ. (4.5)

Using Bianchi identity,

dλRαβγδ + dγRαβδλ + dδRαβλγ = 0. (4.6)

Considering a contraction to dλ for Equation (4.6), one has

d2Rαβγδ + dγdλRαβδλ + dδdλRαβλγ = 0. (4.7)
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By the following identity

∇λRαδ − ∇δRαλ = aβγ∇γRβαδλ. (4.8)

we get

dβRβαδλ = dλRαδ − dδRαλ. (4.9)

Substituting (4.9) into (4.7), we see that Equation (4.2) is tenable.

Corollary 4.2. By Theorem 4.2, we know that if a RW Riemannian manifold is also an Einstein manifold, i.e., if
Rβγ = R

n aβγ, by a direct computation then we know Rkjih = 0, that is, a RW-Einstein manifold is flat. But if Mn is
RW-quasi-Einstein manifold, we can’t derive that it is flat! According to Lemma 2.2, if Mn admits a torse-forming
field ξ, then by a direct computation we know that Mn is also flat.

Corollary 4.2 implies that there holds the following

Theorem 4.3. A ξ-Einstein manifold can’t be a RW manifold.

Theorem 4.4. Let Mn be a RW Riemannian manifold admitting a preserving circle vector field ξ, then Mn is of
subprojective and the family of corresponding hypersurfaces is of constant curvature.

Proof. By Definition 4.1, (3.7), (3.8) and notice that ∇λRλα =
1
2∇αR, we can derive that

dλRαβγλ +
dλ

n − 1
(aαγRλβ − aβγRλα) = dλRαβγλ +

1
2(n − 1)

(aαγdβR − aβγdαR), (4.10)

From Equation (4.10), and by a direct computation, one can obtain that R = 0,T = 0. Then it is not hard to
show that there holds

W2αβγδ = Iαβγδ.

By a similar argument to [15], we know that Theorem 4.4 is tenable.

5. Examples

Example 5.1. Let āαβ = σ−2aαβ be a conformal transformation, if there exists a function ρ such that ∇α∇βσ=̂σαβ =
ρaαβ, then from [14] it is exactly a concircle transformation. If there exists a non-trivial concircle transformation
mapping a RW-manifold to a Riemannian space(where ρ , 0), then we know by Theorem 3 in [14] that this W2
recurrent manifold is an Einstein manifold.

Example 5.2. Consider a ξ-quasi-concircle map as

hαβ = Uaαβ + Vξαξβ, h = −
1
σ
, (5.1)

where hαβ = ∇βhα − hαhβ + 1
2 aµνhµhνaαβ, U,V are two scalar functions. From [15] we know that if a manifold (Mn, a)

associated withW curvature tensor is recurrent and flat, then it is a ξ-Einstein manifold.

Example 5.3. A semi-Riemannian manifold (M, a) with Ricci curvature Rαβ and the energy momentum tensor Tαβ
satisfy a quasi-Einstein field equation [30], it is obvious that (M, a) is, of course, a quasi-Einstein manifold.
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