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Optimal Control Problem for Fractional Stochastic Nonlocal
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Abstract. This article deals with the optimal control of the fractional stochastic nonlocal semilinear system
in Hilbert space. The existence and uniqueness results for the mild solution are derived using Banach fixed
point theorem. The optimal control is proved using minimizing sequence approach and Mazur’s lemma.
For better understanding of theory, we have included one example.

1. Introduction

Optimal Control theory deals with finding the control law for a period of time for a dynamical system
such that an optimized objective function is obtained. It has vast applications in operation research, science,
and engineering. Control problems consist of a function called cost function which is dependent on both
state and control variables. Optimal control is a combination of differential equations that describes the
path for the control variables which optimize the cost function.

Balakrishnan [8] considered the control problems where both state as well as control variables belongs to
Banach space. He presented results on optimal control for the infinite-dimensional semilinear system using
the bounded resolvent method. In [9] authors considered the linear term as an infinitesimal generator of
strongly continuous cosine family and used various conditions on the non-linear term to obtain the results.
They also derived the conditions in which the considered second-order semilinear system can be converted
to a first-order system and also studied the case in which it is beneficial to study the system in the given
form, that is, not converting it to a first-order system.

In [14] park et al. studied the optimality conditions for the semilinear control problems having bounded
delay. They used the concept of a penalty function and Lipschitz continuity for non-linear terms to obtain
the results. In [15] author derived necessary and sufficient conditions for strong-weak lower semicontinuity
of cost function. In [17] Frankowska et al. studied some necessary conditions of the first and second order
for local minimizers of optimal control problems. Nonconvexity was handled with the help of variational
analysis and derived weak maximum principle using separation theorem. The authors also proposed
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stochastic inward pointing condition which is a sufficient condition for normality of weak maximum prin-
ciple.

In ([33],[35]) authors discussed the existence of mild solution for fractional and stochastic semilinear
Cauchy Problems. In [36] authors discussed some sufficient conditions for the existence of mild solution for
the impulsive stochastic control system in abstract space. They derived the results using Leray-Schauder
fixed point theorem, the uniform continuity of the resolvent and analytic resolvent operators. In [19]
Klamka discussed certain sufficient conditions for controllability of non-linear control system in finite as
well as infinite dimension. He used linear controllability and Schauder’s fixed point theorem to obtain
the results. In ([1]-[2],[10]-[13],[21], [28],[34],[42]-[43]) authors studied approximate controllability of delay
systems, stochastic systems, fractional systems, etc. using basics of functional analysis and fixed point
theorems.

In [22] authors studied optimal control problems in Hilbert space for an abstract semilinear control
system with delay. They considered different set of cost functions, like observation of terminal value and
averaging observation control. In [23] authors derived the existence results for the optimal control and
maximal principle for parabolic type semilinear control system in which the non-linear term is Lipschitz
continuous. They derived optimality conditions for a system relaxing the condition of differentiability
on the non-linear term. If the principal operator is unbounded, Jeong et al. [24] obtained the results for
time-optimal control for abstract semilinear control systems having time delay. They derived the results
with the help of real interpolation space and construction of fundamental solution.

In [25] authors derived the necessary optimality condition for the retarded abstract control system in
Hilbert space. In [26] Wang et al. studied results for optimal controls and solvability for a fractional
integrodifferential control system in abstract spaces having infinite delay. With the help of Priori estimate,
they derived the results for the existence of mild solutions and also the extension of the mild solution for
a global interval. In [27] authors derived certain conditions for optimal feedback controls. They prove the
existence of feasible pairs by using the Fillippove theorem and Cesari property.

In [30]-[32] Papageorgiou proved several results on the existence of optimal controls. He used Gronwall’s
inequality, penalty method for obtaining results for nonlinear evolution systems having non monotone non-
linearities. In [4] authors discussed the existence of mild solution and optimal control for second order
semilinear control system in Hilbert space. The results are derived with the help of sine and cosine family
theory and Banach fixed point theorem. In [37] authors obtained the existence and optimal control results
using Krasnoselskii’s fixed point theorem and minimizing sequence concept for the second-order SDE
having mixed-fractional Brownian motion. In [38] Patel et al. discussed the existing result for the mild
solution and optimal control for fractional-order α ∈ (1, 2] semilinear control system in Hilbert space. The
results are derived with the help of α-order sine and cosine family theory, Banach fixed point theorem, and
certain assumptions on nonlinearity. In [40]-[41] author discussed optimal control for fractional semilinear
system. Using Weissinger’s fixed point theorem, some assumptions on nonlinear function and contraction
mapping some sufficient results for existence are derived. Recently [1] discussed the asymptotic stability
of semilinear fractional stochastic system of order (1, 2] using fixed point theorem approach.

Byszewski et al. [29] described the initial value problem with nonlocal conditions and explain the
more accuracy of the system as due to nonlocal conditions there is less chance of ill-effects which are
occurred due to a single initial measurement. Motivated by the above works and best of our knowledge
there is no article dealing with optimal control problems for fractional-order α ∈ (1, 2] semilinear stochastic
system in Hilbert space having nonlocal conditions. Using the basic ideas from [5]-[7] and [40]-[41] with
suitable modifications, we have obtained our results. The results are advanced and will help researchers
in the field of control theory. In theorem (3.1) we have studied the existence and uniqueness of mild
solution for fractional stochastic system with nonlocal conditions using fixed point theory. This theorem
is extension of [38] deterministic work in stochastic settings with suitable modifications. In theorem (4.1)



R. Patel et al. / Filomat 36:4 (2022), 1381–1392 1383

we have studied the optimal control problem of Lagrange’s problem of proposed system using Minimizing
sequence approach, basics of Mazur’s Lemma, and functional analysis. This theorem is extension of [38]
deterministic work with addition of nonlocal conditions in stochastic settings.

2. Preliminaries

Some basic results, notations and definitions are considered in this section.These are helpful for obtaining
results in section 3 and section 4 of the article. Throughout the article, we cosider the notations as below.
Consider two separable Hilbert space which are denoted by G and K. For simplicity,|| · || represent norm
and l,m denotes inner products . Let complete probability space be denoted by (Ω, z,P) . It has complete
family of sub σ-algebras zτ, 0 ≤ τ ≤ b which are right continuous increasing and zτ ⊂ z. The complete
orthonormal system in K be denoted by {en}

∞

n=1 and {βn}
∞

n=1 denotes sequence of Brownian motions which
are independent and satisfying the below condition.

W(τ) =

∞∑
n=1

√
λnβnen, 0 ≤ τ ≤ b

where {λn}
∞

n=1 is a sequence which is bounded andλn ∈ R+
∪0 for n ∈Nwith the condition Qen = λnen, n ∈N

with tr(Q) =
∑
∞

n=1 λn < ∞ . Then W(τ) which is K-valued stochastic process is called a Wiener Process. The
sigma algebra generated by {W(s) : 0 ≤ s ≤ τ} is called normal filtration and is denoted by zτ. Also zb = z.
Let the space of operators defined from K to G which are bounded be denoted by L(K,G) where the norm
is usual operator norm. For ψ ∈ L(K,G), we define

||ψ||2Q = tr(ψQψ∗) =

∞∑
n=1

||

√
λnψen||

2

ψ is called a Q-Hilbert Schmidt operator if ||ψ||2Q < ∞.The space of operatorsψ : K→ G whereψ is Q-Hilbert
Schmidt operator be denoted by LQ(K,G) . LQ(K,G) is a completion of L(K,G) w.r.to the topology induced
by the norm || · ||Q is a Hilbert space with respect to norm topology.
L2(Ω,G) is a space of G-valued integrable,strongly measurable random variables,is a Banach space with
respect to norm topology ||s(·)|| = (E||s(τ)||2)1/2, where E(·) denotes the expectation w.r.to the measure P.
Let space of continuous maps defined from [0, b] into L2(Ω,G) which is Banach space and satisfying
sup0≤τ≤bE||s(τ||2 < ∞ be denoted by C([0, b],L2(Ω,G)) .Consider G2 as the subspace of C([0, b],L2(Ω,G))
which is closed and having zτ-adapted, measurable, G-valued processes s ∈ C([0, b],L2(Ω,G)) endowed
with the norm

||s||G2 =
(

sup
0≤τ≤b

E||s(τ)||2G

) 1
2

.

Consider the cost function as

J(s, v) := E
{∫ b

0
L(τ, sv(τ), v(τ))dτ

}
, (1)

with respect to

CDα
τs(τ) = As(τ) + B(τ)v(τ) + η(τ, s(τ)) + σ(τ, s(τ))

dW(τ)
dτ

, 0 < τ ≤ b;

s(0) = s0 + n0(s) ∈ G,
s′(0) = s1 + n1(s) ∈ G. (2)

where the integrand L is defined in section 4, for 1 < α ≤ 2, CDα
τ denotes the Caputo fractional derivative,

b is time constant and 0 < b < ∞. The control function v(·) has domain U which is a separable reflexive
Hilbert space, the state s(·) is G-valued stochastic process. The infinitesimal generator for solution op-
erator Cα(τ), 0 ≤ τ < ∞ be denoted by A and is defined as A : D(A) ⊆ G → G .A family of operators
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defined from U to G which are linear is represented as {B(τ) : τ ≥ 0} ; the functions η : [0, b] × G → G
and σ : [0, b] × G → L(K,G) are nonlinear, s(0), s′ are G-valued z0-measurable random variables which are
independent of W. The functions n0(s) and n1(s) are continuous and defined as C([0, b],G)→ G.

Define the admissible set Uad, the set of all υ(·) : [0, b] × Ω → U such that υ is zτ adapted stochastic

process and E
∫ b

0 ||υ(τ)||pdτ < ∞. Clearly Uad , ∅ and Uad ⊂ Lp([0, b]; U)(1 < p < ∞) is closed, bounded and
convex.

LetAad consist of pairs (s, v) where s denotes mild solution of system (2) with the control v ∈ Uad, which
are admissible. The major target of the paper is to find a pair (s0, v0) ∈ Aad such that

J(s0, v0) := inf J(s, v) : (s, v) ∈ Aad = δ

We now recall some of the definition which are used as basic for fractional calculus.
Let V be a Hilbert space having norm || · ||.Consider the space of all V-valued Bochner integrable functions
as L2([0, b]; V).The norm for the function f ∈ L2([0, b]; V) is defined as

|| f || =
( ∫ b

0
|| f (τ)||2dτ

)1/2

(3)

Set of all the operators which are bounded and linear on V be denoted by L(V).
The space of functions which are continuous is represented by C([0, b]; V) and space of functions which has
first order continuous derivative is represented by C1([0, b]; V).

Definition 2.1. [28] “If s(τ) ∈ C([0, b]; V), then the Riemann-Liouville integral of fractional order α > 0 can be
given as

Iαt s(τ) =
1

Γ(α)

∫ τ

τ0

(τ − ς)α−1s(ς)dς”

Definition 2.2. [28] “The Riemann-Liouville fractional derivative of a function s(τ) ∈ C([0, b]; V) of order α ∈ (1, 2]
is defined by

Dα
τs(τ) = D2I2−αs(τ)

=
1

Γ(2 − α)
d2

dτ2

∫ τ

τ0

(τ − ς)1−αs(ς)dς”.

Definition 2.3. [28] “The Caputo fractional derivative of order α ∈ (1, 2] is defined by

CDα
τs(τ) = I2−αD2s(τ)

=
1

Γ(2 − α)

∫ τ

τ0

(τ − ς)1−α
[ d2

dς2 s(ς)
]
dς,

where s(τ) ∈ C1([0, b]; V)”.

Consider the linear system of fractional order as :

CDα
τs(τ) = As(τ), s(0) = κ, s′(0) = 0, (4)

where α ∈ (1, 2] A : D(A) ⊂ V → V is a operator defined in V which is dense and closed.
Now using Riemann-Liouville integral of fractional order α on (2)

s(τ) = κ +
1

Γ(α)

∫ τ

0
(τ − ς)α−1As(ς)dς (5)
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Definition 2.4. [28] “Let α ∈ (1, 2]. A family {Cα(τ)}τ≥0 ⊂ L(V) is called the solution operator (or strongly
continuous α-order fractional cosine family) for (2) and A is called the infinitesimal generator of Cα(τ), if the
following conditions are satisfied:

1. Cα(τ) is strongly continuous for τ ≥ 0 and Cα(0) = I. There exists a constant M ≥ 1 such that ||Cα(τ)|| ≤M.
2. Cα(τ)D(A) ⊂ D(A) and ACα(τ)κ = Cα(τ)Aκ for all κ ∈ D(A), τ ≥ 0;
3. Cα(τ)κ is a solution of (2) for all κ ∈ D(A)”.

Definition 2.5. [28] “The fractional sine family Sα : [0,∞)→ L(V) associated with Cα is defined by

Sα(τ) =

∫ τ

0
Cα(ς)dς, τ ≥ 0”. (6)

Definition 2.6. [28] “The fractional Riemann-Liouville family Pα : [0,∞)→ L(V) associated with Cα is defined by

Pα(τ) = Iα−1Cα(τ)” (7)

With the help of definition (1) , for 0 ≤ τ ≤ b

||Pα(τ)|| = ||Iα−1Cα(τ)||

= ||

∫ τ

0

(τ − ς)(α−2)

Γ(α − 1)
Cα(ς)dς||

≤
||Cα(ς)||
Γ(α − 1)

||

∫ τ

0
(τ − ς)α−2dς||

≤
M

Γ(α)
bα−1 = MP (let).

Definition 2.7. “An zτ-adapted stochastic process s(τ) ∈ C([0, b]; L2(Ω,G)) is called a mild solution of system (2) if
for each v(·) ∈ Lp([0, b]; U), s(τ) is measurable and the following stochastic integral equation is satisfied:

s(τ) = Cα(τ)(s0 + n0(s)) + Sα(τ)(s1 + n1(s)) +

∫ τ

0
Pα(τ − ς)Bv(ς)dς (8)

+

∫ τ

0
Pα(τ − ς)η(ς, s(ς))dς +

∫ τ

0
Pα(τ − ς)σ(ς, s(ς))dW(ς).”

3. Existence and Uniqueness of Mild Solution

Existence and uniqueness results for the mild solution of semilinear control system (2) are obtained in
this section. To obtain the results, certain conditions on nonlinear functions are imposed.
[H1] The functions τ→ η(τ, s(τ)) and τ→ σ(τ, s(τ)) for any s ∈ G are measurable.
[H2] η : [0, b] × G → G, σ : [0, b] × G → L(K,G) are functions satisfying Lipschitz conditions and linear
growth condition. Also the functions η, σ are continuous. In general, we consider that there are positive
constants Lη and Lσ such that

||η(t, s) − η(t,w)||2 ≤ K1||s − w||2, ||η(t, s)||2 ≤ K2(1 + ||s||2),
||σ(t, s) − σ(t,w)||2 ≤ N1||s − w||2, ||σ(t, s)||2 ≤ N2(1 + ||s||2).

[H3] The functions n0(s) and n1(s) are continuous and there exists some positive constants Mn0 and Mn1 such
that

||n0(s) − n0(w)||2 ≤ Mn0 ||s − w||2, ||n0(s)||2 ≤Mn0 (1 + ||s||2),
||n1(s) − n1(w)||2 ≤ Mn1 ||s − w||2, ||n1(s)||2 ≤Mn1 (1 + ||s||2)

for all s, w ∈ C([0, b],H).
[H4] The operator B ∈ L∞([0, b]; L(U,G)) and ||B||∞ stands for the norm of operator B in the Banach space
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L∞([0, b]; L(U,G)).All operators which are bounded and linear and defined from U to V be denoted by
L(U,G).
[H5] The multivalued map U(·) : [0, b] ⇒ 2U

\ {∅} has closed ,convex and bounded values. U(·) is graph
measurable and U(·) ⊆ ℵ, where ℵ is a subset of U which is bounded.

Theorem 3.1. For every control function v(·) ∈ Uad and if assumptions [H1] − [H5] holds then the system (2) has a
unique mild solution in [0, b].
Proof: Define an operator Φ : G2 → G2 such that

(Φs)(τ) = Cα(τ)(s0 + n0(s)) + Sα(τ)(s1 + n1(s)) +

∫ τ

0
Pα(τ − ς)[B(ς)v(ς) + η(ς, s(ς))]dς

+

∫ τ

0
Pα(τ − ς)σ(ς, s(ς))dW(ς).

Now we will establish the result which shows that the system (2) has mild solution as (8) on [0, b]. For this we will
prove that in space G2 Φ has a fixed point. Classical fixed point theorem for contractions is used to prove the result.
First we will prove Φ(G2) ⊂ G2. Let s ∈ G2, then we have

E||(Φs)(τ)||2 ≤ 5[T1 + T2 + T3 + T4 + T5] (9)

Now

T1 = E||Cα(τ)(s0 + n0(s))||2

≤ 2M2(||s0||
2 + Mn0 (1 + ||s||2H2

))

Similarly T2 ≤ 2M2(||s1||
2 + Mn1 (1 + ||s||2H2

)). Next, using the Cauchy-Schwarz inequality, we have

T3 = E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)B(ς)v(ς)dς

∣∣∣∣∣∣∣∣∣∣2
=

( ∫ τ

0
||Pα(τ − ς)|| ||B(ς)||E||v(ς)||dς

)2

≤ M2
P||B||

2
∞

[ ∫ τ

0
E||v(ς)||2dς

]2

≤ M2
P||B||

2
∞

[( ∫ τ

0
dς

) p−1
p
( ∫ τ

0
||v(ς)||pUdς

) 1
p
]2

≤ M2
P||B||

2
∞||v||

2
Lp([0,b];U)b

2(p−1)
p

Using cauchy-Schwartz inequality and hypothesis [H2] implies that

T4 = E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)η(ς, s(ς))dς

∣∣∣∣∣∣∣∣∣∣2
G

≤ E
( ∫ τ

0
||Pα(τ − ς)η(ς, s(ς))||Gdς

)2

≤ M2
pE

( ∫ τ

0
||η(ς, s(ς))||Gdς

)2
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T4 ≤ M2
Pb

∫ τ

0
E||η(ς, s(ς))||2Gdς

≤ M2
Pb

∫ τ

0
K2(1 + E||s(ς)||2G)dς

≤ M2
PbK2

∫ τ

0

(
1 + sup

ς∈[0,b]
E||s(ς)||2G

)
dς

≤ M2
PbK2b(1 + ||s||2G2

)

= M2
Pb2K2(1 + ||s||2G2

)

and

T5 = E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)σ(ς, s(ς))dW(ς)

∣∣∣∣∣∣∣∣∣∣2
≤ E

( ∫ τ

0
||Pα(τ − ς)σ(ς, s(ς))||dς

)2

≤ M2
ptr(Q)b

( ∫ τ

0
E||σ(ς, s(ς))||2Qdς

)
≤ M2

Ptr(Q)bN2b(1 + ||s||2G2
)

= M2
Ptr(Q)b2K2(1 + ||s||2G2

)

Thus (9) becomes

E||Φs)(τ)||2 ≤ a + b||s||2G2

where a > 0 and b > 0 are preferable constants. This leads to the result that Φ map G2 into itself.
Next, we show that Φ is a contraction map. For s,w ∈ G2, hypothesis (H2) and the Cauchy-Schwartz inequality yield
that

||(Φs)(τ) − (Φw)(τ)|2 ≤ 4E||Cα(τ)(n0(s) − n0(w))||2 + 4E||Sα(τ)(n1(s) − n1(w))||2

+ 4E
∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)[η(ς, s(ς)) − η(ς,w(ς))dς

∣∣∣∣∣∣∣∣∣∣2
+ 4E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)[σ(ς, s(ς)) − σ(ς,w(ς))dW(ς)

∣∣∣∣∣∣∣∣∣∣2
≤ 4

(
M2(Mn0 + Mn1 ) + M2

P(K1 + N1tr(Q))b2
)
||s − w||2G2

Consequently if

4
(
M2(Mn0 + Mn1 ) + M2

P(K1 + N1tr(Q))b2
)
< 1 (10)

then it is clear that in G2 , Φ has a fixed point which is unique and is a solution of (2). Continuing the above process
on interval [0, b∗], [b∗, 2b∗], ... such that b∗ satisfies (10), we can easily remove the extra condition on b.

To obtain the main results, we derive a priori estimate of mild solution for the system (2).

Lemma 3.2. (A priori estimate). Consider that corresponding to control v, the mild solution of system (2) is system
(8) on [0, b]. Then there exist a constant C = C(v) > 0 such that

E||s(τ)||2 ≤ C, ∀ τ ∈ [0, b].
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Proof: Using conditions H2 and Hölder’s inequality, we obtain

E||s(τ)||2 ≤ 5E||Cα(τ)(s0 + n0(s))||2 + 5E||Sα(τ)(s1 + n1(s))||2 + 5E
∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)Bv(ς)dς

∣∣∣∣∣∣∣∣∣∣2
+ 5E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)η(ς, s(ς))dς

∣∣∣∣∣∣∣∣∣∣2 + 5E
∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)σ(ς, s(ς))dW(ς)

∣∣∣∣∣∣∣∣∣∣2
≤ 5(2M2(||s0||

2 + Mn0 (1 + ||s||2H2
)) + 5(2M2(||s1||

2 + Mn1 (1 + ||s||2H2
))

+ 5M2
P||B||

2
∞

[ ∫ τ

0
||v(ς)||dς

]2

+ 5M2
P(K2 + tr(Q)N2)b

∫ τ

0
{1 + E||s(ς)||2}dς

≤ 5(2M2(||s0||
2 + Mn0 (1 + ||s||2H2

)) + 5(2M2(||s1||
2 + Mn1 (1 + ||s||2H2

))

+ 5M2
P||B||

2
∞

[( ∫ τ

0
dς

) p−1
p
( ∫ τ

0
||v(ς)||pUdς

) 1
p
]2

+ 5M2
P(K2 + tr(Q)N2)b

∫ τ

0
{1 + E||s(ς)||2}dς

≤ 5(2M2(||s0||
2 + Mn0 (1 + ||s||2H2

)) + 5(2M2(||s1||
2 + Mn1 (1 + ||s||2H2

))

+ 5M2
P||B||

2
∞||v||

2
Lp([0,b];U)b

2(p−1)
p

+ 5M2
P(K2 + tr(Q)N2)b2 + 5M2

P(K2 + tr(Q)N2)b
∫ τ

0
E||s(ς)||2dς.

Now using Gronwall’s inequality, one can easily obtain the boundedness of s in G2.

4. Existence of Fractional Optimal Control

Existence results for fractional stochastic optimal control are discussed in this section under certain
assumptions:
Let the integrand be defined as:

L : [0, b] × G ×U→ R ∪ {∞}

Then the integrand L satisfies the following conditions:

(M1) The integrand L : [0, b] × G ×U→ R ∪ {∞} is zτ-measurable.
(M2) For s ∈ G , τ ∈ [0, b] the integrand L(τ, s, ·) is convex on U.
(M3) For almost all τ ∈ [0, b], the integrand L(τ, ·, ·) is sequentially lower semicontinuous on G ×U.
(M4) There exist l, j, α constants such that l ∈ [0,∞), j ∈ (0,∞), α ∈ [0,∞) and α ∈ L1([0, b];R) such that

L(τ, s, v) ≥ α(τ) + lE||s||2 + jE||v||pU

Theorem 4.1. Suppose (M1) − (M4) holds and hypothesis of Theorem 3.1 is true, then there is a pair (s0, v0) ∈ Aad,
i.e. atleast one optimal control exist corresponding to Lagrange problem (1) with

J(s0, v0) := E
{∫ b

0
L(τ, s0(τ), v0(τ))dτ

}
≤ J(s, v),∀(s, v) ∈ Aad

Proof: If greatest lower bound of {J(s, v)|(s, v) ∈ Aad} is +∞, then obviously we obtain the result. So, we will assume
that greatest lower bound of {J(s, v)|(s, v) ∈ Aad} as δ < +∞. From above (M1) − (M4) condition, it is clear that
δ > −∞. With the help of greatest lower bound there exist (sm, vm) ∈ Aad} a sequence of state-control pair such that
J(sm, vm) → δ as m → +∞ assuming (sm, vm) ∈ Aad} as minimizing sequence. We know Lp([0, b]; U) is a reflexive
separable Banach space and {vm

} is a bounded subset of Lp([0, b]; U) and also {vm
} ⊆ Uad : m ∈N, so there is relabeled

sequence {vm
} and v0

∈ Lp([0, b]; U) such that vm
→ v0 (weakly converges as m→ +∞) in Lp([0, b]; U). As we know
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that the admissible set Uad ⊂ Lp([0, b]; U) is bounded, closed and convex, so Mazur’s lemma forces us to conclude that
v0
∈ Uad.

Now, let us assume that corresponding to sequence of controls {vm
},the sequence of solutions of the system (2) be given

by {sm
}, that is

sm(τ) = Cα(τ)(s0 + n0(sm)) + Sα(τ)(s1 + n1(sm)) +

∫ τ

0
Pα(τ − ς){Bvm(ς) + η(ς, sm(ς))}dς

+

∫ τ

0
Pα(τ − ς)σ(ς, sm(ς))dW(ς).

By Lemma 1, it is easy to see that there exists δ > 0 such that

E||sm
||

2
≤ δ, m = 0, 1, 2, ...,

Let corresponding to the control v0
∈ Uad i, the mild solution for the system (2) be given as s0, such that

s0(τ) = Cα(τ)(s0 + n0(s0)) + Sα(τ)(s1 + n1(s0)) +

∫ τ

0
Pα(τ − ς){Bv0(ς) + η(ς, s0(ς))}dς

+

∫ τ

0
Pα(τ − ς)σ(ς, s0(ς))dW(ς).

For all τ ∈ [0, b], using Hölder inequality,Cauchy-Schwarz inequality and condition(M3), we get

E||sm(τ) − s0(τ)||2 ≤ 5E||Cα(τ)[n0(sm) − n0(s0)]||2

+ 5E||Sα(τ)[n1(sm) − n1(s0)]||2

+ 5E
∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)[B(ς)vm(ς) − B(ς)v0(ς)]dς

∣∣∣∣∣∣∣∣∣∣2
+ 5E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)[η(ς, sm(ς)) − η(ς, s0(ς))]dς

∣∣∣∣∣∣∣∣∣∣2
+ 5E

∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
Pα(τ − ς)[σ(ς, sm(ς)) − σ(ς, s0(ς))]dW(ς)

∣∣∣∣∣∣∣∣∣∣2
≤ 5M2(M2

n0
+ M2

n1
)E||sm(ς) − s0(ς)||2

+ 5M2
Pb

( ∫ τ

0
||B(ς)vm(ς) − B(ς)v0(ς)||pdς

) 2
p

+ 5M2
Pb(K1 + tr(Q)N1)

∫ τ

0
E||sm(ς)) − s0(ς))||2dς.

With the help of singular Gronwall’s inequality, there exists a constant K∗(α) independent of v, m and τ such that

E||sm(τ) − s0(τ)|| ≤ K∗(α)
( ∫ τ

0
||B(ς)vm(ς) − B(ς)v0(ς)||pdς

) 2
p

≤ K∗(α)||Bvm
− Bv0

||
2
Lp([0,b];U). (11)

As B is strongly continuous, so

||Bvm
− Bv0

||Lp([0,b];U) → 0 as m→∞ (12)

From equation (11) and (12) , we conclude that

E||sm
τ − s0

τ||
2
→ 0 as m→∞.
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This implies that E||sm
− s0
||

2
→ 0 in C([0, b]; L2(Ω,G)] as m→∞.

It is clear that the assumptions (M1) − (M4) give the result of Balder (Theorem 2.1,[15]).Therefore, using Balder’s
theorem, we get

(s, v)→ E
∫ τ

0
L(τ, s(τ), v(τ))dτ (13)

in the strong topology of L1([0, b]; G) and weak topology of Lp([0, b]; U) ⊂ L1([0, b],U) is sequentially lower semicon-
tinuous. Therefore on Lp([0, b]; U), J is weakly lower semicontinuous and using condition (M4), it is clear that J is
greater than −∞. This implies that J has its greatest lower bound at v0

∈ Uad, that is,

ε := lim
m→∞

EL(τ, sm(τ), vm(τ))dτ

≥

∫ τ

0
EL(τ, s0(τ), v0(τ))dτ = J(s0, v0) ≥ ε.

This completes the proof.

5. Examples

Let Ω1 ∈ R3 be a bounded domain and ∂Ω ∈ C3. Further let G = U := L2(Ω1), On a stochastic process
(Ω, z,P) the standard cylindrical Wiener process in G is denoted by W(τ) . Suppose D(A) := G2(Ω1)∩G1

0(Ω1)

and for x ∈ D(A), Ax :=
(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

)
x. The admissible control set Uad := {v ∈ U : ||v||Lp([0,1];U)≤1}.

Let the control stochastic fractional order pde be given by:

CD
3
2
τ s(τ, x) = sxx(τ, x) +

∫ 1

0
%(x, ν)v(ν, τ)dν +

∫ 1

0
κ(x, ν) sin(s, ν)dν

+
(s(τ, x))2

1 + (s(τ, x))2 dW(τ),

s(τ, x)|x∈∂Ω = 0, τ > 0,
s(τ, x) = s0(x) + β1s(τ, x), x ∈ Ω1,

∂s
∂τ

(0, x) = s1(x) + β2s(τ, x), x ∈ Ω1. (14)

Define
s(τ)(x) = s(τ, x), (Bv)(τ)(x) =

∫ 1

0 %(x, ν)v(ν, τ)dν, 1(τ, s(τ))(x) = 1(τ, s(τ, x)) =
∫ 1

0 κ(x, ν) sin(s, ν)dν, σ(τ, s(τ))(x) =

σ(τ, s(τ, x)) =
(s(τ,x))2

1+(s(τ,x))2 , s(0)(x) = s(0, x) = s0(x) and s′ (0)(x) = s′ (0, x) = s1(x). β1 and β2 are finite con-
stants. Moreover, we assume that % : Ω1 × [0, 1] → R is continuous. The function κ is measurable and∫

Ω1

∫ 1

0 κ(x, ν)dνdx < ∞. The one-dimensional standard Brownian motion is denoted by W(τ). Thus for
α = 3/2 the problem (14) can be written as the abstract form of system (2) with the cost function

J(s, v) := E
{∫ 1

0
L(τ, s(τ), v(τ))dτ

}
,

where L(τ, s(τ), v(τ))(s) =
∫

Ω1
|s(τ, x)|2dx +

∫
Ω1
|v(τ, x)|2dx. It is clear that the assumptions (M1) − (M4) are

satisfied. So,there exists an optimal control pair (s0, v0) ∈ L2([0, 1] ×Ω1) × L2([0, 1] ×Ω1) such that J(s0, v0) ≤
J(s, v) for all (s, v) ∈ L2([0, 1] ×Ω1) × L2([0, 1] ×Ω1).



R. Patel et al. / Filomat 36:4 (2022), 1381–1392 1391

6. Conclusion

In this paper fractional optimal control for stochastic semilinear equations in Hilbert space is considered.
Under certain set of conditions, it is proved that lagrange’s problem has atleast one optimal state-control
pair. Using Banach fixed point theorem and priori estimate , existence and uniqueness conditions for mild
solution are derived.

Data Availability Statement: Data sharing is not applicable to this article as no data sets were generated
or analyzed during the current study.
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