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Abstract. This paper is devoted to study the existence and stability of mild solutions for semilinear
fractional evolution equations with a nonlocal final condition. The analysis is based on analytic semigroup
theory, Krasnoselskii fixed point theorem, and a special probability density function. An application to a
time fractional diffusion equation with nonlocal final condition is also given.

1. Introduction

Let H be a Hilbert space, and A : D(A) ⊂ H → H be the infinitesimal generator of a compact analytic
semigroup {S(t)}t≥0 of uniformly bounded linear operators on H. This work is devoted to study the
semilinear fractional evolution equation

∂ r
t u(t) = Au(t) + F(t,u(t)), 0 ≤ t < T, (1)

which is equipped with the nonlocal final condition

u(T) − G(u) = uT. (2)

Here, notation ∂ r
t stands for the right Caputo’s derivative of fractional derivative order 0 < r < 1, defined

by (see [1]-[8])

∂ r
t u(t) =

−1
Γ(1 − r)

∫ T

t
(s − t)−ru′(s)ds, 0 < r < 1,

where Γ is the Gamma function. The functions F, G and uT are specified later.

Let us shortly recall the history of the problem. It is well-known that fractional evolution equations
have gained much attention. These equations can be dealt by developing mathematical tools of semigroups
of bounded linear operators on Banach spaces, referred to G.M. Mophou and G.M. N’Guérékata [14], D.
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Baleanu and R.P. Agarwal [17], R.P. Agarwal, M. Benchohra, S. Hamani [18], P. Chen, Y. Li and H. Fan [19],
Wahash-Panchal-Abdo [40], Ardjounia-Djoudi [41], etc. In [9], K. Balachandran and J.Y. Park studied the
existence and uniqueness of a solution to the abstract fractional semilinear evolution equation

∂ r
t u(t) = A(t)u(t) + f (t,u(t)), t ∈ (0,T), (3)

u(0) + 1(u) = u0, (4)

where 0 < r < 1, T is a postive real number, X is a Hilbert space, A(t) is a bounded linear operator for each
t ∈ [0,T], and f : [0,T] × X → X is continuous with respect to the second variable. In [10], Y. Zhou and F.
Jiao proved the existence of a solution to the following problem

∂ q
t u(t) = Au(t) + f (t,u(t)), 0 < t ≤ T, (5)

u(0) + 1(u) = u0 (6)

where 0 < q < 1, T is a postive real number, X is a Banach space, f : [0,T] × X → X is a given functions
satisfying some assumptions and A is the infinitesimal generator of a C0 semigroup {T(t)}t≥0 of linear
bounded operators on X, i.e.

Au = lim
t→0+

T(t)u − u
t

in X.

In [20], M.M. Borai considered a one-sided stable probability density of Wright type functions to obtain
the fundamental solution of a fractional evolution equations class. A. Debbouche, D. Baleanu and R.P.
Agarwal [21], F. Li, J. Liang and H.K. Xu [38], R. Wang, J. Liu and D. Chen [23] developed this tool to solve
fractional evolution equations equipped with non-local initial conditions. N.I. Mahmudov and S. Zorlu [24]
discussed compact analytic semigroups instead of strongly semigroups on the approximate controllability.
P. Chen, Y. Li, Q. Chen and B. Feng [25] also investigated the initial value problem of fractional evolution
equations with noncompact semigroup. Let us refer the reader to some interesting papers on fractional
models using fixed point theory can be found by E. Karapinar and his colleagues [42–46].

However, there is only few results that study final value problems for time fractional equations with
nonlocal final conditions, which appear in many sciences and play an important role in fractional differential
equations. In [26], Mohammed M. Matar considered the existence of solutions to the following fractional
integro-differential equation

∂ β

∂t β
x(t) = f

(
t, x(t), I βt x(t)

)
, 0 < t < T, (7)

x(T) = xT, (8)

where 0 < β < 1, I βt is the fractional integral of order β, see [1]-[5], X is a Banach space, xT ∈ X and
f : [0,T] × (C([0,T],X))2

→ C([0,T],X) is a given function satisfying some specific assumptions. In [27],
Y. Hu and S. Peng established the existence and uniqueness of the following problem backward stochastic
differential equation driven by fractional Brownian motions

dyt = − f (t, ηt, yt, zt)dt − ztdBH
t , (9)

yT = ξ, (10)

where {BH
t , t ≥ 0} is the fractional Brownian motion with zero mean, and

ηt = η0 + bt +

∫ t

0
σsdBH

s

with η0, bt, σs are deterministic constants or functions. In [28], N. El Karoui, S. Peng, M. C. Quenez show
an application of a backward problem in finance. Some more results can be found in [29], [30], [31], [32],
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and references therein. The study of fractional evolution equations is urgent due to the applications in the
random model of living matter in biology; predict occurrences of the earthquakes; electroencephalograph
problems of restoring epilepsy points in the human brain; determine remote electromagnetic waves in the
universe, etc.

This paper aims to study the existence and stability of mild solutions for semilinear evolution equations
with nonlocal final conditions. It is divided into four parts. In Section 2, we present some definitions of
fractional calculus, functional analysis, and propose the fraction version of the Gronwall inequality. The
main results are presented in section 3. An application of our methods to a nonlinear problem for time
fractional diffusion equations will be addressed in the last section.

2. Preliminaries

In this section, we introduce the concept of mild solutions, based on the integral formulation for
solutions. Then, we discuss bounded properties of the solution operators. Finally, we recall some useful
theorems of fixed point theory. By taking inspiration from the idea of the paper [15], we will transform
the model (3)-(4) with right-sided Caputo derivative ∂ r

t to the another model with the left-sided Caputo
derivative ∗∂ r

t . More specifically, by noting that A is a sefl-adjoint operator on the Hilbert space H and using
Proposition 3.1 in [15], we get the following abstract differential equation

∂ r
t v(t) = Av(t) + F(t, v(t)), v(T) = b ∈ H, (11)

on the interval [0,T] is given by

v(t) = Pr(T − t) b +
∫ T

t
(s − t)r−1

Qr(s − t)F(s, v(s))ds,

where the operator Pr(t), Qr(t), t ≥ 0, are defined by

Pr(t) :=
∫
∞

0

ξ−1− 1
r Dr(ξ−

1
r )

r
S(trξ)dξ, (12)

Qr(t) :=
∫
∞

0
rξ−

1
r Dr(ξ−

1
r )S(trξ)dξ, (13)

and

Dr(ξ) :=
1
r

∞∑
n=1

(−1)n−1ξ−nr−1 Γ(nr + 1)
n!

sin(nπr), (14)

for all ξ > 0. The function Dr(ξ) is also the Laplace transform L(e−λr
), see [35]. We notice that the

(non-negative) function Dr satisfies
∫
∞

0 Dr(ξ)dξ = 1 and furthermore∫
∞

0
ξ−sDr(ξ)dξ =

Γ(1 + s
r )

Γ(1 + s)
, ∀s > −1. (15)

By the above arguments, we then have a formula for the solutions of the Problem (3)-(4) as follows

u(t) = Pr(T − t)
(
uT + G(u)

)
+

∫ T

t
(s − t)r−1

Qr(s − t)F(s,u(s))ds. (16)

To make all the details more clear, we present the concept of mild solutions in the following definition.
Let us denote by CH := C([0,T]; H) the space of all continuous functions from [0,T] into H corresponding to
the supremum norm ∥x∥CH

= supt∈[0,T] ∥x(t)∥ for all x ∈ CH, where ∥·∥ denotes the norm on H.
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Definition 2.1. If a function u ∈ CH satisfies Equation (16), then it is called a mild solution of Problem (1)-(2).

In this paper, we denote LH the Banach space of all linear bounded operators on H. In the following
lemma, we presents appropriate properties of the solution operators Pr, Qr in LH, which are certainly used
to establish the existence of mild solutions. A brief demonstration of this lemma is included in Appendix.

Lemma 2.2. The following statements are true:

i) Pr(t) and Qr(t) are bounded linear operators for any t ≥ 0 with respect to

∥Pr(t)∥LH
≤M and ∥Qr(t)∥LH

≤
rM
Γ(1 + r)

. (17)

for any t ≥ 0 provided that M = sup
t≥0
∥S(t)∥LH

.

ii) Pr(t) and Qr(t) are strongly continuous for any t ≥ 0.

iii) Pr(t) and Qr(t) are compact operators for any t > 0.

2.1. Some fixed point theorems
In this part, we recall some useful theorems in establishing the existence of mild solutions to Problem

(1)-(2). First, a fixed point theorem of Krasnoselskii will be recalled in the following lemma, which can be
found in [39, Chapter 1]. This helps to obtain the existence of the equation T1x +T2x = x in Banach spaces.

Lemma 2.3 (A fixed point theorem of Krasnoselskii). Let U be a closed convex and nonempty subset of Banach
space B. Let T1,T2 be two operators map U into R such that

a) T1x + T2y ∈ U whenever x, y ∈ U;

b) T1 is a contraction mapping; and

c) T2 is completely continuous.

Then, the operator T := T1 + T2 has a fixed point.

In the next lemma, the relatively compact criterion in the space CH will be presented, which plays an
important role in checking completely continuous mapping.

Lemma 2.4 (Ascoli-Arzela theorem). A subset U of CH is relatively compact in CH if and only if the following
statements are true

a) U is uniformly bounded and equicontinuous;

b) For each t ∈ [0,T], the set U(t) := {x(t)|x ∈ U} is relatively compact in X.

2.2. Grönwall inequality
The Grönwall inequality plays a key role in proving the existence and estimating solutions for differential

equations. Let us recall the following version, which was given in [16, Lemma 3.1].

Lemma 2.5 (Grönwall inequality). Suppose that u, a, b, k are nonnegative and integrable functions of the variable
t ∈ [0,T]. If

u(t) ≤ a(t) + b(t)
∫ T

t
k(s)u(s)ds, 0 ≤ t ≤ T,

then there holds that

u(t) ≤ a(t) + b(t)
∫ T

t
a(s)k(s) exp

( ∫ τ

t
b(τ)k(τ)dτ

)
ds, 0 ≤ t ≤ T.

In particular, if a(t) ≡ a, b(t) ≡ b, and k(t) ≡ 1, then

u(t) ≤ aeb(T−t), 0 ≤ t ≤ T.
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3. Existence and stability of mild solutions

In this section, we present main results of our work, which will be obtained by considering the following
assumptions on F, G. The nonlinearity F is assumed to satisfy two first ones. The last one introduces an
assumption for the nonlinearity G.

(A1) For each t ∈ [0,T], the function F(t, ·) : H → H is continuous. For each ψ ∈ H, the function
F(·, ψ) : [0,T]→ H is strongly measurable.

(A2) There exist a constant r1 ∈ [0, r) and p ∈ L1/r1 ([0,T],R+) such that

∥F(t, ψ)∥ ≤ p(t),

for all ψ ∈ H and almost all t ∈ [0,T].

(A3) G : CH → H, and there exists a positive constant K such that ∥G(u) − G(v)∥ ≤ K ∥u − v∥CH
, for all

u, v ∈ CH.

Let us give some useful explanations on the above assumptions. For each t ∈ [0,T] and v ∈ CH, we note
that F(t, v(t)) is a function of t and v(t), where v(t) takes value in H. On the other hand, G(v) is a function
of v (not of v(t) or v(T)) and takes value in H. In Section 4, an application of Problem (1)-(2) is discussed,
where H = L2(Ω), and G is given by

G(v) :=
m∑

k=1

µkv(Tk, ·), ∀v ∈ CL2(Ω),

where µk > 0, Tk ∈ (0,T) are given numbers, and Ω is a bounded domain in RN with sufficiently smooth
boundary ∂Ω.

3.1. Existence of a mild solution
We firstly obtain the existence of a mild solution in the following theorem, where bound properties of

Pr, Qr in Lemma 2.2 and fixed point theory are used.

Theorem 3.1. Assume that the assumptions (A1)-(A3) are hold and MK < 1. If uT ∈ H, then Problem (1)-(2) has a
mild solution in CH.

Proof. This theorem will be proved by applying the fixed point theorem of Krasnoselskii. We firstly begin
with some basic settings. Let us set U = {x ∈ CH : ∥x∥CH

≤ R}, where the radius R is given by

R =
M

1 −MK

(
∥uT∥ + ∥G(0)∥ + C0T

r−r1
1−r1

∥∥∥p∥∥∥
L

1
r1 ([0,T];R)

)
, (18)

and C0 := r(1−r1)1−r1

(r−r1)1−r1Γ(1+r) . This is a closed convex and nonempty ball of CH clearly. On this ball, we define the
mapping T by T := T1 + T2, where

T1x(t) := Pr(T − t)
(
uT + G(x)

)
, (19)

T2x(t) :=
∫ T

t
(s − t)r−1

Qr(s − t)F(s, x(s))ds, (20)

for all x ∈ U and 0 ≤ t ≤ T. This proof will be split into the following steps.

Step 1. Proving T is well-defined. For this purpose, we will estimate T1x(t) as follows. For all x ∈ U and
t ∈ [0,T], using the assumptions (A3), and Part i of Lemma 2.2 gives the estimates

∥T1x(t)∥ ≤ ∥Pr(T − t)∥LH
∥uT∥ + ∥Pr(T − t)∥LH

∥G(x)∥

≤M
(
∥uT∥ + K ∥x∥CH

+ ∥G(0)∥
)

≤MKR +M ∥uT∥H +M ∥G(0)∥ .
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Next, we will estimate the term T2x(t). Let us take arbitrarily x, y ∈ U. Then, by observing the assumption
(A1) and Part i of Lemma 2.2, we see that∫ T

t

∥∥∥(s − t)r−1
Qr(s − t)F(s, y(s))

∥∥∥ ds ≤
∫ T

t
(s − t)r−1

∥Qr(s − t)∥LH

∥∥∥F(s, y(s))
∥∥∥ ds,

which deduces the estimate∫ T

t

∥∥∥(s − t)r−1
Qr(s − t)F(s, y(s))

∥∥∥ ds ≤
rM
Γ(1 + r)

∫ T

t
(s − t)r−1p(s)ds. (21)

On the other hand, it is easy to see that s 7→ (s − t)(r−1)/(1−r1) is Lebesgue integrable. This implies that the
function s 7→ (s − t)r−1 belongs to L1/(1−r1)([t,T];R). So, from the assumption (A2), we can apply the Hölder
inequality as∫ T

t
(s − t)r−1p(s)ds ≤

( ∫ T

t
(s − t)

r−1
1−r1 ds

)1−r1( ∫ T

t
p

1
r1 (s)ds

)r1

, (22)

where p belongs to L1/r1 ([0,T];R). By combining the estimates (21), (22) together, we now derive∫ T

t

∥∥∥(s − t)r−1
Qr(s − t)F(s, y(s))

∥∥∥ ds ≤MC0(T − t)r−r1
∥∥∥p∥∥∥L1/r1 ([0,T];R)

. (23)

We then conclude that the function s 7→
∥∥∥(s − t)r−1

Qr(s − t)F(s, y(s))
∥∥∥ is Lebesgue integrable on the interval

[t,T], for each t ∈ [0,T]. Therefore, the abstract function s 7→ (s− t)r−1
Qr(s− t)F(s, y(s)) is Bochner integrable

on [t,T]. Consequently, T1(t) and T2(t) are defined for all t ∈ [0,T]. Furthermore, for all x, y ∈ U and
0 ≤ t ≤ T, we imply from estimates for T1, T2 in the above arguments that∥∥∥T1x(t) + T2y(t)

∥∥∥ ≤MKR +M ∥uT∥H +M ∥G(0)∥

+MC0(T − t)r−r1
∥∥∥p∥∥∥L1/r1 ([0,T];R)

≤ R, (24)

and so the mapping T is well-defined on U.

Step 2. Proving T1 is a contraction mapping on U. By applying the second part of Lemma 2.2 and the
assumption (A3), we can see that∥∥∥T1x(t) − T1y(t)

∥∥∥ ≤ ∥Pr(T − t)∥LH

∥∥∥G(x) − G(y)
∥∥∥ ≤MK

∥∥∥x − y
∥∥∥
CH

for all x, y in U. Since MK < 1, T1 is a contraction mapping .

Step 3. Proving T2 is completely continuous. For the sake of convenience, we divide this step into the
following sub-steps.

• Firstly, we will prove T2 is continuous on U. Let xn ∈ U,n = 1, 2, ... such that the sequence {xn} converges to
x in U as n→ ∞, i.e., ∥xn − x∥CH

→ 0. Then ∥xn(s) − x(s)∥ → 0 for all s ∈ [0,T]. By applying the assumption
(A1), we deduce

∥F(s, xn(s)) − F(s, x(s))∥ → 0, ∀s ∈ [0,T]. (25)

Making uses of Lemma 2.2 and the assumption (A2) together, and then applying the Hölder inequality, one
can check the chain

∥T2xn(t) − T2x(t)∥ ≤
∫ T

t
(s − t)r−1

∥Qr(s − t)∥LH
∥F(s, xn(s)) − F(s, x(s))∥ ds

≤
rM
Γ(1 + r)

∫ T

t
(s − t)r−1

∥F(s, xn(s)) − F(s, x(s))∥ ds

≤
rM
Γ(1 + r)

θT

( ∫ T

0
∥F(s, xn(s)) − F(s, x(s))∥

1
r1 ds
)r1

, (26)
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where we note( ∫ T

t
(s − t)

r−1
1−r1 ds

)1−r1

≤
(1 − r1)1−r1

(r − r1)1−r1
Tr−r1 =: θT. (27)

Here, the assumption (A2) and triangle inequality allow that the norm of F(s, xn(s))−F(s, x(s)) is bounded by
2p(s), where p ∈ L1/r1 ([0,T];R). This implies that F(s, xn(s)) − F(s, x(s)) contains in L1/r1 ([0,T]; H). Therefore,
taking supremum two sides of (26) on [0,T] gives

∥T2xn − T2x∥CH
≤MC0Tr−r1

( ∫ T

0
∥F(s, xn(s)) − F(s, x(s))∥

1
r1 ds
)r1

, (28)

where C0 was given by (18). Let us combine the estimates (25), (26), and apply the Lebesgue’s dominated
convergence theorem to obtain that T2xn − T2x converges to 0 in CH. Summarily, the mapping T2 is
continuous on U.

• Secondly, we will prove T2(U) := {T2x | x ∈ U} is uniformly bounded and equicontinuous. For this purpose, it
should be noticed that the the uniform boundedness of T2(U) is obvious since T2x ∈ U for all x ∈ U. Hence,
we are going to prove the equicontinuity of T2(U). For all 0 ≤ t1 < t2 ≤ T, we have

T2x(t1) − T2x(t2) =
∫ t2

t1

(s − t1)r−1
Qr(s − t1)F(s, x(s))ds︸                                     ︷︷                                     ︸

:=φ1

+

∫ T

t2

(
(s − t1)r−1

Qr(s − t1) − (s − t2)r−1
Qr(s − t1)

)
F(s, x(s))ds︸                                                                     ︷︷                                                                     ︸

:=φ2

+

∫ T

t2

(
(s − t2)r−1

Qr(s − t1) − (s − t2)r−1
Qr(s − t2)

)
F(s, x(s))ds︸                                                                     ︷︷                                                                     ︸

:=φ3

.

By making uses of the assumption (A2) and the Hölder inequality similarly as (23), the first term φ1 can
be estimated as follows∥∥∥φ1

∥∥∥ ≤MC0(t2 − t1)r−r1
∥∥∥p∥∥∥L1/r1 ([0,T];R)

, (29)

where the constant C0 was also given by (18). We now estimate the second term φ2. It is useful to recall the
inequality (a − b)λ ≤ aλ − bλ for all a > b and λ > 1. Applying this inequality with respect to λ = 1

1−r1
> 1

gives that

∥∥∥φ2

∥∥∥ ≤ Mr
Γ(1 + r)

{∫ T

t2

∣∣∣(s − t1)r−1
− (s − t2)r−1

∣∣∣ 1
1−r1 ds

}1−r1 ∥∥∥p∥∥∥L1/r1 ([0,T];R)

≤
Mr
Γ(1 + r)

{∫ T

t2

(
(s − t2)

r−1
1−r1 − (s − t1)

r−1
1−r1

)
ds
}1−r1 ∥∥∥p∥∥∥L1/r1 ([0,T];R)

,

where the assumption (A2) and the Hölder inequality have been used consecutively. Taking some simple
computations, we then obtain

∥∥∥φ2

∥∥∥ ≤MC0

(
(T − t2)

r−r1
1−r1 − (T − t1)

r−r1
1−r1 + (t2 − t1)

r−r1
1−r1

)1−r1 ∥∥∥p∥∥∥L1/r1 ([0,T];R)
.



T. B. Ngoc, N. H. Tuan / Filomat 36:4 (2022), 1099–1112 1106

Let us proceed to estimate the last term φ3. In the case t2 = T, the integrand of φ3 is Bochner integrable
(see Step 1), which yields that

∥∥∥φ3

∥∥∥ = 0. We consider the case t2 < T. By taking a positive real number
ϵ0 ∈ (t2,T), we can write

φ3 =

∫ t2+ϵ

t2

(s − t2)r−1
(
Qr(s − t1) − Qr(s − t2)

)
F(s, x(s))ds

+

∫ T

t2+ϵ
(s − t2)r−1

(
Qr(s − t1) − Qr(s − t2)

)
F(s, x(s))ds := φ31 + φ32, (30)

for any 0 < ϵ < ϵ0. Since the norm ofQr(s) in H is bounded by Mr/Γ(r+1), we can estimateQr(s−t1)−Qr(s−t2)
in H by 2Mr/Γ(r + 1). Therefore, the term φ31 can be estimated as

∥φ31∥ ≤
2Mr
Γ(r + 1)

∫ t2+ϵ

t2

(s − t2)r−1
∥F(s, x(s))∥ ds ≤ 2MC0

∥∥∥p∥∥∥L1/r1 ([0,T];R)
ϵr−r1 .

Moreover, by the strongly continuous property ofQr in Part ii of Lemma 2.2, the supremum ∥Qr(s − t1) − Qr(s − t2)∥LH

on [t2 + ϵ,T] exists finitely. Therefore, by the Hölder inequality and also some fundamental computations,
the following chain is obvious

∥φ32∥ ≤ sup
s∈[t2+ϵ,T]

∥Qr(s − t1) − Qr(s − t2)∥LH

∫ T

t2+ϵ
(s − t2)r−1

∥F(s,w(s))∥ ds

≤ sup
s∈[t2+ϵ,T]

∥Qr(s − t1) − Qr(s − t2)∥LH
C1

(
(T − t2)

r−r1
1−r1 − ϵ

r−r1
1−r1

)1−r1

,

where C1 =
(1−r1)

1−r1

(r−r1)
1−r1

∥∥∥p∥∥∥L1/r1 ([0,T];R)
.

Taking the above estimates for φ1, φ2, and φ31, φ32 together, we consequently obtain

∥T2x(t1) − T2x(t2)∥

≤MC0

∥∥∥p∥∥∥L1/r1 ([0,T];R)
(t2 − t1)r−r1 + 2MC0

∥∥∥p∥∥∥L1/r1 ([0,T];R)
ϵr−r1

+MC0

∥∥∥p∥∥∥L1/r1 ([0,T];R)

(
(T − t2)

r−r1
1−r1 − (T − t1)

r−r1
1−r1 + (t2 − t1)

r−r1
1−r1

)1−r1

+ C1 sup
s∈[t2+ϵ,T]

∥Qr(s − t1) − Qr(s − t2)∥LH

(
(T − t2)

r−r1
1−r1 − ϵ

r−r1
1−r1

)1−r1

.

The strongly continuous property of Qr in Part ii of Lemma 2.2 also yields that limit of the latter supremum
is zero as t2− t1 approaches zero. Let us take the limit both sides of the above estimates as t2− t1 → 0, which
accordingly deduces that

lim
t2−t1→0

∥T2x(t1) − T2x(t2)∥ ≤ 2MC0

∥∥∥p∥∥∥L1/r1 ([0,T];R)
ϵr−r1 , (31)

for all ϵ > 0. As a consequence, taking the limit both sides of (31) as ϵ→ 0+ implies that
limt2−t1→0 ∥T2x(t1) − T2x(t2)∥ = 0. Notice that the above convergence does not depend on x. Therefore, the
set T2(U) is equicontinuous.

• Thirdly, we will prove that the set {T2x(t) | x ∈ U} is relatively compact for any t ≥ 0. The case t = 0 is trivial. So,
it is only necessary to consider the case t > 0. For any ϵ > 0, we now define

ϵQr(t) :=
∫
∞

ϵ
rξ−

1
r Dr(ξ−

1
r )S(trξ)dξ,

ϵT2x(t) :=
∫ T

t+ϵ
(s − t)r−1

ϵQr(s − t)F(s, x(s))ds.
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We recall that {S(t) : t ≥ 0} is a semigroup. Hence, we can write S(trξ) as an action of S(ϵ1+r) on
S((s − t)rξ − ϵ1+r), which reads

ϵQr(s − t) = S(ϵ1+r)
∫
∞

ϵ
rξ−

1
r Dr(ξ−

1
r )S((s − t)rξ − ϵ1+r)dξ,

for all s > t + ϵ. Form the above equality, we can express ϵT2x(t) in term of S and Dr. Indeed, there holds

ϵT2x(t) = S(ϵ1+r)
∫ T

t+ϵ

∫
∞

ϵ
(s − t)r−1rξ−

1
r Dr(ξ−

1
r )S((s − t)rξ − ϵ1+r)F(s, x(s))dξds.

We will show that the following set{∫ T

t+ϵ

∫
∞

ϵ
(s − t)r−1rξ−

1
r Dr(ξ−

1
r )S
(
(s − t)rξ − ϵ1+r

)
F(s, x(s))dξds

∣∣∣∣∣ ∥x∥ ≤ R
}

is bounded. By the making use of the Hölder inequality analogously as (22), we have∥∥∥∥∥∥
∫ T

t+ϵ

∫
∞

ϵ
(s − t)r−1rξ−

1
r Dr(ξ−

1
r )S
(
(s − t)rξ − ϵ1+r

)
F(s, x(s))dξds

∥∥∥∥∥∥
≤M

∫ T

t+ϵ

∫
∞

ϵ
(s − t)r−1rξ−

1
r Dr(ξ−

1
r )∥F(s, x(s))∥dξds

≤M
∫ T

t
(s − t)r−1

∥F(s, x(s))∥ds ×
∫
∞

0
rξ−

1
r Dr(ξ−

1
r )dξ

≤M
r(1 − r1)1−r1

(r − r1)1−r1Γ(1 + r)
(T − t)r−r1

∥∥∥p∥∥∥L1/r1 ([0,T];R)

r2

Γ(1 + r)
. (32)

Moreover, we also recall that, S(t) is a compact operator for each t > 0. So, S(ϵ1+r) is compact. We imply
from the formula of ϵT2x(t) that the set { ϵT2x(t) | x ∈ U} is relatively compact. Summarily, the proof will be
finished by showing that the norm ∥T2x(t) − ϵT2x(t)∥ tends to zero as ϵ approaches zero. One has

T2x(t) − ϵT2x(t) =
∫ t+ϵ

t
(s − t)r−1

Qr(s − t)F(s, x(s))ds

+

∫ T

t+ϵ
(s − t)r−1

(
Qr(s − t) − ϵQr(s − t)

)
F(s, x(s))ds.

By the same way as estimating φ31, we can estimate the first term above as follows∥∥∥∥∥∥
∫ t+ϵ

t
(s − t)r−1

Qr(s − t)F(s, x(s))ds

∥∥∥∥∥∥ ≤MC0ϵ
r−r1
∥∥∥p∥∥∥L1/r1 ([0,T];R)

,

where the assumption (A2) and the Hölder inequality have been employed. On the other hand, according to
the definition ofQr and the fundamental theorem of Calculus, we can write the differenceQr(s−t)− ϵQr(s−t)
as
∫ ϵ

0 rξ−
1
r Dr(ξ−

1
r )S((s − t)rξ)dξ. Therefore, by using the property (15), and then applying the assumption

(A2), the Hölder inequality again, we obtain the following chain of estimates∥∥∥∥∥∫ T

t+ϵ
(s − t)r−1

(
Qr(s − t) − ϵQr(s − t)

)
F(s, x(s))ds

∥∥∥∥∥
=

∥∥∥∥∥∫ T

t+ϵ

∫ ϵ

0
(s − t)r−1rξ−

1
r Dr(ξ−

1
r )S((s − t)rξ)F(s, x(s))dξds

∥∥∥∥∥
≤M

r(1 − r1)1−r1

(r − r1)1−r1Γ(1 + r)
(T − t)r−r1

∥∥∥p∥∥∥L1/r1 ([0,T];R)

∫ ϵ

0
rξ−

1
r Dr(ξ−

1
r )dξ,

where the latter right hand side converges to zero as ϵ approaches zero.
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Remark 3.1.1. A natural question may arise that why cannot Banach mapping theorem be directly applied to establish
the existence of mild solutions? In fact, in order to use the Banach theorem, it requires Lipschitz continuity of the
nonlinearity F, which did not assume in the assumptions (A1) and (A2).

3.2. Stability of the mild solution
In this part, we will obtain the stability of the mild solution with respect to uT. For this purpose, we will

consider the assumption (A1b) below instead of (A1), which gives a Lipschitz continuity of the nonlinearity
F.

(A1b) The function F : [0,T] ×H→ H such that

∥F(t, ψ1) − F(t, ψ2)∥ ≤ KF∥ψ1 − ψ2∥, ∀t ∈ [0,T], ψ1, ψ2 ∈ H,

where KF does not depend on t, ψ1, ψ2. Moreover, the function F(·, ψ) : [0,T] → H is strongly measurable
for each ψ ∈ H.

The above assumption is clearly stronger than (A1) in the sense: if F satisfies (A1b) then it satisfies (A1).
Consequently, Theorem 3.1 also holds if we replace (A1) by (A1b).

Theorem 3.2 (Stability). Assume that the assumptions (A1b), (A2), (A3) are satisfied, and K is small enough. Let
xuT be the mild solution of Problem (1)-(2) corresponding to uT ∈ H, which was obtained in Theorem 3.1. Then, there
exists C > 0 such that∥∥∥xuT − xũT

∥∥∥
CH
≤ C
∥∥∥uT − ũT

∥∥∥ , ∀uT, ũT ∈ H.

Proof. We note that Theorem 3.1 can be applied if we take K small enough such that MK < 1. Besides, the
mild solution xuT ∈ CH satisfies the equation T xuT (t) = xuT (t) or T1xuT (t) + T2xuT (t) = xuT (t) for all t ∈ [0,T],
where the estimate for T1xuT , T2xuT can be established analogously as Step 1 in the proof of Theorem 3.1.
Firstly, the assumptions (A1b) and (A3) deduce that∥∥∥T1xuT (t) − T1xũT

(t)
∥∥∥ ≤ ∥Pr(T − t)∥LH

∥∥∥uT − ũT

∥∥∥
+ ∥Pr(T − t)∥LH

∥∥∥G(xuT ) − G(xũT
)
∥∥∥

≤M
( ∥∥∥uT − ũT

∥∥∥ + K
∥∥∥xuT − xũT

∥∥∥
CH

)
.

By the same techniques as (26), we have∥∥∥T2xuT (t) − T2xũT
(t)
∥∥∥ ≤ ∫ T

t
(s − t)r−1

∥Qr(s − t)∥LH

∥∥∥F(s, xuT (s)) − F(s, xũT
(s))
∥∥∥ ds

≤
rM
Γ(1 + r)

∫ T

t
(s − t)r−1

∥∥∥F(s, xuT (s)) − F(s, xũT
(s))
∥∥∥ ds

≤
rM
Γ(1 + r)

θT

( ∫ T

t

∥∥∥F(s, xuT (s)) − F(s, xũT
(s))
∥∥∥ 1

r1 ds
)r1

,

where the notation θT is given by (27). Here, the number 1/r1 is strictly greater than 1. By combining the
above arguments, we obtain∥∥∥xuT (t) − xũT

(t)
∥∥∥ ≤M

( ∥∥∥uT − ũT

∥∥∥ + K
∥∥∥xuT − xũT

∥∥∥
CH

)
+

rM
Γ(1 + r)

θT

( ∫ T

t

∥∥∥F(s, xuT (s)) − F(s, xũT
(s))
∥∥∥ 1

r1 ds
)r1

≤M
( ∥∥∥uT − ũT

∥∥∥ + K
∥∥∥xuT − xũT

∥∥∥
CH

)
+

rM
Γ(1 + r)

θTKF

( ∫ T

t

∥∥∥xuT (s) − xũT
(s)
∥∥∥ 1

r1 ds
)r1

.
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We now recall the inequality: for all a, b ≥ 0, q ≥ 1, there holds (a + b)q
≤ 2q−1(aq + bq). Since 1/r1 is greater

than 1, one can apply this inequality to obtain the following chain∥∥∥xuT (t) − xũT
(t)
∥∥∥ 1

r1 ≤ 2
2−2r1

r1 M
1
r1

( ∥∥∥uT − ũT

∥∥∥ 1
r1 + K

1
r1

∥∥∥xuT − xũT

∥∥∥ 1
r1
CH

)
+
( rM
Γ(1 + r)

θTKF

) 1
r1
∫ T

t

∥∥∥xuT (s) − xũT
(s)
∥∥∥ 1

r1 ds.

Then, by applying the Grönwall inequality in Lemma 2.5, one accordingly deduces that∥∥∥xuT (t) − xũT
(t)
∥∥∥ 1

r1 ≤ C2

( ∥∥∥uT − ũT

∥∥∥ 1
r1 + K

1
r1

∥∥∥xuT − xũT

∥∥∥ 1
r1
CH

)
eC3(T−t),

where C2 = 2
2−2r1

r1 M
1
r1 , and C3 =

(
rM
Γ(1+r)θTKF

) 1
r1 . Let us taking the supremum two sides of the above estimate

with respect to t ∈ [0,T], and choose K small enough such that C2K1/r1 eC3T < 1. Then, one can find a positive
constant C4 such that∥∥∥xuT − xũT

∥∥∥
CH
≤ C4

∥∥∥uT − ũT

∥∥∥ ,
namely, the theorem is proved.

4. Application

In this section, we present an application of our main results corresponding to some specific cases of
the nonlinear functions F,G. LetΩ be a bounded domain inRN with sufficiently smooth boundary ∂Ω. We
consider the time fractional diffusion equation{

∂ r
t u(t, x) − ∆u(t, x) = F(t,u(t, x)), 0 ≤ t < 1, x ∈ Ω,

u(t, x) = 0, 0 ≤ t < 1, x ∈ ∂Ω, (33)

subjected to the nonlocal final condition

u(1, x) +
m∑

k=1

µku(Tk, x) = φ(x), x ∈ Ω, (34)

where ∆ is the Laplace operator defined on the domain D(A) = C(Ω) ∩ H2(Ω), the functions F,uT and
numbers µk > 0, Tk ∈ (0,T), 1 ≤ k ≤ m, are given.

The nonlocal final condition (34) can be used to describe diffusion phenomena, where a small amount
of gas diffuses in a transparent tube. Suppose that we observe the diffusion via the surface of the tube. In
the case too little gas can be measured at the final time T = 1, we may measure the diffusion at some added
points T1,T2, ...,Tm in the interval (0, 1). The measurement u(1, x) +

∑m
k=1 µku(Tk, x) may be more accurate

than u(1, x). We refer the reader to the papers [36–38] for more discussions on nonlocal conditions.

We focus on establishing the existence of mild solutions to Problem (33)-(34) by applying Theorem 3.1
under some suitable assumptions. This will be presented in Theorem 4.1, where we need the following
assumptions on F.

(H1) For each t ∈ [0,T], the function F(t, ·) : L2(Ω)→ L2(Ω) is continuous. For each ψ ∈ L2(Ω), the function
F(·, ψ) : [0,T]→ L2(Ω) is strongly measurable.

(H2) The exists a constant r1 ∈ [0, r) and p ∈ L1/r1 ([0,T],R+) such that

∥F(t, ψ)∥ ≤ p(t),
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for all ψ ∈ L2(Ω) and almost all t ∈ [0,T].

(H1b) The function F : [0,T] × L2(Ω)→ L2(Ω) such that

∥F(t, ψ1) − F(t, ψ2)∥ ≤ KF∥ψ1 − ψ2∥, ∀t ∈ [0,T], ψ1, ψ2 ∈ L2(Ω),

where KF does not depend on t, ψ1, ψ2. Moreover, the function F(·, ψ) : [0,T]→ L2(Ω) is strongly measurable
for each ψ ∈ L2(Ω).

Theorem 4.1. Assume that (H1), (H2) are satisfied. If
∑m

k=1 µk < 1 and φ ∈ L2(Ω), then Problem (33)-(34) has a
mild solution uφ in CL2(Ω).

Furthermore, if the assumption (H1) is replaced by (H1b) and
∑m

k=1 µk is small enough, then the mild solution is
stable corresponding to∥∥∥uφ − uφ̃

∥∥∥
CL2(Ω)

≲
∥∥∥φ − φ̃∥∥∥ , ∀φ, φ̃ ∈ L2(Ω).

Proof. By comparing with Problem (1)-(2), we have A := ∆, and

(G(v))(x) := −
m∑

k=1

µkv(Tk, x), x ∈ Ω.

The semigroup {S(t)}t≥0 is formulated by S(t) := et∆, which is compact analytic. Moreover, since M =
supt≥0 ∥S(t)∥LL2(Ω)

, we then have M ≤ 1. For all v1, v2 ∈ CL2(Ω), it is easy to see that

∥G(v1) − G(v2)∥L2(Ω) ≤

m∑
k=1

µk∥v1(Tk, ·) − v2(Tk, ·)∥L2(Ω) ≤ K∥v1 − v2∥CL2(Ω)
,

where K :=
∑m

k=1 µk. By the assumptions (H1), (H2), the condition
∑m

k=1 µk < 1 is sufficient to apply Theorem
3.1, which shows the existence of a mild solution uφ to Problem (33)-(34) in the space CL2(Ω). Moreover, the
stability can be obtained by applying Theorem 3.2.

Remark 4.1.1. If the first eigenvalue of the operator ∆ is −λ1 < 0, then M = e−λ1 .

Remark 4.1.2. If the amount of gas, measured at the final time T = 1, is sufficient to determine the diffusion, no
additional measurements are required at T1,T2, ...,Tm. This also leads to the fact that G = 0, and that the problem
becomes a final value problem for time fraction diffusion equations, which has been widely applied in real world
problems.

Appendix

Proof. [Proof of Lemma 2.2] In order to prove the first part, we will employ the property (15) of the density
function Dr. Indeed, this property ensures that

∥Pr(t)∥LH
≤M
∫
∞

0

ξ−1− 1
r Dr(ξ−

1
r )

r
dξ =M

∫
∞

0

(ξ−r)−1− 1
r Dr(ξ)

r
rξ−1−rdξ =M.

Similarly, we also have ∥Pr(t)∥LH
≤

Mr2

Γ(1 + r)
by using (15), namely, Part i is proved. Part ii can be proved by

applying (15) also. We now proceed to prove Part iii. Let us fix real numbers t > 0 and R > 0. In order to
show that Pr(t) is compact, we need to show that the set I(t) := {Pr(t)x | ∥x∥ ≤ R} is relatively compact in H.
Firstly, for any ϵ > 0, we define

ϵPr(t) : =
∫
∞

ϵ

ξ−1− 1
r Dr(ξ−

1
r )

r
S(trξ)dξ.
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Since S is a semigroup, we then have

ϵPr(t)x = S(trϵ)
∫
∞

ϵ

ξ−1− 1
r Dr(ξ−

1
r )

r
S(trξ − trϵ)xdξ. (35)

By using Part i, we notice that the following set{∫
∞

ϵ

ξ−1− 1
r Dr(ξ−

1
r )

r
S(trξ − trϵ)xdξ

∣∣∣∣ ∥x∥ ≤ R
}

is bounded. Hence, it follows from the equality (35) and the compactness of the operator S(ϵrξ) that the set
Iϵ(t) := {ϵPr(t)x | ∥x∥ ≤ R} is relatively compact in H.

Moreover, it is obvious that

Pr(t)x − ϵPr(t)x =
∫ ϵ

0

ξ−1− 1
r Dr(ξ−

1
r )

r
S(trξ)xdξ. (36)

We recall that ∥S(t)∥LH
≤M for all t ≥ 0. Therefore, the norm ∥Pr(t)x− ϵPr(t)x∥ is bounded by MR

∫ ϵ
0 r−1ξ−1− 1

r Dr(ξ−
1
r )dξ.

The integrable property of the integrand ξ−1− 1
r Dr(ξ−

1
r ) implies that the integral

∫ ϵ
0 r−1ξ−1− 1

r Dr(ξ−
1
r )dξ tends

0 as ϵ approaches 0. This leads to ∥∥∥∥Pr(t)x − ϵPr(t)x
∥∥∥∥ −→ 0

as ϵ→ 0. Consequently, the set I(t) := {Pr(t)x | |x| ≤ R} is relatively compact in H. The relative compactness
of Qr(t) can be proved similarly.
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