Filomat 36:4 (2022), 1143–1157 https://doi.org/10.2298/FIL2204143A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Two Families of Separation Axioms on Infra Soft Topological Spaces

Tareq M. Al-shami^a, Abdelwaheb Mhemdi^b

^aDepartment of Mathematics, Sana'a University, Sana'a, Yemen ^bDepartment of Mathematics, College of Sciences and Humanities in Aflaj Prince Sattam bin Abdulaziz University, Riyadh, Saudi Arabia

Abstract. Many generalizations of soft topology were studied in the literature; an infra soft topology is the recent one of these generalizations. In this paper, we put on view two classes of soft separation axioms in the frame of infra soft topologies, namely infra *pp*-soft T_j and infra *pt*-soft T_j -spaces (j = 0, 1, 2, 3, 4). Both of them are formulated with respect to distinct ordinary points such that the first class defined using partial belong and partial non-belong relations, and the second one defined using partial belong and total non-belong relations. Following systematic lines of this type of study, we first show the relationships between them with the aid of examples. We also establish main properties and explore their behaviour under some special types of infra soft topologies. Transmission of these classes between infra soft topology and its parametric infra topologies are amply studied. Moreover, we scrutinize their features in terms of hereditary and topological properties, and finite product of soft spaces.

1. Introduction

Soft set is a mathematical approach proposed by Molodtsov [32], in 1999, to cope with problems containing uncertainties. Molodtsov explained the potentiality of soft sets to handle many problems in different areas. Then, Maji et al. [31] successfully applied soft sets to deal with decision-making problems. Their methodology was later improved in [19]. Also, they [30] displayed some operations and operators on soft sets such as intersection and union of two soft sets, and the complement of a soft set. Despite the weakness of some concepts and results in this early reference, it forms the essential start point of soft set theory. Later on, Ali et al. [3] established new kinds of these operations and operators in a way that helps to preserve the main properties and results of crisp set theory. In these lines, Qin and Hong [34] introduced lower and upper soft equality, Abbas et al. [1] studied gf-soft union, and Al-shami [12] defined T-soft subset and T-soft equality. Since the advent of soft sets, many authors applied successfully to address problems in some disciplines such as computer science [18], decision-making [10, 22], and medical science [40]. These applications prove the adequacy of soft sets to treat and model a lot of real-life issues.

In 2011, topological notions have been hybridized with soft sets by Shabir and Naz [35]. Many researchers have explored the properties of soft topologies and compared their performance with the case of classical topologies; see, for example, [12, 16]. Zorlutuna et al. [42] came up with the idea of soft point

²⁰²⁰ Mathematics Subject Classification. Primary 54D10, 54D15; Secondary 54B05, 54B10

Keywords. Partial belong relation, partial non-belong relation, total non-belong relation, soft separation axioms, extended infra soft topology

Received: 04 April 2021; Revised: 25 August 2021; Accepted: 28 August 2021

Communicated by Ljubiša D.R. Kočinac

Email addresses: tareqalshami83@gmail.com (Tareq M. Al-shami), mhemdiabd@gmail.com (Abdelwaheb Mhemdi)

which was independently reformulated by [20] and [33]. The soft points play a role of ordinary points (elements) in crisp setting. Enriched and extended soft topologies were investigated in [33] as special types of soft topologies; they produce some interesting properties between soft and crisp topological spaces as illustrated in [14]. Kočinac et al. [29] discussed the Menger selection principle in the context of soft sets and explored its properties in this context. Some studies on the frame of soft topologies were conducted in [25, 27].

It is always convenient to find the weakest conditions that preserve some topologically inspired properties, maybe under structures relaxing a topology. Supra soft topology [23] and infra soft topology [5] have been born with this goal. They have become two of the most interesting developments of soft topology in recent years. Supra topology is a class of subsets that extend the concept of topology by dispensing with the postulate that the class is closed under finite intersections, whereas infra topology is a class of subsets that extend the concept of topological space by dispensing with the postulate that the class is closed under arbitrary unions.

Another generalizations of a soft topology were given in the literature; for example, Thomas and John [39] formulated the concept of soft generalized topological spaces which defined as a family of soft sets which satisfies an arbitrary union condition of a soft topology, and Zakari et al. [41] originated the concepts of soft weak structures which defined as a family of soft sets which contains the null soft set. Ittanagi [26] established the structure of soft bitopology which can be regarded as a soft topology when the two soft topologies are identical. Lately, Al-shami et al. [13] have constructed soft topology on ordered setting as an extension of soft topology. Similarly, Al-shami and El-Shafei [9] studied supra soft topology on ordered setting.

Our contribution to this field concerns the analysis of what type of "separation axioms" are meaningful in the study of infra soft topology. As was the case of classical topology, soft separation axioms are among the most interesting and substantial concepts in soft topology. They form a tool to establish more restricted (and more wider) classes of well-behaved soft topological spaces. It should be noted that a large variety of separation axioms in soft topologies is attributed to two factors. One is the distinguished objects that we intend to separate: they can be either soft points or ordinary points. The other is the type of belongingness and non-belongingness relations that we require in the definitions: they can be either partial or total. For more details on the subject we refer to [17, 21, 22, 36–38].

In this article, we note that many properties of soft topological spaces are still valid on infra soft topological spaces, and examples that show some relationships between certain topological concepts are constructed easily on infra soft topological spaces. Therefore, we aim in this paper to perform an exhaustive analysis of infra soft topological spaces.

The organization of this article is as follows. In Section 2, we give some definitions and properties related to soft set theory and infra soft topology. In Section 3, we initiate infra *pp*-soft T_j -spaces (j = 0, 1, 2, 3, 4) and study basic properties. In Section 4, we define infra *pt*-soft T_j -spaces (j = 0, 1, 2, 3, 4) and discuss main properties. Then, we disclose some relationships among them with the help of elucidative examples. Finally, we give some conclusions and make a plan for future works in Section 5.

2. Preliminaries

The concepts and results that we need in this paper are recalled in this section. The notation 2^X refers to the power set of *X*.

2.1. Soft set theory

Definition 2.1. ([32]) A map *G* from the set of parameters Λ to 2^X is called a soft set over *X*. It is denoted by G_{Λ} and identified as $G_{\Lambda} = \{(\lambda, G(\lambda)) : \lambda \in \Lambda \text{ and } G(\lambda) \in 2^X\}.$

The set of all soft sets over *X* under a set of parameters Λ is symbolized by *S*(*X*_{Λ}).

Definition 2.2. ([3]) The relative complement of a soft set G_{Λ} , symbolized by G_{Λ}^c , is given by $G_{\Lambda}^c = (G^c)_{\Lambda}$, where $G^c : \Lambda \to 2^X$ is a map defined by $G^c(\lambda) = X \setminus G(\lambda)$ for each $\lambda \in \Lambda$.

Definition 2.3. ([31]) A soft set G_{Λ} over X is said to be the null soft set, symbolized by $\overline{\Phi}$, if $G(\lambda) = \emptyset$ for each $\lambda \in \Lambda$. Its relative complement is said to be the absolute soft set, symbolized by \widetilde{X} .

Definition 2.4. ([31]) The intersection of two soft sets G_{Λ} and F_{Γ} over X, symbolized by $G_{\Lambda} \cap F_{\Gamma}$, is a soft set H_{Ω} , where $\Omega = \Lambda \cap \Gamma \neq \emptyset$, and a map $H : \Omega \to 2^X$ is given by $H(\omega) = G(\omega) \cap F(\omega)$ for each $\omega \in \Omega$.

Definition 2.5. ([3]) The union of two soft sets G_{Λ} and F_{Γ} over X, symbolized by $G_{\Lambda} \bigcup F_{\Gamma}$, is a soft set H_{Ω} , where $\Omega = \Lambda \cup \Gamma$ and a map $H : \Omega \to 2^X$ is given as follows:

$$H(\omega) = \begin{cases} G(\omega) & : \quad \omega \in \Lambda \setminus \Gamma \\ F(\omega) & : \quad \omega \in \Gamma \setminus \Lambda \\ G(\omega) \cup F(\omega) & : \quad \omega \in \Lambda \cap \Gamma \end{cases}$$

Definition 2.6. ([24]) A soft set G_{Λ} is a soft subset of a soft set F_{Γ} , symbolized by $G_{\Lambda} \subseteq F_{\Gamma}$, if $\Lambda \subseteq \Gamma$ and for all $\lambda \in \Lambda$, we have $G(\lambda) \subseteq F(\lambda)$.

The soft sets G_{Λ} and G_{Γ} are called soft equal if each is a soft subset of the other.

Definition 2.7. ([20, 33]) A soft point P_{Λ} over X is a soft set such that $P(\lambda)$ is a singleton set, say x, and $P(\lambda')$ is the empty set for each $\lambda' \neq \lambda$. This soft point will be briefly symbolized by P_{λ}^{x} .

Definition 2.8. ([35]) A soft set x_{Λ} over *X* is defined by $x(\lambda) = \{x\}$ for each $\lambda \in \Lambda$.

Definition 2.9. A soft set G_{Λ} over *X* is said to be:

(i) a stable soft set [21] if all components are equal.

(ii) a full soft set [24] if $\bigcup_{\lambda \in \Lambda} G(\lambda) = X$.

(iii) a partition soft set [24] if $\{G(\lambda) : \lambda \in \Lambda\}$ is a partition for *X*.

Definition 2.10. ([16]) The Cartesian product of G_{Λ} and H_{Γ} , symbolized by $(G \times H)_{\Lambda \times \Gamma}$, is defined as $(G \times H)(\lambda, \omega) = G(\lambda) \times H(\omega)$ for each $(\lambda, \omega) \in \Lambda \times \Gamma$.

The definition of soft maps given in [28] was reformulated in a way that reduces calculation burden and gives a logical explanation (justification) for some soft concepts such as why we determine that f_{φ} is injective, or surjective according to its two crisp mappings f and φ .

Definition 2.11. ([7]) Let $f : X \to Y$ and $\phi : \Lambda \to \Gamma$ be two crisp mappings. A soft mapping f_{φ} of $P(X_{\Lambda})$ into $P(Y_{\Gamma})$ is a relation such that each soft point in $P(X_{\Lambda})$ is related to one and only one soft point in $P(Y_{\Gamma})$ such that

$$f_{\phi}(P_{\lambda}^{x}) = P_{\omega(\lambda)}^{f(x)}$$
 for each $P_{\lambda}^{x} \in P(X_{\Lambda})$.

In addition, $f_{\phi}^{-1}(P_{\gamma}^{y}) = \underset{\substack{\lambda \in \varphi^{-1}(\gamma) \\ x \in f^{-1}(y)}}{\sqcup} P_{\lambda}^{x}$ for each $P_{\gamma}^{y} \in P(Y_{\Gamma})$.

Definition 2.12. ([28]) A soft map $f_{\phi} : S(X_{\Lambda}) \to S(Y_{\Gamma})$ is said to be injective (resp. surjective, bijective) if both *f* and ϕ are injective (resp. surjective, bijective).

Definition 2.13. ([21, 35]) For a soft set G_{Λ} over *X* and $x \in X$, we say that:

(i) $x \in G_{\Lambda}$ (it reads as x totally belongs to G_{Λ}) if $x \in G(\lambda)$ for each $\lambda \in \Lambda$.

(ii) $x \notin G_{\Lambda}$ (it reads as *x* does not partially belong to G_{Λ}) if $x \notin G(\lambda)$ for some $\lambda \in \Lambda$.

(iii) $x \in G_{\Lambda}$ (it reads as *x* partially belongs to G_{Λ}) if $x \in G(\lambda)$ for some $\lambda \in \Lambda$.

(iv) $x \notin G_{\Lambda}$ (it reads as *x* does not totally belong to G_{Λ}) if $x \notin G(\lambda)$ for each $\lambda \in \Lambda$.

The following proposition connects the relations in Definition 2.13 with the study of the types of soft maps in Definition 2.12:

Proposition 2.14. ([21]) Consider a soft map $g_{\phi} : S(X_{\Lambda}) \to S(Y_{\Gamma})$ and let G_{Λ} and H_{Γ} be soft sets in $S(X_{\Lambda})$ and $S(Y_{\Gamma})$, respectively. Then the next results hold true:

(i) If $x \in G_{\Lambda}$, then $g(x) \in g_{\phi}(G_{\Lambda})$.

(ii) If g is injective and $x \notin G_{\Lambda}$, then $g(x) \notin g_{\phi}(G_{\Lambda})$.

(iii) If g_{ϕ} is injective and $x \notin G_{\Lambda}$, then $g(x) \notin g_{\phi}(G_{\Lambda})$.

(iv) If ϕ is surjective and $y \in H_{\Gamma}$, then $x \in g_{\phi}^{-1}(H_{\Gamma})$ for each $x \in g^{-1}(y)$.

(v) If $y \notin H_{\Gamma}$, then $x \notin g_{\phi}^{-1}(H_{\Gamma})$ for each $x \in g^{-1}(y)$.

(vi) If ϕ is surjective and $y \notin H_{\Gamma}$, then $x \notin g_{\phi}^{-1}(H_{\Gamma})$ for each $x \in g^{-1}(y)$.

2.2. Infra oft topological spaces

The concepts of this subsection were introduced in [5, 7].

Definition 2.15. The collection ϑ of soft sets over *X* under a parameters set Ω is said to be an infra soft topology on *X* if it is closed under finite soft intersection and $\Phi \in \vartheta$.

The triple (X, ϑ, Ω) is called an infra soft topological space. Every member of ϑ is called an infra soft open set and its relative complement is called an infra soft closed set.

Definition 2.16. We define the infra interior points and infra closure points of a soft subset H_{Ω} of (X, ϑ, Ω) which are respectively denoted by $Int_{\vartheta}(H_{\Omega})$ and $Cl_{\vartheta}(H_{\Omega})$ as follows.

(i) $Int_{\vartheta}(H_{\Omega})$ is the union of all infra soft open sets contained in H_{Ω} .

(ii) $Cl_{\vartheta}(H_{\Omega})$ is the intersection of all infra soft closed sets containing H_{Ω} .

Theorem 2.17. Let H_{Ω} and F_{Ω} be two soft subsets of (X, ϑ, Ω) . Then:

(i) If $H_{\Omega} \subseteq F_{\Omega}$, then $Cl_{\vartheta}(H_{\Omega}) \subseteq Cl_{\vartheta}(F_{\Omega})$.

(ii) $P_{\omega}^{x} \in Cl_{\vartheta}(H_{\Omega})$ if and only if $G_{\Omega} \cap H_{\Omega} \neq \widetilde{\Phi}$ for each infra soft open set G_{Ω} containing P_{ω}^{x} .

Proposition 2.18. Let (X, ϑ, Ω) be an infra soft topological space. Then the collection $\vartheta_{\omega} = \{E(\omega) : E_{\Omega} \in \vartheta\}$ forms an infra topology on X for each $\omega \in \Omega$.

We called ϑ_{ω} a parametric infra topology.

Definition 2.19. Let (X, ϑ, Ω) be an infra soft topological space and Y be a non-empty subset of X. Then $\vartheta_Y = \{\widetilde{Y} \cap G_\Omega : G_\Omega \in \vartheta\}$ is called an infra soft relative topology on Y and (Y, ϑ_Y, Ω) is called an infra soft subspace of (X, ϑ, Ω) .

Theorem 2.20. Let (Y, ϑ_Y, Ω) be an infra soft subspace of (X, ϑ, Ω) . Then H_{Ω} is an infra soft closed subset of (Y, ϑ_Y, Ω) if and only if there exists an infra soft closed subset F_{Ω} of (X, ϑ, Ω) such that $H_{\Omega} = \widetilde{Y \cap F_{\Omega}}$.

Definition 2.21. A soft mapping $g_{\varphi} : (X, \tau, \Omega) \to (Y, \theta, \Gamma)$ is said to be:

- (i) infra soft continuous if the inverse image of each infra soft open set is an infra soft open set.
- (ii) infra soft open (resp. infra soft closed) if the image of each infra soft open (resp. infra soft closed) set is an infra soft open (resp. infra soft closed) set.
- (iii) an infra soft homeomorphism if it is bijective, infra soft continuous and infra soft open.

3. Infra *pp*-soft T_j -spaces (j = 0, 1, 2, 3, 4)

This section is devoted to introducing the concepts of infra pp-soft T_j -spaces and studying fundamental properties. Illustrative counterexamples are supplied to validate the obtained results and relationships.

Definition 3.1. (X, ϑ , Λ) is said to be:

- (i) an infra *pp*-soft T_0 -space if there exists an infra soft open set G_Λ for every $a \neq b \in X$ satisfies $a \in G_\Lambda$, $b \notin G_\Lambda$, or $b \in G_\Lambda$, $a \notin G_\Lambda$
- (ii) an infra *pp*-soft T_1 -space if there exist infra soft open sets G_Λ and F_Λ for every $a \neq b \in X$ satisfy $a \in G_\Lambda, b \notin G_\Lambda$, and $b \in F_\Lambda, a \notin F_\Lambda$.
- (iii) an infra *pp*-soft T_2 -space (or an infra *pp*-soft Hausdorff space) if there exist disjoint supra soft open sets G_{Λ} and F_{Λ} for every $a \neq b \in X$ satisfy $a \Subset G_{\Lambda}$, $b \notin G_{\Lambda}$, and $b \Subset F_{\Lambda}$, $a \notin F_{\Lambda}$.
- (iv) an infra *pp*-soft regular space if for every infra soft closed set H_{Λ} such that $a \notin H_{\Lambda}$, there exist disjoint infra soft open sets G_{Λ} and F_{Λ} such that $H_{\Lambda} \widetilde{\subseteq} G_{\Lambda}$ and $a \in F_{\Lambda}$.
- (v) an infra soft normal space if each disjoint infra soft closed sets are separated by disjoint infra soft open sets.
- (vi) an infra *pp*-soft T_3 (resp. infra *pp*-soft T_4)-space if it is infra *pp*-soft regular (resp. infra soft normal) and infra *pp*-soft T_1 .

We begin by explaining the relationship between these separation axioms.

Proposition 3.2. Every infra pp-soft T_j -space is infra pp-soft T_{j-1} for j = 1, 2, 3.

Proof. The proofs of j = 1, 2 follow immediately from Definition 3.1.

When j = 3. Consider a, b be two distinct points in an infra pp-soft T_3 -space (X, ϑ, Λ) . Then there are infra soft open sets U_Λ and V_Λ satisfy that $a \in U_\Lambda, b \notin U_\Lambda$, and $b \in V_\Lambda, b \notin V_\Lambda$. Now, $a \notin U_{\Lambda}^c$. By hypothesis of infra pp-soft regular, there are two disjoint infra soft open sets G_Λ and H_Λ satisfy that $U_\Lambda^c \subseteq G_\Lambda$ and $a \in H_\Lambda$. Obviously, $b \in G_\Lambda$. The disjointness of G_Λ and H_Λ implies that $b \notin H_\Lambda$ and $a \notin G_\Lambda$. Hence, (X, ϑ, Λ) is infra pp-soft T_2 . \Box

To show that the converse of Proposition 3.2 fails, we give the following example.

Example 3.3. Let $\Lambda = \{\lambda_1, \lambda_2\}$ be a set of parameters. Consider the following soft sets over $X = \{a, b\}$. $F_{\Lambda} = \{(\lambda_1, \{a\}), (\lambda_2, \emptyset)\};$ $G_{\Lambda} = \{(\lambda_1, \emptyset), (\lambda_2, X)\}.$

Now, the families $\vartheta_1 = \{\widetilde{\Phi}, \widetilde{X}, F_\Lambda\}, \ \vartheta_2 = \{\widetilde{\Phi}, \widetilde{X}, G_\Lambda\}$ and $\vartheta_3 = \{\widetilde{\Phi}, \widetilde{X}, F_\Lambda, G_\Lambda\}$ form infra soft topologies on *X*.

It can be easily checked that $(X, \vartheta_1, \Lambda)$, $(X, \vartheta_2, \Lambda)$ and $(X, \vartheta_3, \Lambda)$ are respectively infra *pp*-soft T_0 , infra *pp*-soft T_1 and infra *pp*-soft T_2 . On the other hand, $(X, \vartheta_1, \Lambda)$ is not infra *pp*-soft T_1 , $(X, \vartheta_2, \Lambda)$ is not infra *pp*-soft T_2 and $(X, \vartheta_3, \Lambda)$ is not infra *pp*-soft T_3 . Note that $(X, \vartheta_3, \Lambda)$ is infra *pp*-soft T_4 .

Remark 3.4. We know that soft topology and general topology are identical if a set of parameters is a singleton. Then we can say that there is a (soft) topology satisfies infra *pp*-soft T_3 , but not infra *pp*-soft T_4 . Hence, infra *pp*-soft T_3 and infra *pp*-soft T_4 -spaces are independent of each other.

Proposition 3.5. (X, ϑ, Λ) is an infra pp-soft T_1 -space if P_{λ}^a is an infra soft closed set for all $a \in X$.

Proof. Let $a \neq b$. By hypothesis, $(P_{\lambda}^{a})^{c}$ and $(P_{\lambda}^{b})^{c}$ are infra soft open sets such that $b \in (P_{\lambda}^{a})^{c}$, $a \notin (P_{\lambda}^{a})^{c}$, and $a \in (P_{\lambda}^{b})^{c}$, $b \in (P_{\lambda}^{b})^{c}$. Hence, (X, ϑ, Λ) is infra *pp*-soft T_{1} . \Box

One can easily prove the following result; therefore, we omit its proof.

Proposition 3.6. Let $|X| \ge 2$ and $|\Lambda| \ge 2$. Then we have the following results.

- (i) Every infra pp-soft T_1 -space (infra pp-soft T_4 -space) (X, ϑ , Λ) contains at least one non-null proper infra soft open set.
- (ii) Every infra pp-soft T_2 -space (infra pp-soft T_3 -space) (X, ϑ , Λ) contains at least two non-null proper infra soft open sets.

Proposition 3.7. If U_{Λ} and its relative complement are full soft sets such that U_{Λ} is an infra soft open subset of (X, ϑ, Λ) , then (X, ϑ, Λ) is infra pp-soft T_1 .

Proof. Let $a \neq b \in X$. Since U_{Λ} is a full soft set, then $a \in U_{\Lambda}$ and $b \in U_{\Lambda}$; and since U_{Λ}^{c} is a full soft set, then $a \notin U_{\Lambda}$ and $b \notin U_{\Lambda}$. By hypothesis, U_{Λ} is an infra soft open set; hence, (X, ϑ, Λ) is an infra *pp*-soft T_1 -space. \Box

Corollary 3.8. If U_{Λ} is an infra soft open set in (X, ϑ, Λ) such that U_{Λ} is a partition soft set, then (X, ϑ, Λ) is infra pp-soft T_1 .

Corollary 3.9. If U_{Λ} and its relative complement are full infra soft clopen sets in (X, ϑ, Λ) , then (X, ϑ, Λ) is infra pp-soft T_2 .

Corollary 3.10. If U_{Λ} is an infra soft clopen subset of (X, ϑ, Λ) such that U_{Λ} is partition soft set, then (X, ϑ, Λ) is infra pp-soft T_2 .

Theorem 3.11. If (X, ϑ, Λ) has a basis of infra soft clopen sets, then (X, ϑ, Λ) is infra pp-soft regular.

Proof. Let H_{Λ} be an infra soft closed set such that $a \notin H_{\Lambda}$. Then H_{Λ}^c is an infra soft open set such that $a \Subset H_{\Lambda}^c$. By hypothesis, the basis contains an infra soft clopen set F_{Λ} such that $a \Subset F_{\Lambda} \subseteq H_{\Lambda}^c$. Now, $H_{\Lambda} \subseteq F_{\Lambda}^c$. Obviously, F_{Λ} and F_{Λ}^c are disjoint infra soft open sets; hence, (X, ϑ, Λ) is infra *pp*-soft regular. \Box

In the following findings, we investigate transmission property between infra pp-soft T_j -spaces and parametric infra T_j -spaces.

Theorem 3.12. If (X, ϑ_{λ}) is infra T_j , then (X, ϑ, Λ) is an infra pp-soft T_j -space for j = 0, 1.

Proof. When j = 1. Let $a \neq b \in X$. Since (X, ϑ_{λ}) is infra T_1 , there are two infra open sets U, V in ϑ_{λ} such that $a \in U, b \notin U$ and $b \in V, a \notin V$. Therefore, there are two infra soft open sets G_{Λ}, H_{Λ} in ϑ such that $G(\lambda) = U$ and $H(\lambda) = V$. Now, $a \in G_{\Lambda}, b \notin G_{\Lambda}$, and $b \in H_{\Lambda}, a \notin H_{\Lambda}$. Hence, (X, ϑ, Λ) is infra *pp*-soft T_1 . Similarly, one can prove the theorem when j = 0. \Box

Remark 3.13. It can be seen from Example 3.3 that $(X, \vartheta_2, \Lambda)$ is infra *pp*-soft T_1 , but the two parametric infra topological spaces $(X, \vartheta_{2_{\lambda_1}}), (X, \vartheta_{2_{\lambda_2}})$ are not infra T_0 .

There are no relationships between infra *pp*-soft T_j -spaces and parametric infra T_j -spaces for each j = 2, 3, 4. This fact is explained in the following examples.

Example 3.14. Let the next two soft sets over the set of natural numbers \mathbb{N} with a parameters set $\Lambda = \{\lambda_1, \lambda_2\}$ defined as follows:

 $G_{\Lambda} = \{ (\lambda_1, \mathbb{N}), (\lambda_2, \emptyset) \}; \\ H_{\Lambda} = \{ (\lambda_1, \emptyset), (\lambda_2, \mathbb{N}) \}.$

Then $\vartheta = \{\Phi, \mathbb{N}, G_{\Lambda}, H_{\Lambda}\}$ is an infra soft topology on \mathbb{N} . Now, $(\mathbb{N}, \vartheta, \Lambda)$ is infra *pp*-soft T_4 and infra *pp*-soft T_3 . However, $(\mathbb{N}, \vartheta_{\lambda_1})$ and $(\mathbb{N}, \vartheta_{\lambda_2})$ are not infra T_0 .

1149

Example 3.15. Consider the following two soft sets over $X = \{a, b, c\}$ with a parameters set $\Lambda = \{\lambda_1, \lambda_2\}$ as follows:

 $U_{\Lambda_{1}} = \{(\lambda_{1}, \{a\}), (\lambda_{2}, X)\}; \\ U_{\Lambda_{2}} = \{(\lambda_{1}, \{b\}), (\lambda_{2}, X)\}; \\ U_{\Lambda_{3}} = \{(\lambda_{1}, \{c\}), (\lambda_{2}, X)\}; \\ U_{\Lambda_{4}} = \{(\lambda_{1}, \{a, b\}), (\lambda_{2}, X)\}; \\ U_{\Lambda_{5}} = \{(\lambda_{1}, \{a, c\}), (\lambda_{2}, X)\}; \\ U_{\Lambda_{6}} = \{(\lambda_{1}, \{b, c\}), (\lambda_{2}, X)\} \text{ and } \\ U_{\Lambda_{7}} = \{(\lambda_{1}, \emptyset), (\lambda_{2}, X)\}.$

Then $\vartheta = \{\widetilde{\Phi}, \widetilde{X}, U_{\Lambda_i} : i = 1, 2, ..., 7\}$ is an infra soft topology on *X*. It is clear that (X, ϑ, Λ) is not infra *pp*-soft T_i for j = 2, 4. However, $(X, \vartheta_{\lambda_1})$ is infra T_3 and infra T_4 .

Proposition 3.16. Every extended soft topological space (X, ϑ, Λ) is infra pp-soft T_2 .

Proof. Let $a \neq b \in X$ and let F_{Λ} and G_{Λ} be defined as follows

$$F(\lambda_i) = G(\lambda_j) = X$$
, where $i \neq j$

$$F(\lambda_{i'}) = G(\lambda_{j'}) = \emptyset$$
 for each $i' \neq i$ and $j' \neq j$.

Since ϑ is extended, then F_{Λ} and G_{Λ} are disjoint infra soft open sets such that $a \in G_{\Lambda}$, $b \notin G_{\Lambda}$, and $b \in F_{\Lambda}$, $a \notin F_{\Lambda}$. Hence, we obtain the desired result. \Box

An infra soft topological space (X, ϑ_3 , Λ) given in Example 3.3 elucidates that the converse of the above proposition fails.

Theorem 3.17. Let (X, ϑ, Λ) be extended. If all (X, ϑ_{λ}) are infra T_j , then (X, ϑ, Λ) is infra pp-soft T_j for j = 0, 1, 3, 4.

Proof. The cases of j = 0, 1 were proved in Theorem 3.12.

To prove the theorem in the case of j = 3, 4, it suffices to prove the axioms of infra *pp*-soft regularity and infra soft normality.

First, let H_{Λ} be an infra soft closed set such that $a \notin H_{\Lambda}$. Then there exists $\lambda \in \Lambda$ such that $a \notin H(\lambda)$. Since $H(\lambda)$ is an infra closed set, and (X, ϑ_{λ}) is infra regular, then there exist disjoint infra open sets U and V such that $H(\lambda) \subseteq U$ and $a \in V$. Since (X, ϑ, Λ) is extended, then there exist infra soft open sets G_{Λ} and F_{Λ} such that

$$G(\lambda) = U$$
 and $G(\lambda') = X$ for each $\lambda' \neq \lambda$

$$F(\lambda) = V$$
 and $F(\lambda) = \emptyset$ for each $\lambda' \neq \lambda$

It is clear that $H_{\Lambda} \subseteq G_{\Lambda}$ and $a \in F_{\Lambda}$. The disjointness of G_{Λ} and F_{Λ} proves that (X, ϑ, Λ) is infra *pp*-soft regular.

Second, we prove that (X, ϑ, Λ) is infra soft normal. Let H_{Λ}, L_{Λ} be two disjoint infra soft closed sets. Then $H(\lambda)$ and $L(\lambda)$ are two disjoint infra closed sets for each $\lambda \in \Lambda$. Since (X, ϑ_{λ}) is infra normal, then there exist two disjoint infra open sets U_{λ} and V_{λ} such that $H(\lambda) \subseteq U_{\lambda}$ and $L(\lambda) \subseteq V_{\lambda}$. Since (X, ϑ, Λ) is extended, then there exist disjoint infra soft open subsets G_{Λ}, F_{Λ} of (X, ϑ, Λ) such that

$$G(\lambda) = U_{\lambda} \text{ for each } \lambda \in \Lambda$$
$$F(\lambda) = V_{\lambda} \text{ for each } \lambda \in \Lambda$$

Thus, (X, ϑ, Λ) is infra soft normal. Hence, it is infra *pp*-soft T_4 .

Converse of the above theorem need not true as illustrated in Example 3.14.

Theorem 3.18. Let (X, ϑ, Λ) be stable. Then, (X, ϑ_{λ}) is infra T_j if and only if (X, ϑ, Λ) is infra pp-soft T_j for each j = 0, 1, 2, 3, 4.

Proof. Since (X, ϑ, Λ) is stable, then *U* is an infra open subset of (X, ϑ_{λ}) if and only if $\{(\lambda, U) : \lambda \in \Lambda\}$ is an infra soft open subset of (X, ϑ, Λ) . Hence, the desired result is proved. \Box

Proposition 3.19. If (X, ϑ, Λ) is an infra pp-soft regular space, then for each $a \in X$ and infra soft open set F_{Λ} partially containing a there exists an infra soft open set V_{Λ} such that $a \in V_{\Lambda} \subseteq Cl_{\vartheta}(V_{\Lambda}) \subseteq F_{\Lambda}$.

Proof. Let $a \in X$ and F_{Λ} be an infra soft open set partially containing a. Then F_{Λ}^{c} is an infra soft closed set and $a \notin F_{\Lambda}^{c}$. By hypothesis, there are disjoint infra soft open sets U_{Λ} and V_{Λ} such that $F_{\Lambda}^{c} \subseteq U_{E}$ and $a \in V_{\Lambda}$. Obviously, $V_{\Lambda} \subseteq U_{\Lambda}^{c} \subseteq F_{\Lambda}$. Thus, $Cl_{\vartheta}(V_{\Lambda}) \subseteq U_{\Lambda}^{c} \subseteq F_{\Lambda}$. \Box

Theorem 3.20. If (X, ϑ, Λ) is an infra pp-soft regular space, then the following concepts are identical.

(i) (X, ϑ, Λ) is infra pp-soft T_2 .

(ii) (X, ϑ, Λ) is infra pp-soft T_1 .

(iii) (X, ϑ, Λ) is infra pp-soft T_0 .

Proof. The directions $(i) \rightarrow (ii) \rightarrow (iii)$ follow from Proposition 3.2.

To prove $(iii) \rightarrow (i)$, let $a \neq b \in X$. Since (X, ϑ, Λ) is infra *pp*-soft T_0 , then we have an infra soft open set G_Λ such that $a \in G_\Lambda$ and $b \notin G_\Lambda$, or $b \in G_\Lambda$ and $a \notin G_\Lambda$. Say, $a \in G_\Lambda$ and $b \notin G_\Lambda$. It is clear that $a \notin G_\Lambda^c$ and $b \in G_\Lambda^c$. Since (X, ϑ, Λ) is infra *pp*-soft regular, then there exist two disjoint infra soft open sets U_Λ and V_Λ such that $a \in U_\Lambda$ and $b \in G_\Lambda^c \subseteq V_\Lambda$. Since U_Λ and V_Λ are disjoint, then $b \notin U_\Lambda$ and $a \notin V_\Lambda$. This ends the proof that (X, ϑ, Λ) is infra *pp*-soft T_2 . \Box

Theorem 3.21. *The next statements are equivalent:*

- (i) (X, ϑ, Λ) is infra soft normal;
- (ii) For every infra soft open sets U_{Λ} and V_{Λ} such that $U_{\Lambda} \bigcup V_{\Lambda} = \widetilde{X}$, there are two infra soft closed sets F_{Λ} and H_{Λ} such that $F_{\Lambda} \subseteq U_{\Lambda}$, $H_{\Lambda} \subseteq V_{\Lambda}$, and $F_{\Lambda} \bigcup H_{\Lambda} = \widetilde{X}$.

Proof. (*i*) \rightarrow (*ii*): Let U_{Λ} and V_{Λ} be infra soft open sets such that $U_{\Lambda} \bigcup V_{\Lambda} = \widetilde{X}$. Then U_{Λ}^{c} and V_{Λ}^{c} are disjoint infra soft closed sets. By (i), there are infra soft open sets E_{Λ} and G_{Λ} such that $U_{\Lambda}^{c} \subseteq E_{\Lambda}$ and $V_{\Lambda}^{c} \subseteq G_{\Lambda}$. Thus, E_{Λ}^{c} and G_{Λ}^{c} are infra soft closed sets such that $E_{\Lambda}^{c} \subseteq U_{\Lambda}$, $G_{\Lambda}^{c} \subseteq V_{\Lambda}$, and $E_{\Lambda}^{c} \bigcup G_{\Lambda}^{c} = \widetilde{X}$.

 $(ii) \rightarrow (i)$: Let F_{Λ} and H_{Λ} be disjoint infra soft closed sets. Since F_{Λ}^{c} and H_{Λ}^{c} are infra soft open sets such that $F_{\Lambda}^{c} \bigcup H_{\Lambda}^{c} = \widetilde{X}$, there are two infra soft closed sets M_{Λ} and N_{Λ} such that $M_{\Lambda} \subseteq F_{\Lambda}^{c}$, $N_{\Lambda} \subseteq H_{\Lambda}^{c}$ and $M_{\Lambda} \bigcup N_{\Lambda} = \widetilde{X}$. Thus, M_{Λ}^{c} and N_{Λ}^{c} are two disjoint infra soft open sets such that $F_{\Lambda} \subseteq M_{\Lambda}^{c}$ and $H_{\Lambda} \subseteq N_{\Lambda}^{c}$. Hence, (X, ϑ, Λ) is infra soft normal. \Box

Theorem 3.22. The property of being an infra soft T_i -space is an infra soft hereditary property for j = 0, 1, 2, 3.

Proof. When j = 3.

Let $(Y, \vartheta_Y, \Lambda)$ be a subspace of (X, ϑ, Λ) which is infra *pp*-soft T_3 . We first prove that $(Y, \vartheta_Y, \Lambda)$ is infra *pp*-soft T_1 . Let $a \neq b \in Y$. Then ϑ contains infra soft open sets G_Λ and F_Λ such that $a \Subset G_\Lambda, b \notin G_\Lambda$ and $b \Subset F_\Lambda, a \notin F_\Lambda$. Now, $U_\Lambda = \widetilde{Y \cap G_\Lambda}$ and $V_\Lambda = \widetilde{Y \cap F_\Lambda}$ are infra soft open sets in $(Y, \vartheta_Y, \Lambda)$. It is clear that $a \Subset U_\Lambda$ and $b \Subset V_\Lambda$, also, $b \notin U_\Lambda$ and $a \notin V_\Lambda$. Thus, $(Y, \vartheta_Y, \Lambda)$ is infra *pp*-soft T_1 .

To prove the infra *pp*-soft regularity of $(Y, \vartheta_Y, \Lambda)$, let $a \in Y$ and L_Λ be an infra soft closed subset of $(Y, \vartheta_Y, \Lambda)$ such that $a \notin L_\Lambda$. Then there exists an infra soft closed subset H_Λ of (X, ϑ, Λ) such that $L_\Lambda = \widetilde{Y \cap} H_\Lambda$. Since $a \notin H_\Lambda$, there exist disjoint infra soft open sets G_Λ and F_Λ such that $H_\Lambda \subseteq G_\Lambda$ and $a \Subset F_\Lambda$. Now, we find that $L_\Lambda \subseteq \widetilde{Y \cap} G_\Lambda$, $a \Subset \widetilde{Y \cap} F_\Lambda$ and $(\widetilde{Y \cap} G_\Lambda) \cap (\widetilde{Y \cap} F_\Lambda) = \widetilde{\Phi}$. Thus, $(Y, \vartheta_Y, \Lambda)$ is infra *pp*-soft regular. Hence, $(Y, \vartheta_Y, \Lambda)$ is infra *pp*-soft T_3 . \Box **Theorem 3.23.** The property of being an infra soft T_4 -space is an infra soft closed hereditary property.

Proof. One can prove it easily. \Box

Theorem 3.24. The finite product of infra pp-soft T_i -spaces is infra pp-soft T_i for j = 0, 1, 2.

Proof. We give a proof for the theorem when j = 2. The remaining two cases follow similar lines.

Without loss of generality, we consider two infra *pp*-soft T_2 -spaces (X, ϑ, Λ) and (Y, v, Γ) . Suppose that $(a_1, b_1) \neq (a_2, b_2)$ in $X \times Y$. Then $a_1 \neq a_2$ or $b_1 \neq b_2$. Say, $a_1 \neq a_2$. Then ϑ contains two disjoint infra soft open sets U_{Λ} , V_{Λ} such that $a_1 \in U_{\Lambda}$ and $a_2 \notin U_{\Lambda}$; and $a_2 \in V_{\Lambda}$ and $a_1 \notin V_{\Lambda}$. Now, $U_{\Lambda} \times \widetilde{Y}$ and $V_{\Lambda} \times \widetilde{Y}$ are infra soft open sets such that $(a_1, b_1) \in U_{\Lambda} \times \widetilde{Y}$ and $(a_2, b_2) \notin U_{\Lambda} \times \widetilde{Y}$, and $(a_2, b_2) \in V_{\Lambda} \times \widetilde{Y}$ and $(a_1, b_1) \notin V_{\Lambda} \times \widetilde{Y}$. Since $[U_{\Lambda} \times \widetilde{Y}] = [\widetilde{\emptyset_{\Lambda \times \Gamma}}$, then $X \times Y$ is infra *pp*-soft T_2 . \Box

Proposition 3.25. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, \upsilon, \Gamma)$ be an infra soft continuous map such that f is injective and ϕ is surjective. If (Y, υ, Γ) is infra pp-soft T_i , then (X, ϑ, Λ) is infra pp-soft T_i for j = 0, 1, 2.

Proof. When j = 2. Let $a \neq b \in X$. Since f is injective, there exists only two distinct points $x, y \in Y$ such that f(a) = x and f(b) = y. Since (Y, v, Γ) is infra pp-soft T_2 , there are two disjoint infra soft open sets G_{Γ} and F_{Γ} such that $x \in G_{\Gamma}$, $y \notin G_{\Gamma}$ and $y \in F_{\Gamma}$, $x \notin F_{\Gamma}$. By infra soft continuity of f_{ϕ} , we obtain $f_{\phi}^{-1}(G_{\Gamma})$ and $f_{\phi}^{-1}(F_{\Gamma})$ are infra soft open sets.

Since ϕ is surjective, it follows from Proposition 2.14 that $a \in f_{\phi}^{-1}(G_{\Gamma})$, $b \notin f_{\phi}^{-1}(G_{\Gamma})$ and $b \in f_{\phi}^{-1}(F_{\Gamma})$, $a \notin f_{\phi}^{-1}(F_{\Gamma})$. The disjointness of them ends the proof that (X, ϑ, Λ) is infra *pp*-soft T_2 . \Box

In a similar manner, one can prove the following three results.

Proposition 3.26. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, \upsilon, \Gamma)$ be a bijective infra soft continuous map. If (Y, υ, Γ) is infra pp-soft T_j , then (X, ϑ, Λ) is infra pp-soft T_j for j = 0, 1, 2, 3, 4.

Proposition 3.27. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, \upsilon, \Gamma)$ be a bijective infra soft open map. If (X, ϑ, Λ) is infra pp-soft T_j , then (Y, υ, Γ) is infra pp-soft T_j for j = 0, 1, 2, 3, 4.

Proposition 3.28. The property of being an infra pp-soft T_j -space (j = 0, 1, 2, 3, 4) is preserved under an infra soft homeomorphism map.

4. Infra *pt*-soft T_j -spaces (j = 0, 1, 2, 3, 4)

This section is devoted to presenting the concepts of infra pt-soft T_j -spaces and discussing main features. The relationships between them as well as their relationships with infra pp-soft T_j -spaces are showed with the aid of some counterexamples.

Definition 4.1. (X, ϑ , Λ) is said to be:

- (i) an infra *pt*-soft T_0 -space if there exists an infra soft open set G_Λ for every $a \neq b \in X$ satisfies $a \Subset G_\Lambda$, $b \notin G_\Lambda$, or $b \Subset G_\Lambda$, $x \notin G_\Lambda$.
- (ii) an infra *pt*-soft T_1 -space if there exist infra soft open sets G_Λ and F_Λ for every $a \neq b \in X$ satisfy $a \in G_\Lambda, b \notin G_\Lambda$, and $b \in F_\Lambda, a \notin F_\Lambda$.
- (iii) an infra *pt*-soft *T*₂-space (or an infra *pt*-soft Hausdorff space) if there exist two disjoint infra soft open sets G_{Λ} and F_{Λ} for every $a \neq b \in X$ satisfy $a \in G_{\Lambda}$, $b \notin G_{\Lambda}$, and $b \in F_{\Lambda}$, $a \notin F_{\Lambda}$.
- (iv) an infra *pt*-soft regular space if for every infra soft closed set H_{Λ} such that $a \notin H_{\Lambda}$, there exist disjoint infra soft open sets G_{Λ} and F_{Λ} such that $H_{\Lambda} \subseteq G_{\Lambda}$ and $a \in F_{\Lambda}$.

(v) an infra *pt*-soft T_3 (resp. infra *pt*-soft T_4)-space if it is infra *pt*-soft regular (resp. infra soft normal) and infra *pt*-soft T_1 .

Proposition 4.2. The following properties hold true:

(i) Every infra pt-soft T_j -space is infra pt-soft T_{j-1} for j = 1, 2.

(ii) Every infra pt-soft T_i -space is infra pp-soft T_i for j = 0, 1, 2, 4.

(iii) Every infra pp-soft regular space is infra pt-soft regular.

Proof. The proof of (i) follows directly from the above definition.

The proof of (ii) and (iii) follows from the fact that \notin implies \notin . \Box

To clarify that the converse of the above proposition is not always true, we provide the following examples.

Example 4.3. Assume that $(X, \vartheta_1, \Lambda)$ is the same as in Example 3.3. It can be easily checked that $(X, \vartheta_1, \Lambda)$ is an infra *pt*-soft T_0 -space; however, it is not infra *pt*-soft T_1 .

Example 4.4. Let $\Lambda = {\lambda_1, \lambda_2, \lambda_3}$ be a set of parameters and $X = {a, b, c}$ the universal set. Consider the following soft sets which defined over *X*

$$\begin{split} F_{1\Lambda} &= \{ (\lambda_1, \{a\}), (\lambda_2, \{b\}), (\lambda_3, \emptyset) \}; \\ F_{2\Lambda} &= \{ (\lambda_1, \emptyset), (\lambda_2, \emptyset), (\lambda_3, \{c\}) \}; \\ F_{3\Lambda} &= \{ (\lambda_1, \emptyset), (\lambda_2, \emptyset), (\lambda_3, \{a, c\}) \}; \\ F_{4\Lambda} &= \{ (\lambda_1, \emptyset), (\lambda_2, \emptyset), (\lambda_3, \{b, c\}) \}. \end{split}$$

Now, a family ϑ of the above four soft sets with $\widetilde{\Phi}$ and \widetilde{X} consist an infra soft topology on X. On the one hand, (X, ϑ, Λ) is infra *pt*-soft T_1 . On the other hand, ϑ does not contain disjoint infra soft open sets satisfying a condition of infra *pt*-soft T_2 for the distinct points *a* and *b*. Therefore, (X, ϑ, Λ) is not infra *pt*-soft T_2 .

Example 4.5. Let $(\mathbb{N}, \vartheta, \Lambda)$ be the same as in Example 3.14. As we saw it is infra *pp*-soft T_4 and infra *pp*-soft T_3 . Since ϑ does not contain an infra soft open set (except for the null soft set) does not totally contain *a* or *b*, then $(\mathbb{N}, \vartheta, \Lambda)$ is not infra *pt*-soft T_0 .

Example 4.6. Let $(X, \vartheta_2, \Lambda)$ be the same as in Example 3.3. Obviously, $(X, \vartheta_2, \Lambda)$ infra *pt*-soft regular, but not infra *pp*-soft regular.

In the following remark and examples, we illustrate that:

(i) The concepts of infra pt-soft T_2 , infra pt-soft T_3 and infra pt-soft T_4 -spaces are independent of each other.

(ii) The concepts of infra pp-soft T_3 and infra pt-soft T_3 -spaces are independent of each other.

Remark 4.7. According to Remark 3.4, we suffice with examples given in general topology which show there exists an infra *pt*-soft T_2 -space, but not infra *pt*-soft T_3 , and there exists an infra *pt*-soft T_3 -space, but not infra *pt*-soft T_4 .

Example 4.8. Let (X, ϑ, Λ) be the same as in Example 4.4. One can check that (X, ϑ, Λ) is infra *pt*-soft T_3 . On the other hand, ϑ does not contain two disjoint infra soft open sets satisfy a condition of infra *pt*-soft T_2 -space for the distinct points *a* and *b*. Hence, (X, ϑ, Λ) is not infra *pt*-soft T_2 .

Example 4.9. Let $\Lambda = {\lambda_1, \lambda_2}$ be a set of parameters. Then $\vartheta = {\widetilde{\mathbb{R}}, F_{\Lambda} \widetilde{\square} \widetilde{\mathbb{R}}} : F_{\Lambda}$ is finite} is an infra soft topology on the set of real numbers \mathbb{R} . Note that the intersection of any two infra soft closed sets (except for the null and absolute soft sets) in $(\mathbb{R}, \vartheta, \Lambda)$ is non-null. Therefore, $(\mathbb{R}, \vartheta, \Lambda)$ is infra soft normal, also, it is infra *pt*-soft T_2 . Hence, it is infra *pt*-soft T_4 . On the other hand, $H_{\Lambda} = \{(\lambda_1, \mathbb{R} \setminus \{1\}), (\lambda_2, \mathbb{R} \setminus \{1\})\}$ is an infra soft closed subset of $\widetilde{\mathbb{R}}$ such that $1 \notin H_{\Lambda}$. But there does not exist infra soft open set containing H_{Λ} except for the absolute soft set. Hence, $(\mathbb{R}, \vartheta, \Lambda)$ is not infra *pt*-soft T_3 .

Example 4.10. Let (X, ϑ, Λ) be the same as in Example 3.14. We pointed out that (X, ϑ, Λ) is infra *pp*-soft T_3 . On the other hand, it is not infra *pt*-soft T_3 because it is not infra *pt*-soft T_0 .

Example 4.11. Let $\Lambda = {\lambda_1, \lambda_2}$ be a set of parameters. Then $\vartheta = {\widetilde{X}, F_{\Lambda} \widetilde{\sqsubset} \widetilde{X}}$ such that $1 \notin F_{\Lambda}$ or $F_{\Lambda} = {(\lambda_1, \{1\}), (\lambda_2, \{1\})}$ is an infra soft topology on $X = \{1, 2\}$. One can check that (X, ϑ, Λ) is infra *pt*-soft T_3 , but it is not infra *pp*-soft T_3 .

In what follows, we investigate the main properties of infra pt-soft T_j -spaces.

Proposition 4.12. (X, ϑ, Λ) *is an infra pt*-soft T_1 -space if a_Λ *is an infra soft closed set for all* $a \in X$.

Proof. Let $a \neq b$. By hypothesis, $(a_{\Lambda})^c$ and $(b_{\Lambda})^c$ are infra soft open sets such that $a \in (b_{\Lambda})^c$, $b \notin (b_{\Lambda})^c$, and $b \in (a_{\Lambda})^c$, $a \notin (a_{\Lambda})^c$. Hence, (X, ϑ, Λ) is *pt*-soft T_1 . \Box

Example 4.4 clarifies that the reversal of the above proposition fails.

Proposition 4.13. If (X, ϑ, Λ) is an infra pt-soft regular space, then for each $a \in X$ and infra soft open set F_{Λ} totally containing a, there exists an infra soft open set V_{Λ} such that $a \in V_{\Lambda} \subseteq Cl_{\vartheta}(V_{\Lambda}) \subseteq F_{\Lambda}$.

Proof. One can prove the proposition following similar technique given in the proof of Proposition 3.19.

Theorem 4.14. Let (X, ϑ, Λ) be a stable space. Then the following statements holds.

(i) (X, ϑ, Λ) is infra pt-soft $T_0 \Leftrightarrow (X, \vartheta, \Lambda)$ is infra pp-soft T_0 .

(ii) (X, ϑ, Λ) is infra pt-soft $T_1 \Leftrightarrow (X, \vartheta, \Lambda)$ is infra pp-soft T_1 .

(iii) (X, ϑ, Λ) is infra pt-soft $T_2 \Leftrightarrow (X, \vartheta, \Lambda)$ is infra pp-soft T_2 .

(iv) (X, ϑ, Λ) is infra pt-soft $T_3 \Leftrightarrow (X, \vartheta, \Lambda)$ is infra pp-soft T_3 .

(v) (X, ϑ, Λ) is infra pt-soft $T_4 \Leftrightarrow (X, \vartheta, \Lambda)$ is infra pp-soft T_4 .

Proof. It comes from the fact that partial non-belong and total non-belong relations are identical with respect to the stable soft sets. \Box

Now, we point out that infra *pt*-soft T_j -spaces do not keep on their parametric infra topological spaces and vice versa.

Example 4.15. Let $\Lambda = {\lambda_1, \lambda_2, \lambda_3}$ be a set of parameters and $X = {a, b, c}$ the universal set. Consider the following soft sets which defined over *X*

$$\begin{split} F_{1\Lambda} &= \{ (\lambda_1, \{a\}), (\lambda_2, \emptyset), (\lambda_3, \emptyset) \}; \\ F_{2\Lambda} &= \{ (\lambda_1, \emptyset), (\lambda_2, \{b\}), (\lambda_3, \emptyset) \}; \\ F_{3\Lambda} &= \{ (\lambda_1, \emptyset), (\lambda_2, \emptyset), (\lambda_3, \{c\}) \} \end{split}$$

Now, a family ϑ of the above three soft sets with $\overline{\Phi}$ and \overline{X} consist an infra soft topology on X. On the one hand, (X, ϑ, Λ) is infra *pt*-soft T_2 , infra *pt*-soft T_3 and infra *pt*-soft T_4 . On the other hand, $(X, \vartheta_{\lambda_1}), (X, \vartheta_{\lambda_2})$ and $(X, \vartheta_{\lambda_3})$ are not infra T_0 .

Example 4.16. Let $\Lambda = {\lambda_1, \lambda_2, \lambda_3}$ be a set of parameters and $X = {a, b, c}$ the universal set. Consider the following soft sets which defined over *X*

$$\begin{split} F_{1\Lambda} &= \{(\lambda_1, \{a\}), (\lambda_2, \{b\}), (\lambda_3, \{c\})\};\\ F_{2\Lambda} &= \{(\lambda_1, \{c\}), (\lambda_2, \{a\}), (\lambda_3, \{b\})\};\\ F_{3\Lambda} &= \{(\lambda_1, \{b\}), (\lambda_2, \{c\}), (\lambda_3, \{a\})\};\\ F_{4\Lambda} &= \{(\lambda_1, \{a, b\}), (\lambda_2, \{b, c\}), (\lambda_3, \{a, c\})\};\\ F_{5\Lambda} &= \{(\lambda_1, \{a, c\}), (\lambda_2, \{a, b\}), (\lambda_3, \{b, c\})\};\\ F_{6\Lambda} &= \{(\lambda_1, \{b, c\}), (\lambda_2, \{a, c\}), (\lambda_3, \{a, b\})\} \end{split}$$

Now, a family ϑ of the above six soft sets with $\widetilde{\Phi}$ and \widetilde{X} consist an infra soft topology on *X*. On the one hand, (X, ϑ, Λ) is not infra *pt*-soft T_0 because every infra soft open set (except for the null soft set) partially contains every points in *X*. On the other hand, $(X, \vartheta_{\lambda_1})$, $(X, \vartheta_{\lambda_2})$ and $(X, \vartheta_{\lambda_3})$ are infra T_2 , infra T_3 and infra T_4 .

Theorem 4.17. Let (X, ϑ, Λ) be an extended infra soft topological space. If there exists $\lambda \in \Lambda$ such that (X, ϑ_{λ}) is infra T_j , then (X, ϑ, Λ) is infra pt-soft T_j for each j = 0, 1, 2.

Proof. We prove the theorem in the case of j = 2, 3. The other ones follow similar lines.

When j = 2. Let $a \neq b \in X$ and consider (X, ϑ_{λ}) is infra T_2 . Then there are two disjoint infra open subsets U, V of (X, ϑ_{λ}) containing a and b, respectively. Since (X, ϑ, Λ) is extended, there are infra soft open subsets G_{Λ}, F_{Λ} of (X, ϑ, Λ) such that $G(\lambda) = U, F(\lambda) = V$ and $G(\lambda') = F(\lambda') = \emptyset$ for each $\lambda' \neq \lambda$. This implies that $a \in G_{\Lambda}, b \notin G_{\Lambda}$, and $b \in F_{\Lambda}, a \notin F_{\Lambda}$; hence, (X, ϑ, Λ) is infra pt-soft T_2 .

When j = 3. It suffices to prove the property of infra *pt*-soft regular. To do that, let H_{Λ} be an infra soft closed set such that $a \notin H_{\Lambda}$. Then $a \notin H(\lambda)$ for each $\lambda \in \Lambda$. By hypothesis, there exists $\lambda \in \Lambda$ such that (X, ϑ_{λ}) is infra regular. Then there are disjoint infra open subsets U, V of (X, ϑ_{λ}) such that $a \in U, H(\lambda) \subseteq V$. Since (X, ϑ, Λ) is extended, there exist infra soft open subsets G_{Λ}, F_{Λ} of (X, ϑ, Λ) such that

 $G(\lambda) = U$ and $G(\lambda') = \emptyset$ for each $\lambda' \neq \lambda$

 $F(\lambda) = V$ and $G(\lambda') = X$ for each $\lambda' \neq \lambda$

This shows that $a \in G_{\Lambda}$, $H_{\Lambda} \subseteq F_{\Lambda}$. The disjointness of G_{Λ} and F_{Λ} ends the proof that (X, ϑ, Λ) is infra *pt*-soft regular. Hence, it is infra *pt*-soft T_3 . \Box

To clarify that the reversal of the above theorem fails, we give the following example.

Example 4.18. Let $\Lambda = \{\lambda_1, \lambda_2\}$ be a set of parameters and $X = \{a, b, c\}$ the universal set. Consider the following soft sets which defined over *X*

$$\begin{split} F_{1\Lambda} &= \{(\lambda_1, \{a\}), (\lambda_2, \emptyset)\};\\ F_{2\Lambda} &= \{(\lambda_1, \{a\}), (\lambda_2, \{c\})\};\\ F_{3\Lambda} &= \{(\lambda_1, \{a\}), (\lambda_2, \{a, b\})\};\\ F_{4\Lambda} &= \{(\lambda_1, \{a\}), (\lambda_2, X)\};\\ F_{5\Lambda} &= \{(\lambda_1, \{b, c\}), (\lambda_2, \emptyset)\};\\ F_{6\Lambda} &= \{(\lambda_1, \{b, c\}), (\lambda_2, \{c\})\};\\ F_{7\Lambda} &= \{(\lambda_1, \{b, c\}), (\lambda_2, \{a, b\})\};\\ F_{8\Lambda} &= \{(\lambda_1, \{b, c\}), (\lambda_2, \{c\})\};\\ F_{9\Lambda} &= \{(\lambda_1, \emptyset), (\lambda_2, \{c\})\};\\ F_{10\Lambda} &= \{(\lambda_1, X), (\lambda_2, \{c\})\};\\ F_{11\Lambda} &= \{(\lambda_1, X), (\lambda_2, \{a, b\})\};\\ F_{12\Lambda} &= \{(\lambda_1, X), (\lambda_2, \{a, b\})\};\\ F_{13\Lambda} &= \{(\lambda_1, X), (\lambda_2, \emptyset)\};\\ F_{14\Lambda} &= \{(\lambda_1, \emptyset), (\lambda_2, X)\} \end{split}$$

Now, a family ϑ of the above fourteen soft sets with $\overline{\Phi}$ and \overline{X} consist an extended infra soft topology on *X*. Obviously, (*X*, ϑ , Λ) is infra *pt*-soft *T*₂ and infra *pt*-soft *T*₃. However, (*X*, ϑ_{λ_1}) and (*X*, ϑ_{λ_2}) are not infra *T*₀.

Theorem 4.19. Let (X, ϑ, Λ) be an extended infra soft topological space. If all (X, ϑ_{λ}) are infra T_4 , then (X, ϑ, Λ) is infra pt-soft T_4 .

Proof. The property of an infra *pt*-soft T_1 -space was proved in Theorem 4.17, and the property of an infra soft normal space was proved in Theorem 3.17. Hence, (X, ϑ, Λ) is infra *pt*-soft T_4 .

Remark 4.20. Example 4.16 confirms that the restriction to extended infra soft topological spaces in Theorems 4.17 and 4.19 is not redundant.

It can be proved the following findings in a similar way to their counterparts in the last section.

Theorem 4.21. Suppose that (X, ϑ, Λ) is stable. Then (X, ϑ_{λ}) is infra T_j iff (X, ϑ, Λ) is infra pt-soft T_j for each j = 0, 1, 2, 3, 4.

Theorem 4.22. Every soft subspace of an infra pt-soft T_i -space is infra pt-soft T_i for j = 0, 1, 2, 3.

Theorem 4.23. Every infra soft closed subspace of an infra pt-soft T_4 -space is infra pt-soft T_4 .

Theorem 4.24. The finite product of infra pt-soft T_j -spaces is infra pt-soft T_j for j = 0, 1, 2.

Proposition 4.25. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, \upsilon, \Gamma)$ be an infra soft continuous map such that f is injective and ϕ is surjective. If (Y, υ, Γ) is infra pt-soft T_i , then (X, ϑ, Λ) is infra pt-soft T_i for j = 0, 1, 2.

Proposition 4.26. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, v, \Gamma)$ be a bijective infra soft continuous map. If (Y, v, Γ) is infra pt-soft T_j , then (X, ϑ, Λ) is infra pt-soft T_j for j = 0, 1, 2, 3, 4.

Proposition 4.27. Let $f_{\phi} : (X, \vartheta, \Lambda) \to (Y, v, \Gamma)$ be a bijective infra soft open map. If (X, ϑ, Λ) is infra pt-soft T_j , then (Y, v, Γ) is infra pt-soft T_j for j = 0, 1, 2, 3, 4.

Proposition 4.28. The property of being an infra pt-soft T_j -space (j = 0, 1, 2, 3, 4) is preserved under an infra soft homeomorphism map.

We complete this section by the following diagram which illustrates the relationships between infra soft separation axioms introduced in this manuscript.

Figure 1: The relationships between infra soft separation axioms

5. Conclusion and future work

This paper is at the junction of two disciplines, namely, soft set theory and infra soft topology. In this paper, we perform an exhaustive analysis of separation axioms in the context of infra soft topological spaces. The motivations of this work are, first, to create new families of soft structures and discover which one of the topological properties is still valid in these structures. Second, these families of soft structures open a door to study new types of approximations and accuracy measures in the content of rough sets models as those given [2]. Third, they will allow us to investigate many results induced from their interaction with some soft topological concepts such as infra soft compactness and infra soft connectedness which were given in [6] and [8], respectively.

Through this article, we have formulated the concepts of infra *pp*-soft T_j and infra *pt*-soft T_j -spaces (j = 0, 1, 2, 3, 4). They have been defined with respect to the relationships between distinct ordinary

points and soft sets using partial belong and partial non-belong relations in the first type, and partial belong and total non-belong relations in the second type. We have provided some examples to show the relationships between the spaces in each type of them as well as the interrelationships between the two types. Also, we have studied their transmission between infra soft topology and its parametric infra topologies. Furthermore, we have discussed their image and pre-image under some types of infra soft mappings.

In future works, we plan to complete this study by introducing new types of infra soft separation axioms using the two pairs of relations (\in , \notin) and (\in , \notin). Also, we shall investigate further concepts in the context of infra soft topological spaces such as infra soft α -open, infra soft pre-open, infra soft semi-open, infra soft *b*-open, and infra soft β -open sets. Finally, we promote the researchers interested in the topology of soft sets and rough sets to carry out further investigations in the area of infra soft topologies.

Acknowledgments

We would like to thank the editor Professor Ljubiša Kočinac and the referees for their useful comments on the paper.

References

- M. Abbas, M.I. Ali, S. Romaguera, Generalized operations in soft set theory via relaxed conditions on parameters, Filomat 31 (2017) 5955–5964.
- [2] M.E. Abd El-Monsef, O.A. Embaby, M.K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Syst. 3 (2014) 292–305.
- [3] M.I. Ali, F. Feng, X. Liu, W.K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547–1553.
- [4] A.M. Al-Odhari, On infra topological spaces, Int. J. Math. Arch. 6 (2015) 179-184.
- [5] T. M. Al-shami, New soft structure: Infra soft topological spaces, Math. Probl. Eng. Volume 2021, Article ID 3361604, 12 pages.
- [6] T.M. Al-shami, Infra soft compact spaces and application to fixed point theorem, J. Funct. Spaces Volume 2021, Article ID 3417096, 9 pages.
- [7] T.M. Al-shami, Homeomorphism and quotient mappings in infra soft topological spaces, J. Math. Volume 2021, Article ID 3388288, 10 pages.
- [8] T.M. Al-shami, E.A. Abo-Tabl, Connectedness and local connectedness on infra soft topological spaces, Mathematics 9 (2021), 1759. https://doi.org/10.3390/math9151759
- [9] T.M. Al-shami, M.E. El-Shafei, On supra soft topological ordered spaces, Arab J. Basic Appl. Sci. 26 (2019) 433-445.
- [10] T.M. Al-shami, M.E. El-Shafei, Partial belong relation on soft separation axioms and decision-making problem, two birds with one stone, Soft Comput. 24 (2020) 5377–5387.
- [11] T.M. Al-shami, M.E. El-Shafei, T-soft equality relation, Turk. J. Math. 44 (2020) 1427–1441.
- [12] T.M. Al-shami, M.E. El-Shafei, M. Abo-Elhamayel, Almost soft compact and approximately soft Lindelöf spaces, J. Taibah Univ. Sci. 12 (2018) 620–630.
- [13] T.M. Al-shami, M.E. El-Shafei, M. Abo-Elhamayel, On soft topological ordered spaces, J. King Saud Univ. Sci. 31 (2019) 556–566.
- [14] T.M. Al-shami, Lj.D.R. Kočinac, The equivalence between the enriched and extended soft topologies, Appl. Computat. Math. 18 (2019) 149–162.
- [15] C.G. Aras, S. Bayramov, Results of some separation axioms in supra soft topological spaces, TWMS J. Pure Appl. Math. 9 (2019) 58–63.
- [16] A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl. 21 (2012) 113–119.
- [17] S. Bayramov, C.G. Aras, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math. 9 (2018) 82–93.
- [18] N. Cağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Math. Appl. 59 (2010) 3308–3314.
- [19] D. Chen, E.C.C. Tsang, D.S. Yeung, X. Wang, The parameterization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005) 757–763.
- [20] S. Das, S.K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6 (2013) 77-94.
- [21] M.E. El-Shafei, M. Abo-Elhamayel, T.M. Al-shami, Partial soft separation axioms and soft compact spaces, Filomat 32 (2018) 4755–4771.
- [22] M.E. El-Shafei, T.M. Al-shami, Applications of partial belong and total non-belong relations on soft separation axioms and decision-making problem, Comput. Appl. Math. 39 (2020), 138, https://doi.org/10.1007/s40314-020-01161-3
- [23] S.A. El-Sheikh, A.M. Abd El-Latif, Decompositions of some types of supra soft sets and soft continuity, Int. J. Math. Trends Technol. 9 (2014) 37–56.
- [24] F. Feng, Y.M. Li, B. Davvaz, M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 14 (2010) 899–911.
- [25] A. Ghareeb, Soft weak baire spaces, J. Egypt. Math. Soc. 26 (2018) 395-405.

- [26] B.M. Ittanagi, Soft bitopological spaces, Int. J. Comput. Appl. 107 (2014) 1-4.
- [27] O.H. Khalil, A. Ghareeb, Spatial object modeling in soft topology, Songklanakarin J. Sci. Technol. 37 (2015) 493-498.
- [28] A. Kharal, B. Ahmed, Mappings on soft classes, New Math. Nat. Comput. 7 (2011) 471-481.
- [29] Lj.D.R. Kočinac, T.M. Al-shami, V. Çetkin, Selection principles in the context of soft sets: Menger spaces, Soft Comput. 25 (2021) 12693-12702.
- [30] P.K. Maji, R. Biswas, R. Roy, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077–1083.
 [31] P.K. Maji, R. Biswas, R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562.
- [32] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19-31.
- [33] S. Nazmul, S.K. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform. 6 (2013) 1-15.
- [34] K. Qin, Z. Hong, On soft equality, J. Comput. Appl. Math. 234 (2010) 1347-1355.
- [35] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786–1799.
- [36] A. Singh, N.S. Noorie, Remarks on soft axioms, Ann. Fuzzy Math. Inform. 14 (2017) 503-513.
- [37] O. Tantawy, S.A. El-Sheikh, S. Hamde, Separation axioms on soft topological spaces, Ann. Fuzzy Math. Inform. 11 (2016) 511–525.
- [38] M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput. 23 (2019) 1049–1057.
- [39] J. Thomas, J.S. John, On soft generalized topological spaces, J. New Results Sci. 4 (2014) 1–15.
- [40] S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl. (2013) 2013:229.
- [41] A.H. Zakari, A. Ghareeb, S. Omran, On soft weak structures, Soft Comput. 21 (2017) 2553-2559
- [42] I. Zorlutuna, M. Akdag, W.K. Min, S. Atmaca, Remarks on soft topological spaces, Ann. Fuzzy Math. Inform. 2 (2012) 171–185.