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Abstract. In this note we study the double points set of a particular covering map of an open manifold,
and we present a new procedure for building universal covering spaces of such manifolds. This is done
by means of an arborescent construction, starting from a presentation of the manifold as a non-compact
simplicial complex with pairwise identified faces. The proof uses the so-called “zipping theory” of Poénaru
which helps the understanding of the topology of the quotient manifold resulted from the combinatorial
presentation.

1. Introduction

One of the oldest ways to represent in a simple way a PL closed n-manifold Mn is that of considering
a polyhedral ball modulo the orbits of a fixed point-free involution on the (n − 1)-simplices of ∂Mn. More
precisely, one starts with a PL n-ball ∆ whose boundary is triangulated with an even number of (n − 1)-
simplices. Then, in this set of (n−1)-simplices, {h1, h2, . . . , h2p}, one considers an appropriate fixed-point free
involution r. Finally, one glues each hi to r(hi) via a well-chosen simplicial isomorphism. The quotient space
∆/ρr obtained by this process, will be exactly Mn. Now, if ∆L = ∪l∈Ll∆ is the tree of fundamental domains
of the free monoid L generated by the identifications of the (n − 1)-simplices of ∂∆, the universal covering
space of Mn can also be obtained as a quotient of ∆L by an opportune equivalence relation “forced” by the
singularities of the natural map from ∆L to Mn, conceived by V. Poénaru in [3], and successfully exploited
in [5–7] (and, more recently, in [1, 2]).

In this note we will present similar representations for any open n-manifold Vn and its universal covering
space. In broad lines it works in this way. Since the polyhedral n-ball ∆ of above may also be viewed as
the n-dimensional regular neighbourhood of a point, we will replace ∆ by T, the n-dimensional regular
neighbourhood of a properly embedded non compact tree T1

⊂ Vn, with empty “boundary” (namely an
infinite tree whose all endpoints are at the infinity). We will also consider a triangulation τ of ∂T (which
actually is a (n − 1)-sphere with open disks removed, corresponding to the ends of T) and a suitable fixed
point-free involution j on the finite set of (n − 1)-simplices {t1, t2, . . . , t2p} of τ in such a way that if one
identifies the simplexes ti with j(ti) (by means of a pertinent linear isomorphism), one gets a quotient space
T/ρ j which is exactly Vn. We will also prove that the universal covering space of Vn may be constructed as
a quotient of a tree-like object T∞, obtained by unrolling T along its faces, which will be the analogous of
∆L for closed manifolds.
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Approximately, the definition of T∞ can be schematised as follows: T∞ = T ∪ ji jiT ∪ ji jk ji jkT ∪ · · · , where
any ji jk . . . jr js identifies two corresponding faces in ji jk . . . jrT and in ji jk . . . jr jsT. Of course, by construction,
this tree-like object has lots of singularities and we will make use of Poénaru’s (Φ/Ψ)-theory from [3], which
is a practical strategy for getting rid of them, but still preserving some useful topological information. The
equivalence relation Φ is the standard equivalence relation associated to a map f , where (x, y) ∈ Φ means
that f (x) = f (y), while Ψ( f ) is an equivalence relation that is the smallest possible such relation killing all
the singularities of the map f .

In our first result (Theorem 3.2) we will show that that Ṽn � T∞/Ψ( f∞), where f∞ is the natural map
from T∞ to Vn sending any copy of T ⊂ T∞ to T ⊂ Vn. In the second result (Theorem 3.5) we will actually
prove that Ψ( f∞) = Φ( f∞), which implies, in particular, that once one has killed all the singularities of f∞,
there are no more double points left (or, in other words, the cheapest way to kill all the singularities is to
kill all the double points).

2. Preliminaries

2.1. The equivalence relation Ψ forced by the singularities

In Section 2 of [3], Poénaru considered and investigated the double points structure of the very general
situation of a non-degenerate simplicial map f : X → M3, where M3 is a triangulated 3-dimensional
manifold without boundary, and X is a not necessarily locally finite simplicial complex of dimension ≤ 3
(here non-degenerate means that for any simplex σ of X, dim f (σ) = dim σ).

In that paper he introduced and studied two equivalence relations Ψ( f ) ⊂ Φ( f ) ⊂ X × X, where Φ( f )
is the “ordinary” equivalence relation (x, y) ∈ Φ( f ) ⇐⇒ f (x) = f (y), whereas Ψ( f ) is the “smallest”
equivalence relation, compatible with f , which kills all the possible singularities of f (where an equivalence
relation R is compatible if the quotient X/R remains a simplicial complex, together with its induced map
to M3). Recall also that a point z ∈ X is a singularity (z ∈ Sing( f )) if there exist two different simplexes
σ1, σ2 ⊂ X with z ∈ σ1 ∩ σ2 and such that f (σ1) = f (σ2). Clearly, the quotient space X/Φ( f ) is nothing but
f (X). On the other hand, the equivalence relation Ψ gives rise to a commutative diagram

(1)

X
f

> M3

X/Ψ( f )
f1

>

>

where f1 is an immersion (i.e. without singularities, namely Sing( f1) = ∅) and no smaller equivalence
relation, compatible with f , fulfils this condition.

This statement and various other properties of Ψ( f ) are proved and explained in details in [3] (see
also [1] for a simple applications of this theory). Here we want just to mention that while the standard
quotient map from X to X/Φ( f ) forgets, in general, any topological information, Lemma 2.4 of [3] shows
that the natural canonical map from π1(X) to π1(X/Ψ( f )) is actually surjective, which specifically means
that π1(X/Ψ( f )) = 0 whenever X is simply connected. This is a very important feature that will allows us
to obtain universal covering spaces.

Finally, note also that, although the paper [3] deals with 3-dimensional manifolds, all the results remain
valid in any dimension n ≥ 3 (indeed dimension 3 was important just for the applications of the theory for the
Poincaré Conjecture and/or the simple connectivity at infinity of universal covers of closed 3-dimensional
manifolds).

2.2. An application of the (Φ/Ψ)-theory: closed manifolds

This little theory can be nicely applied and exploited in the context of closed manifolds in order to
obtain a different construction of their universal covering spaces (see [5, 6]). This was actually the main tool
Poénaru has exploited in order to transform the geometric information given by the fundamental group
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of the manifold (such as being almost-convex, hyperbolic or combable), into topological conditions of its
universal cover.

Let Mn be a closed n-manifold, and consider a triangulation τ of Mn together with its dual cellular
decomposition τ?. A general procedure for representing the n-manifold Mn as an appropriate quotient
of the combinatorial object ∆ (the n-dimensional PL ball) is to start by considering a maximal tree Λ of
the 1-skeleton of τ?, and attach, along its edges, all the (n − 1)-simplices of τ. The space obtained ∆ is a
collapsible n-dimensional simplicial complex endowed with a simplicial map 1 : ∆ → Mn, and such that
∆/ρ = Mn.

In this way, when we consider ∆L = ∪l∈Ll∆, that is the tree of fundamental domains of the free monoid L
generated by the identifications of the (n − 1)-simplices of ∂∆, every l∆ can be considered as a triangulated
simplicial complex just as ∆, and hence the whole ∆L can be viewed as a simplicial complex with a simplicial
non-degenerate map 1∞ : ∆L → Mn which sends each l∆ onto 1(∆). This arborescent space is obviously not
locally-finite, but it turns out that ∆L/Ψ(1∞) is actually homeomorphic to M̃n (see [6]).

Remark 2.1. The space ∆L has a configuration which is based on the Cayley graph of π1Mn, and, if, in
the definition of ∆L = ∪l∈Ll∆, one considers only reduced words, then the set of singularities of the map
1∞ : ∆L → Mn (namely the points where ∆L is not a manifold) is the (n − 2)-skeleton of ∆L, otherwise it
would be the whole (n − 1)-skeleton.

2.3. Other applications

The results we will present now should serve as a reminder of how the Φ/Ψ-manipulation was used by
Poénaru in his work in differential topology and geometric group theory.

A smooth open n-manifold Mn is said to be Dehn-exhaustible if for every compact subset k ⊂ Mn we can
find a compact bounded n-manifold Kn with π1Kn = 0, entering in the following commutative diagram

k
i

> Mn

Kn

f

>

j
>

which is such that: i is the canonical inclusion and j is an inclusion too, f is a smooth immersion, and the
following so-called Dehn-condition is fulfilled: j(k) ∩M2( f ) = ∅, where M2( f ) is the set of points x ∈ Kn such
that card{ f−1 f (x)} > 1.

(Note that the last condition is similar to the one in the renowned Dehn’s lemma). In [4], Poénaru proved
his own version of Dehn’s lemma: “Any open simply-connected 3-manifold V3 which is Dehn-exhaustible, is
simply connected at infinity”.

He then used the Φ/Ψ-theory for universal coverings of closed manifolds, together with the Dehn-type
Lemma of above in order to prove the following well-known classical result [5]: “Let M3 be a closed 3-manifold
with π1M3 = G. Assume G is almost convex (or Gromov-hyperbolic). Then M̃3 is simply connected at infinity”.

One of the main tool he used in his work was the notion of “inverse-representation”, which heavily uses
the Φ = Ψ condition. The first “representation-result” from [6] (the so-called “Collapsible Pseudo-Spine
Representation Theorem”) states that: “Given a homotopy 3-sphere Σ3, one can construct a representation
f : K2

→ Σ3, where K2 is a finite 2-complex and f a non-degenerate simplicial map with controlled singularities ,
such that the complement of f (K2) is a finite collection of open 3-cells, K2 is collapsible and Ψ( f ) = Φ( f )”.

Afterwards, trying to adapt this kind of result to open 3-manifolds, Poénaru and Tanasi [7] gave an
extension of these ideas to the case of simply-connected open 3-manifolds V3, introducing the notion of
almost-arborescent representation.

All these results have been obtained with the help of the equivalence relation Ψ in order to be able to
push away all the singularities of the representation map one needs to work with.
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3. Main results

3.1. Open manifolds and universal covers
In this section we will adapt the construction of Section 2.2 for open n-manifolds. The starting point is

the following statement:

Proposition 3.1. Given an open, connected, triangulated n-manifold Vn, there are a triangulated, connected, non
compact n-manifold T, with non empty boundary, and a simplicial map F : T→ Vn, with the following properties:

• The restriction of F to any simplex σ is an isomorphism between σ and F(σ).

• There is a proper embedding of an infinite, locally finite tree, i : T1
→ int(T) = T − ∂T, such that T is a

n-dimensional regular neighbourhood of i(T1), and the endpoints of T1 lie at the infinity of T.

• The map F is surjective, and F|int(T) is an embedding.

• F(intT) ∩ F(∂T) = ∅.

• If we denote by S the set of all (n − 1)-dimensional simplexes of ∂T, and if σ ∈ S, then there is exactly one other
element jσ ∈ S, different from σ, such that F(σ) = F( jσ).

Proof. In order to obtain the result it suffices to pickup a maximal tree T1 of tetrahedra of the triangulation
of Vn and then to consider its regular neighbourhood T.

From the last point of Proposition 3.1, we have on S a fixed point-free involution j : S→ S and for any
σ ∈ S a linear isomorphism λ(σ, jσ) : σ → jσ with λ( jσ,σ) = λ−1

(σ, jσ) and with obvious compatibility conditions
around the edges of ∂T.

Thus, the data {S, j, λ} induces an equivalence relation ρ on T and actually one has the equality ρ = Φ(F).
Hence Vn = T/ρ and we will call T the fundamental domain.

We will consider now the free monoid G which is generated by S = {h1, h2, . . . , h2p} and by 1, and the
n-dimensional non locally finite, tree-like, simplicial complex T∞, obtained as follows. We start with the
disjoined union

∑
x∈G xT and then, for each x ∈ G and h ∈ S, we identify the h-face of xT to the jh-face

of (xh)T. The quotient space is our T∞ and the definition of T∞ may be schematised by the following
symbolical formula

(2) T∞ = T ∪hi hiT ∪hih j hih jT ∪ · · · .

There is a tautological map f∞ : T∞ → Vn sending each xT ⊂ T∞ identically onto F(T) ⊂ Vn, where
F : T→ Vn is the map of Proposition 3.1.

Theorem 3.2. The natural arrow

(3) f∞1 : T∞/Ψ( f∞)→ Vn

is the universal covering map for Vn (i.e. T∞/Ψ( f∞) � Ṽn).

Proof. The arborescent space T∞ is obviously simply connected and hence so is T∞/Ψ( f∞). Also, it is easy
to prove that f∞1 is a local homeomorphism, because it is an immersion by (1), and because T∞, as well as
T∞/Ψ( f∞), have no free-faces. Furthermore, T∞/Ψ( f∞) is complete, in the sense that each infinite word
hi1 hi2 hi3 · · · can be represented in T∞ and hence in T∞/Ψ( f∞) by a continuous chain of fundamental domains,
starting in 1 · T and going to infinity. The conclusion follows from these three facts.

We have so obtained a new reinterpretation of the universal covering space of an open manifold, but
we do not have a manageable method for obtaining our equivalence relation Ψ. This will be done in the
next section.



D.E. Otera / Filomat 36:4 (2022), 1171–1177 1175

3.2. An effective construction of Ψ

For an arbitrary open n-manifold Vn we have then the following commutative diagram

(4)

T∞/Φ( f∞)

T∞
f∞

>

>

Vn

id

>

T∞/Ψ( f∞)
f∞1

>

>

Now, if we assume that Vn is simply connected (and from now on it will be assumed all along the paper),
the combination of the diagram above and of Theorem 3.2 tells us that we have the equality Φ( f∞) = Ψ( f∞),
because Vn = T∞/Ψ( f∞).

Remember now that a point X ∈ T∞ is a singularity for f∞ (and one writes X ∈ Sing( f∞)) if and only if
there exist two fundamental domains x′T, x′′T ⊂ T∞, with x′, x′′ distinct elements of G, such that:

• X ∈ x′T ∩ x′′T,

• there exist two small neighbourhoods of X, U′ ⊂ x′T and U′′ ⊂ x′′T such that f∞(U′) = f∞(U′′).
In such a case we will say that germ( f∞|x′T)X =germ ( f∞|x′′T)X.

Remark 3.3. Each xT is just another copy of T, which is being sent identically onto F(T) ⊂ V3 by the map
f∞. Also, the map f∞|int(xT) : xT → Vn is not a homeomorphism, whereas f∞|int(xT) : int(xT) → int(T) ⊂ Vn

is one.
If we label once for all the vertices of F(T) ⊂ Vn by v1, v2, · · · , vα, · · · this automatically labels the vertices

of each xT. If our singularity X ∈ x′T ∩ x′′T is a vertex, it has the same label in x′T and in x′′T.

We introduce now the set sing(T∞) of singularities of the space T∞ counted with multiplicities. By
definition, an element of sing(T∞) is a triple (X; x′T, x′′T) where:

• X is a vertex, an edge or a face of T∞,

• x′T and x′′T are two distinct fundamental domains such that X ∈ x′T∩x′′T, and germ( f∞|x′T)X =germ
( f∞|x′′T)X.

Remark 3.4.

• We do not distinguish between the singularities (X; x′T, x′′T) and (X; x′′T, x′T).

• Every point p ∈ X, where (X; x′T, x′′T) is a singularity, belongs clearly to Sing( f∞). But one should
not mix up such singularities (belonging to Sing( f∞)) with singularities (belonging to sing(T∞)).

• Like before, if (X; x′T, x′′T) is a singularity, then X is the same vertex, or edge, or face, whatever
considered in x′T or in x′′T.

• Even if we have something like σ1 = (Vertex (or Edge); x′T, x′′T) which is part of a larger singularity
σ2 = (Edge (or Face); x′T, x′′T), we will anyway count σ1 and σ2 as distinct singularities.

The next theorem provides an explicit description of the equality Φ( f∞) = Ψ( f∞) of above.

Theorem 3.5. There is a well ordered (possibly transfinite) sequence of successive quotient spaces of T∞, obtained by
folding maps; each of these operations identifies two fundamental domains with non-void intersection, and which are
part of a singularity (at the source of the corresponding folding map). In this way we get a sequence of spaces

(5) T∞
ρ1
−→ T∞(σ1)

ρ2
−→ T∞(σ1)(σ2)

ρ3
−→ · · ·

with the following two properties:
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• Corresponding to the well-ordered sequence of ordinals, one has:

– A first element σ1 ∈ Sing(T∞) with σ1(u1; x′1T, x′′1 T) and its associated projection map p1 which identifies
x′1T to x′′1 T.

– A second element σ2 ∈ Sing(T∞(σ1)) with σ2(u2; x′2T, x′′2 T) and its associated projection map p2 which
identifies x′2T to x′′2 T.

– · · · · · ·

• Each of the objects appearing in the sequence above is a union of fundamental domains. This process eventually
ends when there are no more singularities left. When that happens, we are left with a quotient space of T∞

which contains a unique fundamental domain. This quotient space is exactly

T/Ψ( f∞) = T/Φ( f∞) = Vn.

Proof. Firstly, we set up an inductive process of folding maps which kills successively all the singularities
(ui; x′T, x′′T). Since T∞ has no free faces (by which we mean that the various fundamental domains of T
which are incident to a given face τ have f∞-images which occupy both sides of f∞τ), this process also
kills all the singularities of the type (Vertex; Face, Face) and (Edge; Face, Face). It is not hard to see that it
actually kills all the Singularities of the type (Vertex; Edge, Edge), too.

In other words, by the time we have killed all the singularities (ui; x′T, x′′T), there are no more singu-
larities (X; x′T, x′′T) left. So we can finally apply the equality Vn = T∞/Ψ( f∞) of above in order to get our
conclusion.

Proposition 3.6. One can choose the folding maps ρ1, ρ2, · · · of Theorem 3.5 in such a way that the sequence (5) does
not continue beyond the first infinite ordinal ω.

Proof. Denote by Zn ⊂ T∞ the part of T∞ obtained by taking only the xT’s where x is a word of length ≤ n
in G. We have then the sequence

Z1 ⊂ Z2 ⊂ · · · ⊂ Zn ⊂ Zn+1 ⊂ · · ·T∞

which in fact exhausts T∞. For each Zn, we consider the equivalence relations Ψn = Ψ( f∞|Zn ) and also
Ψ′n ⊂ Ψn which is the equivalence relation generated by all the folding maps which kill the singularities
of Zn. Since Zn has finitely many T’s, there exists a number n1 � n with the property that Zn/Ψ′n1

→

Zn/Ψ′n1+1 → · · · are all bijective. We denote now (n1)1 by n2, (n2)1 by n3, and so on. Then, the commutative
diagram

Zn/Ψ′n1
⊂ > Zn1/Ψ

′
n1

Zn/Ψ′n2

'

∨

⊂ > Zn1/Ψ
′
n2

∨

tells us that Zn/Ψ′n1
→ Zn1/Ψ

′
n2

is actually injective.
So we have a sequence of embeddings

(6) Zn/Ψ
′

n1
⊂ Zn1/Ψ

′

n2
⊂ Zn2/Ψ

′

n3
⊂ · · ·

and the union of the objects in (6) is a quotient space of T∞, which we denote by T∞/R. The various maps
Zn/Ψ′n1

→ Vn, Zn1/Ψ
′
n2
→ Vn, · · · are all compatible and induce, then, a well-defined map φ : T∞/R→ Vn,

which is itself compatible with f∞. A local analysis shows that if for high enough N � n we kill all the
singularities of ZN, this automatically also kills all the singularities of f∞|Zn . It follows that the map φ is an
immersion, and since a priori R ⊂ Ψ( f∞), we actually have the equality R = Ψ( f∞). Hence Ψ′n1

|Zn = Ψ( f∞)|Zn ,
Ψ′n2
|Zn1

= Ψ( f∞)|Zn1
.

We are able now to produce a sequence as in (5) but modelled on the first transfinite ordinal ω. This
goes as follows: we choose to successively kill only singularities of Zn until we realise Ψ′n1

|Zn , then only
singularities of Zn1 until we realise Ψ′n2

|Zn1
, and so on. This ends our lemma.
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