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Abstract. In this article, we adopt the idea of set-valued (Z,ℜ)-contractions and establish some fixed
point results for such contractions in metric spaces utilizing binary relation. To validate our newly obtained
results, we also provide some illustrative examples. Finally, we apply our results to solve a family of
nonlinear matrix equations under suitable assumptions.

1. Introduction

The classical Banach contraction principle [1] is one of the most fundamental, simple and natural results
in nonlinear analysis. Due to its natural setting and growing applications, this theorem has been generalized
and extended by several authors (e.g., see [2–5]) which also contains a multitude of noted generalizations
as well. In 2015, a similar attempt was made by Khojasteh et al. [6] wherein the authors introduce the
notion of Z-contractions using a family of control functions now often referred as “simulation function”
that unify several types of linear as well as nonlinear contractions of the existing literature. In 2018, Sawang-
sup and Sintunavarat [7] have introduced the concept of (Z,ℜ)-contractions for single valued mapping
and obtained some fixed point theorems in complete metric space endowed with a transitive binary relation.

Banach contraction principle was extended by Nadler [8] to set-valued contractions, often referred as
Nadler’s contraction principle which has attracted the attention of several mathematician and by now there
exists a considerable literature on and around Nadler’s contraction principle. Before presenting Nadler’s
theorem, we need to recall the following notations and terminologies in respect of set-valued mappings to
make our exposition self-sustained.
In a metric space (M, d) let us adopt the following notations:

• K(M) := {P ⊂M; P is nonempty and compact};

• CB(M) := {P ⊂M; P is nonempty, closed and bounded};

• P(M) : the power set of M.
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We shall adopt the Hausdorff distanceH : CB(M) × CB(M)→ [0,+∞) defined as

H(P,Q) := max
{

sup
p∈P

D(p,Q), sup
q∈Q

D(q,P)
}
, P,Q ∈ CB(M)

where,
D(p,Q) := inf{d(p, q) : q ∈ Q}.

Then,H is a metric on CB(M). Moreover, (CB(M),H) is complete if (M, d) is complete. Let, S : M→ P(M),
then an element r ∈M is called fixed point of S if r ∈ Sr (the collection of all such elements will be denoted
by Fix(S)). For further details one can see [9].

Now, we state Nadler’s contraction principle concerning the existence of fixed points for set-valued
contractions in metric spaces.

Theorem 1.1. [8] Let (M, d) a complete metric space, and S : M→ CB(M). Then S has a fixed point if there exists
δ ∈ [0, 1) such that

H(Sr,Ss) ≤ δd(r, s), for all r, s ∈M. (1)

A mapping S (as defined above) satisfying (1) is known as set-valued contraction.

Due to the applicability and usefulness of set-valued mappings in several domains namely optimization,
economics, game theory, variational inequalities problem, etc., many researchers attempted to obtain fur-
ther generalizations, extensions, and possible applications of Nadler’s contraction principle (e.g., [10–17])
and the references cited therein. With similar quest, Sintunavarat et al. [18] proved some fixed point results
for q-set-valued quasi-contractions wherein they introduced and utilized the idea of set-valued preserving
mappings in b-metric space equipped with a binary relation.

In what follows, we adopt the concept of set-valued (Z,ℜ)-contraction mappings and prove some
existence fixed point results for such mappings via “simulation functions” employing a binary relationℜ.
Thereafter, we present some explanatory examples to validate our main results. Consequently, we deduce
some existence as well as uniqueness results for single-valued mappings. At last, we apply our results to
ensure the existence as well as the uniqueness of a solution for nonlinear matrix equations.

2. Preliminaries

With a view to have a possibly self-contained presentation, we describe the following terminological and
notational conventions. In what follows N,N0,R denote the set of natural numbers, set of non-negative
natural numbers and set of real numbers, respectively.

Now, we recall the notion of “simulation functions” due to Khojasteh et al. [6].

Definition 2.1. Suppose ξ : [0,∞)2
→ R is a function satisfying:

(ξ1) ξ(0, 0) = 0;
(ξ2) ξ(s, t) < t − s for all s, t > 0;
(ξ3) if {sn}, {tn} are sequences in (0,∞) satisfying lim

n→∞
sn = lim

n→∞
tn > 0, then lim sup

n→∞
ξ(sn, tn) < 0.

Then, ξ is known as “simulation function” (where, [0,∞)2 := [0,∞) × [0,∞)).

Thereafter, Argoubi et al. [19] refined the above definition by removing axiom (ξ1) which was followed by
yet another refinement due to [20, 21] wherein authors revised the axiom (ξ3) by taking sn < tn. Henceforth,
we call a function ξ : [0,∞)2

→ R to be a “simulation function” if it satisfy:
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(ξ2) ξ(s, t) < t − s for all s, t > 0;
(ξ3) if {sn}, {tn} are sequences in (0,∞) satisfying lim

n→∞
sn = lim

n→∞
tn > 0 and sn < tn for all n ∈ N, then

lim sup
n→∞

ξ(sn, tn) < 0.

The family of all “simulation functions” will be denoted byZ.

Remark 2.2. Due to the condition (ξ2), we have ξ(s, s) < 0, for all s > 0.

Here, for the sake of completeness we enlist some well known examples of “simulation functions” from
the existing literature ( [6, 21–23]):

Example 2.3. Consider the mappings ξi : [0,∞) × [0,∞)→ R (for i = 1, 2, · · · , 5) as follows:

• ξ1(s, t) = Ψ(t)−Φ(s),∀s, t ∈ [0,∞), whereinΦ,Ψ : [0,∞)→ [0,∞) are continuous,Ψ(s) = Φ(s) = 0 ⇐⇒ s = 0
andΨ(s) < s ≤ Φ(s) for all s > 0;

• ξ2(s, t) = αt − s, ∀s, t ∈ [0,∞), with α ∈ [0, 1);
• ξ3(s, t) = t − η(t) − s for all s, t ∈ [0,∞), where η : [0,∞) → [0,∞) is a lower semi-continuous function and
η(s) = 0 ⇐⇒ s = 0;

• ξ4(s, t) = t−
∫ s

0 φ(s)ds,∀s, t ∈ [0,∞), whereinφ : [0,∞)→ [0,∞) s.t.
∫ ϵ

0 φ(s)ds exists and
∫ ϵ

0 φ(s)ds > ϵ, ∀ϵ > 0.

Here, we include another example in this regard.

• ξ5(s, t) = t
αt+1 − s for all s, t ∈ [0,∞) and α > 0.

Then ξ′i s are “simulation functions” (for i = 1, 2, · · · , 5). For more examples and related results on “simula-
tion functions”, one can consult [6, 21–26] and the references cited therein. Now, we recollect the definition
ofZ-contraction.

Definition 2.4. [6] Let (M, d) be a metric space and S a self mapping on M. Then S is called aZ-contraction w.r.t ξ
if

ξ(d(Sr,Ss), d(r, s)) ≥ 0 for all r, s ∈M. (2)

In the above definition, if we take ξ(s, t) = αt − s for all s, t ∈ [0,∞) and α ∈ [0, 1), thenZ-contraction takes
the form of Banach contraction. Also, in view of Remark 2.2, it is obvious that any isometry defined on a
metric space can not beZ-contraction and vise-versa .

By defining Z-contraction, Khajasteh et al. [6] obtained the following theorem and deduced several
existing as well as some new fixed point results by varying “simulation functions”.

Theorem 2.5. [6] Let (M, d) be a complete metric space and S a self mapping on M. If S isZ-contraction w.r.t some
ξ. Then S has a unique fixed point.

3. Relation-Theoretic Notions and Auxiliary Results

In this section, we discuss some basic definitions, notions and related allied results involving a binary
relation.

A subsetℜ of M2 is said to be a binary relation on M. From now on by writingℜ, we will always mean
a nonempty binary relation acting upon M. If (r, s) ∈ ℜ and (s, t) ∈ ℜ imply (r, t) ∈ ℜ, for any r, s, t ∈M then
ℜ is said to be transitive relation on M. Also, we defineℜ−1 := {(r, s) ∈M2 : (s, r) ∈ ℜ} andℜs =ℜ∪ℜ−1.
Let, r, s ∈M then they are said to beℜ-comparable (denoted by [r, s] ∈ ℜ) if (r, s) ∈ ℜ or (s, r) ∈ ℜ.

From now on the triplets (M, d,ℜ) denotes a relational metric space where M remains a nonempty set,
d a metric on M andℜ an arbitrary relation on M.
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Proposition 3.1. [5] Let M be a non-empty set. For a binary relationℜ on M, we have

(r, s) ∈ ℜs
⇔ [r, s] ∈ ℜ.

Definition 3.2. [5] A sequence {rn} ⊆M is calledℜ-preserving if

(rn, rn+1) ∈ ℜ, ∀n ∈N0.

Definition 3.3. [27] Let M be a non-empty set. We say a binary relation ℜ is locally transitive on M, if for any
ℜ-preserving sequence {rn} ⊂M (with range P := {rn : n ∈N0}),ℜ|P is transitive.

Definition 3.4. [27] Let (M, d,ℜ) be a relational metric space, then it is said to beℜ-complete if everyℜ-preserving
Cauchy sequence converges to a point in M, whereℜ is a binary relation acting on M.

From the above definition, it is clear that every complete metric space is ℜ-complete, for an amorphous
binary relation ℜ. However, ℜ-completeness takes the form of usual completeness employing universal
relation.

Definition 3.5. [5] Let (M, d,ℜ) be a relational metric space. Then, a binary relation ℜ is said to be d-self-closed
if for any ℜ-preserving sequence {rn} converges to r, then there must exists a subsequence {rnl } of {rn} satisfying
[rnl , r] ∈ ℜ, ∀l ∈N0.

Definition 3.6. [5] Letℜ be a binary relation on M and S : M→M. Then, we sayℜ is S-closed if for any r, s ∈M,

(r, s) ∈ ℜ ⇒ (Sr,Ss) ∈ ℜ.

Now, we introduce a relatively new definition to this effect.

Definition 3.7. Let M be a nonempty, ℜ a binary relation on M and S : M → M. Then we say ℜ is triangular
S-closed ifℜ is S-closed and for any r, s ∈M,

(r, s) ∈ ℜ ⇒ (r,Ss) ∈ ℜ.

Definition 3.8. [28] Let (M, d,ℜ) be a relational metric space and S : M → M. Then S is calledℜ-continuous at

r ∈M if anyℜ-preserving sequence {rn} ⊆M s.t. rn
d
−→ r, implies Srn

d
−→ Sr. If S isℜ-continuous at every points

of M then S is referred asℜ-continuous.

Every continuous mapping can be treated asℜ-continuous mapping (irrespective of a binary relationℜ).
However,ℜ-continuity matches with the usual continuity only whenℜ is taken to be the universal relation.

Definition 3.9. [29] Let r, s ∈ M, then a path in ℜ from r to s of length n (where, n ∈ N) is a sequence (finite)
{r0, r1, r2, ..., rn} ⊆M such that r0 = r, rn = s with (rl, rl+1) ∈ ℜ, for each l ∈ {0, 1, ...,n − 1}.

Definition 3.10. [28] For each r, s ∈ A(⊆ M), if there always exists a path from r to s in A, then we say A is
ℜ-connected in M.

We use the following notations to this effect.

(•) M(S;ℜ) := {r ∈M : (r,Sr) ∈ ℜ}, where S : M→M be any given mapping;
(•) Υ(r, s,ℜ) := the collection of all possible paths from r to s inℜ, where r, s ∈M.

In 2018, Sawangsup and Sintunavarat [7] introduced the notation of (Z,ℜ)-contraction for single-valued
mappings utilizing a binary relation in a metric space.

Definition 3.11. Let (M, d,ℜ) be a relational metric space and S : M → M. Then, S is called a Zℜ-contraction
w.r.t ξ ∈ Z if the following holds:

ξ(d(Sr,Ss), d(r, s)) ≥ 0 ∀r, s ∈M with (r, s) ∈ ℜ. (3)
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The authors in [7] obtained the following result by using a transitive binary relation in a complete metric
space.

Theorem 3.12. Let (M, d,ℜ) be a relational metric space and S : M→M. If the following hypotheses hold:

(i) M(S;ℜ) , ∅;
(ii) ℜ is S-closed;

(iii) ℜ is transitive;
(iv) S is (Z,ℜ)-contraction w.r.t some ξ ∈ Z;
(v) M is complete;

(vi) S is continuous (orℜ is d-self-closed);

Then S admits a fixed point. Furthermore, if Υ(r, s,ℜ) is nonempty for all r, s ∈M, then the fixed point of S is unique.

Now, we recall the definition ofℜH -continuity for set-valued mappings.

Definition 3.13. [30] Let (M, d,ℜ) be a relational metric space and S : M → CB(M). Then S is said to be ℜH -

continuous at r ∈M if for anyℜ-preserving sequence {rn} ⊆M with rn
d
−→ r, implies Srn

H
−→ Sr (as n→ ∞). If S

isℜH -continuous at each point of M, then we say that S isℜH -continuous.

Remark 3.14. Every continuous mapping can be treated asℜH -continuous mapping (irrespective of a binary relation
ℜ). On the other side,ℜH -continuity turn into the usual continuity under the universal relation.

We will make use of the following lemma while proving our main results.

Lemma 3.15. [24] Let (M, d) be a metric space and a sequence {rn} in M such that

lim
n→∞

d(rn, rn+1) = 0.

Suppose {rn} is not a Cauchy sequence, then there always exist an ϵ > 0 and two subsequences {rm(l)}, {rn(l)} of {rn}

with l < m(l) < n(l) and the following sequences tend to ϵ as l→∞ :

{d(rm(l), rn(l))}, {d(rm(l), rn(l)+1)}, {d(rm(l)−1, rn(l))}, {d(rm(l)−1, rn(l)+1)}, {d(rm(l)+1, rn(l)+1)}.

4. Main Results

In this section, firstly we define the notion of set-valued (Z,ℜ)-contraction.

Definition 4.1. Let (M, d,ℜ) be a relational metric space and S : M → CB(M). Given ξ ∈ Z, we say that S is
set-valued (Z,ℜ)-contraction if the following holds:

ξ(H(Sr,Ss), d(r, s)) ≥ 0 ∀r, s ∈M with (r, s) ∈ ℜ. (4)

Remark 4.2. From the preceding definition, it is easy to observe that if S satisfy Eq. (4.1) for (r, s) ∈ ℜ, then S also
satisfy the same equation for (s, r) ∈ ℜ as the metrics d and H are symmetric in both the variable, and hence the
equation (4.1) is satisfied by the mapping S for [r, s] ∈ ℜ.

Remark 4.3. If we choose ℜ to be the universal relation, then by taking α ∈ [0, 1) and ξ(s, t) = αt − s for all
s, t ∈ [0,∞) in Definition 4.1, we obtain set-valued contraction defined in Theorem 1.1.

Remark 4.4. For single valued mapping, Definition 4.1 naturally reduces to Definition 3.11.

Now, we adopt the concepts of preserving and triangular preserving set-valued mappings in metric spaces
employing a binary relation.
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Definition 4.5. Let (M, d,ℜ) be a relational metric space and S : M → CB(M). Then S is said to be a preserving
mapping if for each r ∈M and s ∈ Sr with (r, s) ∈ ℜ, we have (s, t) ∈ ℜ for all t ∈ Ss.

Definition 4.6. Let (M, d,ℜ) be a relational metric space and S : M → CB(M). Then S is said to be a triangular
preserving mapping if S is a preserving mapping and

(r, s) ∈ ℜ and (s, t) ∈ ℜ ⇒ (r, t) ∈ ℜ, for all t ∈ Ss.

Now, we deduce the following two lemmas which will be useful while proving our main results.

Lemma 4.7. Let S : M→ CB(M) be a triangular preserving mapping. Assume that there exist r0 ∈M and r1 ∈ Sr0
such that (r0, r1) ∈ ℜ. Then for a sequence {rn} with rn+1 ∈ Srn, we have (rm, rn) ∈ ℜ with m < n for all m,n ∈N.

Proof. By the supposition there exist r0 ∈M and r1 ∈ Sr0 with (r0, r1) ∈ ℜ. Since S is a preserving mapping,
then by Definition 4.5 we have (r1, r2) ∈ ℜ. Continuing this process, we obtain (rn, rn+1) ∈ ℜ for all n ∈N0.
Now, as S is a triangular preserving mapping, then by Definition 4.6 we have (rn, rn+2) ∈ ℜ for all n ∈ N0.
Again, As (rn, rn+2) ∈ ℜ and (rn+2, rn+3) ∈ ℜ, therefore we deduce (rn, rn+3) ∈ ℜ for all n ∈ N0. Recursively,
we obtain (rm, rn) ∈ ℜwith m < n for all m,n ∈N.

Lemma 4.8. Let S : M→ CB(M) be a preserving mapping. Suppose that there exists r0 ∈M and r1 ∈ Sr0 such that
(r0, r1) ∈ ℜ, whereℜ is locally transitive binary relation on M. Then for a sequence {rn} with rn+1 ∈ Srn, we have
(rm, rn) ∈ ℜ with m < n for all m,n ∈N .

Proof. Since S is preserving mapping then by the same lines of the above Lemma 4.7 we obtain (rn, rn+1) ∈ ℜ
for all n ∈ N0. Since, ℜ is locally transitive, we get (rn, rn+2) ∈ ℜ for all n ∈ N0. Now, (rn, rn+2) ∈ ℜ and
(rn+2, rn+3) ∈ ℜ (whereℜ is locally transitive), therefore we deduce (rn, rn+3) ∈ ℜ for all n ∈N0. Recursively,
we obtain (rm, rn) ∈ ℜ for all m,n ∈Nwith m < n.

Now, we prove our first main result utilizing the idea of triangular preserving mappings.

Theorem 4.9. Let (M, d,ℜ) be a relational metric space and S : M→ K(M). If the following hypotheses hold:

(i) S is triangular preserving mapping;
(ii) ∃r0 ∈M and r1 ∈ Sr0 with (r0, r1) ∈ ℜ;

(iii) S is a set-valued (Z,ℜ)-contraction w.r.t some ξ ∈ Z;
(iv) (M, d) isℜ-complete;
(v) S isℜH -continuous (orℜ is d-self-closed).

Then S admits a fixed point.

Proof. By assumption (ii), there exists r0 ∈ M and r1 ∈ Sr0 such that (r0, r1) ∈ ℜ. If r0 = r1 or r1 ∈ Sr1, then
r1 is a fixed point of S and the proof is over. Therefore, let us assume that r1 < Sr1, then Sr0 , Sr1, i.e.,
H(Sr0,Sr1) > 0. Since S is mapping from M to K(M), so we can choose r2 ∈ Sr1 with (r1, r2) ∈ ℜ (as S is
preserving map) such that

d(r1, r2) ≤ H(Sr0,Sr1). (5)

Now, using the condition (iii), we have

ξ(H(Sr0,Sr1), d(r0, r1)) ≥ 0, (as (r0, r1) ∈ ℜ)

by (ξ2), we obtain

d(r0, r1) > H(Sr0,Sr1). (6)

From (5) and (6), we get

d(r1, r2) ≤ H(Sr0,Sr1) < d(r0, r1). (7)
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Similarly, we have r3 ∈ Sr2 with (r2, r3) ∈ ℜ such that

d(r2, r3) ≤ H(Sr1,Sr2) < d(r1, r2).

Recursively, we get a sequence {rn} in M with rn+1 ∈ Srn such that (rn, rn+1) ∈ ℜ and

d(rn+1, rn+2) ≤ H(Srn,Srn+1) < d(rn, rn+1) for all n ∈N0. (8)

Therefore, {d(rn, rn+1)}∞n=0 is a monotonically decreasing sequence of non-negative real numbers, and hence
there exists l ≥ 0 such that lim

n→∞
d(rn, rn+1) = l.We show that l = 0. On contrary, let us assume that l > 0 then

from (8), we have

lim
n→∞
H(Srn,Srn+1) = l. (9)

Using (4) and (ξ3), we obtain

0 ≤ lim sup
n→∞

ξ
(
H(Srn,Srn+1), d(rn, rn+1)

)
< 0,

which is a contradiction and hence l = 0, i.e., lim
n→∞

d(rn, rn+1) = 0.

With a veiw to prove Cauchy-ness of the sequence {rn}. Let {rn} is not Cauchy, then in view of Lemma
3.15, there exist ϵ > 0 and two subsequences {rm(l)} and {rn(l)} of {rn} such that l < m(l) < n(l) and

lim
l→∞

d(rm(l), rn(l)) = lim
l→∞

d(rm(l)+1, rn(l)+1) = ϵ. (10)

Since S is triangular-preserving mapping, then due to Lemma 4.7, we have (rm(l), rn(l)) ∈ ℜ.Now, by equation
(4), we have

0 ≤ ξ(H(Srm(l),Srn(l)), d(rm(l), rn(l))).

Making use of the condition (ξ2), we get

d(rm(l), rn(l)) > H(Srm(l),Srn(l)).

Again, since S is a mapping from M to K(M) and rm(l)+1 ∈ Srm(l), rn(l)+1 ∈ Srn(l),we deduce

d(rm(l)+1, rn(l)+1) ≤ H(Srm(l),Srn(l)) < d(rm(l), rn(l)). (11)

Using (10) in (11), we obtain

lim
l→∞
H(Srm(l),Srn(l)) = ϵ.

Therefore, using Definition 4.1 and (ξ3), we get

0 ≤ lim sup
l→∞

ξ
(
H(Srm(l),Srn(l)), d(rm(l), rn(l))

)
< 0,

which is a contradiction. Which shows that, {rn} isℜ-preserving Cauchy sequence in M. Also, due to the
assumption (iv), there exists r∗ ∈M such that lim

n→∞
rn = r∗ (as (M, d) isℜ-complete).

Now, we have two alternative cases for the condition (v). Firstly, if S isℜH -continuous, then we must have
H(Srn,Sr∗)→ 0 as n→∞ (due toℜH -continuity of S). Now, as rn+1 ∈ Srn, we get

0 ≤ D(rn+1,Sr∗) ≤ H(Srn,Sr∗),
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and therefore

0 ≤ lim
n→∞

D(rn+1,Sr∗) ≤ lim
n→∞
H(Srn,Sr∗) = 0.

Thus, we have lim
n→∞

D(rn+1,Sr∗) = 0 which implies that rn+1 ∈ Sr∗ (as n → ∞). Since Sr∗ is closed and
rn+1 → r∗(as n→∞) then r∗ ∈ Sr∗. Therefore, r∗ is a fixed point of S.

Alternatively, ifℜ is d-self-closed. Then, there exists a subsequence {rnl } of {rn}with [rnl , r
∗] ∈ ℜ, ∀l ∈N0.

Also, from the condition (ξ2) of Definition 2.1, we have

H(Sr,Ss) < d(r, s), for all r, s ∈M with (r, s) ∈ ℜ such that Sr , Ss,

On using condition (iii), we obtain

D(rn(l)+1,Sr∗) ≤ H(Srn(l),Sr∗) < d(rn(l), r∗), as (rn(l), r∗) ∈ ℜ, ∀l ∈N0.

Taking limit as n → ∞, we have D(rn(l)+1,Sr∗) = 0, which implies that rn(l)+1 ∈ Sr∗ (as n → ∞). Since Sr∗

is closed and rn(l)+1 → r∗(as n → ∞), we have r∗ ∈ Sr∗. Hence, S enjoys a fixed point. This finishes the
proof.

Now, we prove our next main result for preserving mappings utilizing a locally transitive binary relation.

Theorem 4.10. Let (M, d,ℜ) be a relational metric space, whereℜ is locally transitive and S : M → K(M). If the
following hypotheses hold:

(i) S is preserving mapping;
(ii) ∃r0 ∈M and r1 ∈ Sr0 such that (r0, r1) ∈ ℜ;

(iii) S is a set-valued (Z,ℜ)-contraction w.r.t some ξ ∈ Z;
(iv) (M, d) isℜ-complete;
(v) S isℜH -continuous (orℜ is d-self-closed).

Then S admits a fixed point.

Proof. The proof of this theorem follows the same lines as in Theorem 4.9 up to equation (10). Thereafter,
as S is preserving mapping andℜ is locally transitive, then due to Lemma 4.8, we have (rm, rn) ∈ ℜ for all
m,n ∈Nwith m < n. Consequently, rest of the proof is also same as Theorem 4.9.

Next, we adopt the have the following explanatory example in support of Theorem 4.9 (also, of Theorem
4.10).

Example 4.11. Consider the metric space (M = [−20, 20), d), where d is the usual metric. Let the binary relationℜ
be defined over M by

(r, s) ∈ ℜ ⇐⇒ r > s and r, s ∈ [0, 1].

If we consider S : M→ K(M) defined by

Sr =


[−20,− |r|3 ], i f −20 ≤ r < 0;
[0, 3r

4 ], i f 0 ≤ r ≤ 1;
{r, er
}, i f 1 < r < 20.

Clearly, S is not continuous but ℜH -continuous. Observe that (M, d) is not complete but it is ℜ-complete. Now,
for any r, s ∈ M such that s ∈ Sr and if (r, s) ∈ ℜ then we have r, s ∈ [0, 1] with r > s, gives rise Ss ⊂ Sr ⊆ [0, 3

4 ].
Clearly, for any t ∈ Ss we get s > t, by the definition of relation ℜ, we obtain (s, t) ∈ ℜ. Thus, S is ℜ-preserving
mapping. Moreover, r > s and s > t, yields r > t, therefore (r, t) ∈ ℜ and hence S is triangular preserving mapping.
Choose any r0 ∈ (0, 1] then we always have r1 ∈ Sr0 such that (r0, r1) ∈ ℜ, i.e., the condition (ii) of Theorem 4.9 (also,
Theorem 4.10) is satisfied. Also,ℜ is locally transitive (being transitive). Now, if we take ξ∗(s, t) = 3

4 t − s, then S is
set-valued (Z,ℜ)-contraction w.r.t ξ∗. Therefore, all the conditions of Theorem 4.9 (also, Theorem 4.10) are satisfied.
Accordingly, S has fixed points in M. (Fix(S) = [−20, 0] ∪ (1, 20)).
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Since every single valued mappings can be viewed as set-valued mappings by setting Sr = {Sr} (for all
r ∈M), therefore from Theorems 4.9 and 4.10, we get the following fixed point results:

Theorem 4.12. Let (M, d,ℜ) be a relational metric space and S : M→M. If the following hypotheses hold:

(i) ℜ is triangular S-closed;
(ii) ∃r0 ∈M with (r0,Sr0) ∈ ℜ;

(iii) S is (Z,ℜ)-contraction w.r.t some ξ ∈ Z;
(iv) (M, d) isℜ-complete;
(v) S isℜ-continuous (orℜ is d-self-closed).

Then S admits a fixed point.

Theorem 4.13. Let (M, d,ℜ) be a relational metric space, where ℜ is locally transitive and S : M → M. If the
following hypotheses hold:

(i) ℜ is S-closed;
(ii) ∃r0 ∈M with (r0,Sr0) ∈ ℜ;

(iii) S is (Z,ℜ)-contraction w.r.t some ξ ∈ Z;
(iv) (M, d) isℜ-complete;
(v) S isℜ-continuous (orℜ is d-self-closed).

Then S admits a fixed point.

Next, we present a result for the uniqueness of fixed point.

Theorem 4.14. In Theorem 4.12 (or Theorem 4.13), additionally if the Fix(S) isℜs-connected then S enjoys a unique
fixed point.

Proof. On contrary, let us consider r, s ∈ Fix(S) with r , s. Then, due to the ℜs-connectedness of Fix(S),
we have a path of length n from r to s in ℜs say {r = r0, r1, r2, ..., rn = s} ⊆ Fix(S) (where rl , rl+1 for every
l, (0 ≤ l ≤ n − 1)) with [rl, rl+1] ∈ ℜ for every l, (0 ≤ l ≤ n − 1). Since rl ∈ Fix(S), then Srl = rl, for each
l ∈ {0, 1, 2, ...,n}. As S is (Z,ℜ)-contraction, then using (4.1) and (ξ3), we obtain (for all l, (0 ≤ l ≤ n − 1))

0 ≤ ξ(d(Srl,Srl+1), d(rl, rl+1)) = ξ(d(rl, rl+1), d(rl, rl+1)) < 0,

a contradiction. This finishes the proof.

Example 4.15. Let M = {0, 2
3 , 1} ∪ {

1
3n | n ∈N} be a metric space equipped with usual metric d. Also, define a binary

relationℜ on M by

(r, s) ∈ ℜ ⇐⇒
(1
3
≥ r > s or (r, s) ∈ {(0, 0), (0,

2
3

), (
2
3
, 1)}
)
.

Clearly, (M, d) isℜ-complete metric space. Now, we consider a mapping S : M→M by

Sr =
{
{

r
3 }, i f r = 1

3n , n ∈N;
{0}, otherwise.

Thenℜ is triangular S-closed. Notice thatℜ is not transitive as (0, 2
3 ), ( 2

3 , 1) ∈ ℜ but (0, 1) <ℜ. Therefore, Theorem
3.12 is not applicable. Whereas, on applying our newly obtained result, i.e., Theorem 4.14 with ξ(s, t) = t

3 − s for all
s, t ∈ [0,∞), we conclude that the fixed point S is unique (namely r = 0).

Remark 4.16. The preceding example (i.e., Example 4.15) demonstrates that Theorem 4.14 remains a sharpened and
improved version of Theorem 3.12 due to Sawangsup and Sintunavarat [7] in the context of involved binary relation,
contractive condition and underlying space for a self-mapping S on M.
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5. Application

Consider the nonlinear matrix equations

X = G +
m∑

k=1

P
∗

kQ(X)Pk, (12)

where G be a “positive definite Hermitian matrix” and Q is a strict order preserving1) continuous mapping
from “the set of Hermitian matrix” to “the set of positive definite Hermitian matrix” with Q(0) = 0, Pk are
arbitrary n × n matrices and P∗k their conjugates.

The purpose of this section is to establish the existence as well as uniqueness of the solution for the
equation (12) using our results.

ByM(n),H(n),P(n),H+(n), we denote “the family of all complex matrices”, “the family of all Hermitian
matrices” in M(n), “the family of all positive definite matrices” in M(n) and “the family of all positive
semi-definite matrices” in M(n) of order n respectively. Also, if S ∈ P(n) (S ∈ H+(n)), we denote it by
S ≻ 0 ( S ⪰ 0). Moreover, S ≻ T (S ⪰ T ) is equivalent to saying S − T ≻ 0 (S − T ⪰ 0). By the
symbol ∥ · ∥, we denote the “spectral norm” of a matrix P which is defined by ∥P∥ =

√
λ+(P∗P), where

λ+(P∗P) is the largest eigenvalue of P∗P, where P∗ is the “conjugate transpose” of P. We utilize the metric
d induced by the “trace norm” ∥ · ∥tr, defined as ∥P∥tr =

∑n
k=1 sk(P), where sk(P) (1 ≤ k ≤ n) are the “sin-

gular values” ofP ∈M(n). Then, the induced metric space (H(n), d) is complete (for more details see [31–34]).

The next two lemmas will be useful in our forthcoming discussion.

Lemma 5.1. [32] If P ⪰ 0 and R ⪰ 0 are matrices of order n, then 0 ≤ tr(PR) ≤ ∥P∥tr(R).

Lemma 5.2. [33] If P ∈ H(n) satisfies P ≺ In, then ∥P∥ < 1.

Theorem 5.3. Consider the problem described by (12). Let us suppose that there exist τ > 0 and h > 0 such that

(i) ∀S,T ∈ H(n) with S ≺ T , we have
∣∣∣tr(Q(T ) − Q(S)

)∣∣∣ ≤ |tr(T−S)|

h
(

1+τ|tr(T−S)|
) ;

(ii)
∑m

k=1PkP
∗

k ≺ hIn;

(iii) ∃ G such that
∑m

k=1P
∗

kQ(G)Pk ≻ 0.

Then the matrix equation (12) has a solution.

Proof. We define a map I : H(n)→ H(n) by

I(S) = G +
n∑

k=1

P
∗

kQ(S)Pk, for all S ∈ H(n), (13)

and a binary relation

ℜ := {(S,T ) ∈ H(n) × H(n) : S ≺ T }.

Clearly, fixed point of I remains the solution of the matrix equation (12). The mapping I is well defined,
ℜ-continuous andℜ isI-closed. To accomplish this, it is enough to show thatI is (Z,ℜ)-contraction (here
ℜ := “ ≺ ”) w.r.t the “simulation function” given by

ξ(s, t) =
t

τt + 1
− s for all s, t ∈ [0,∞) and τ > 0.

1)
Q is strict order preserving if S,T ∈ H(n) with S ≺ T implies that Q(S) ≺ Q(T ).
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Take any S,T ∈ H(n) with S ≺ T . Since Q is order preserving, therefore we obtain Q(S) ≺ Q(T ). Thus, we
have

∥I(T ) − I(S)∥tr = tr
(
I(T ) − I(S)

)
= tr

( m∑
k=1

P
∗

k

(
Q(T ) − Q(S)

)
Pk

)
=

m∑
k=1

tr
(
P
∗

k

(
Q(T ) − Q(S)

)
Pk

)
=

m∑
k=1

tr
(
P
∗

kPk

(
Q(T ) − Q(S)

))
= tr

(( m∑
k=1

P
∗

kPk

)(
Q(T ) − Q(S)

))
≤

∥∥∥∥ m∑
k=1

P
∗

kPk

∥∥∥∥∥Q(T ) − Q(S)∥tr

≤
1
h

∥∥∥∥ m∑
k=1

P
∗

kPk

∥∥∥∥( ∥T − S∥tr

1 + τ∥T − S∥tr

)
<

∥T − S∥tr

1 + τ∥T − S∥tr
or

∥T − S∥tr

1 + τ∥T − S∥tr
− ∥I(T ) − I(S)∥tr > 0

so,

ξ(∥I(T ) − I(S)∥tr, ∥T − S∥tr) ≥ 0.

Hence, I is a (Z,ℜ)-contraction w.r.t the given ξ ∈ Z. As
∑m

k=1P
∗

kQ(G)Pk ≻ 0, we have G ≺ I(G). Therefore,
all the required conditions of Theorem 4.12 (also, of Theorem 4.13) are fulfilled. Consequently, there exists
Ŝ ∈ H(n) such that I(Ŝ)=Ŝ, which shows that the equation (12) has a solution in H(n).

Theorem 5.4. In view of the assumptions of Theorem 5.3, the solution of the given matrix equation (12) is unique.

Proof. Due to Theorem 5.3, the set Fix(I) is nonempty. Also, in view of [32], for every S,T ∈ H(n), there
always exist a least upper bound and a greatest lower bound. So, the set Fix(I) is ℜs-connected (where
ℜ := “ ≺ ”). Therefore, on using Theorem 4.14, we conclude that I admits a unique fixed point, and
consequently the matrix equation (12) admits a unique solution in H(n). This finishes the proof.

We conclude with the following possible question:

Question: Can Theorem 4.9 and Theorem 4.10 be extended to the class CB(M) from K(M)?
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