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Abstract. Let A be a Banach algebra and I be a closed ideal of A. We say that A is amenable relative to I, if
A/I is an amenable Banach algebra. We study the relative amenability of Banach algebras and investigate
the relative amenability of triangular Banach algebras and Banach algebras associated to locally compact
groups. We generalize some of the previous known results by applying the concept of relative amenability
of Banach algebras, especially, we present a generalization of Johnson’s theorem in the concept of relative
amenability.

1. Introduction

Let A is a Banach algebra and X be a Banach A-bimodule. A derivation D : A → X is a bounded linear
map satisfying

D(ab) = D(a) · b + a ·D(b) (a, b ∈ A).

A derivation D is called inner derivation, if there is x ∈ X such that

D(a) = a · x − x · a (a ∈ A).

The space of all derivations from A into X is denoted by Z1(A,X), and N1(A,X) is the space of all inner
derivations from A into X. The first cohomology group of A with coefficient in X is the quotient space

H1(A,X) = Z1(A,X)/N1(A,X).

The dual space X∗ of Banach A-bimodule X, is a Banach A-bimodule with respect to the module operations
defined by

< a · λ, x >=< λ, x · a >, < λ · a, x >=< λ, a · x >,

where a ∈ A, x ∈ X and λ ∈ X∗; in this case X∗ is called the dual module of X. The Banach algebra A is called
amenable if H1(A,X∗) = 0 for every Banach A-bimodule X and weak amenable if H1(A,A∗) = 0.
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The notion of an amenable Banach algebra was introduced by Johnson in 1972, and it was based on
the amenability of locally compact group G [13]. One of the basically consequences was that for a locally
compact group G, the group algebra L1(G) is amenable if and only if the group G is amenable. Since then
amenability has become a main topic in Banach algebra theory and in harmonic analysis and the theory of
amenability of Banach algebras has a fairly long history, see [3, 21] for a comprehensive survey of results of
this type.

One of the interesting subjects is discussion about the semigroup version of the Johnson’s main theorem.
However mentioned theorem is not true for topological semigroups. As an example, Duncan and Namioka
in [5], showed that if S is an amenable inverse semigroup, l1(S) isn’t amenable, generally. Also they proved
that for a suitable closed ideal I of ℓ1(S), ℓ1(S)/I � ℓ1(GS), which GS is group congruence of inverse semigroup
S. So by [5, Theorem 1] and Johnson’s theorem, we may observe that ℓ1(S)/I is amenable if and only if S is
amenable. Hence, we can see a relationship between amenability of a quotient of Banach algebra ℓ1(S) and
amenability of inverse semigroup S.

Recall that a triangular Banach algebra Tri(A,M,B) is a Banach algebra of the form

Tri(A,M,B) =
{ (

a m
0 b

)
: a ∈ A,m ∈M, b ∈ B

}
,

under the usual matrix operations and l1-norm, where A and B are Banach algebras and M is a Banach
(A,B)-bimodule. In [16], it is proven that if M , 0, then Tri(A,M,B) is not amenable, and hence if M = 0

then Tri(A,M,B) is amenable if and only if A and B are amenable. LetK =
(
0 M
0 0

)
, thenK is a closed ideal

in Tri(A,M,B) and Tri(A,M,B)/K � A ⊕ B (isometric isomorphism). So Tri(A,M,B)/K is amenable if and
only if A and B are amenable.

Relative properties, specially relative amenability is one of the most interesting concepts in group theory,
and in the specific case, so is co-amenability. Let G be a locally compact group and N be a normal subgroup
of G, N is co-amenable in G if the quotient group G/N is amenable, see [17]. Popa in [19], defined and
studied a natural notion of amenability for a finite von Neumann algebras M relative to a von Neumann
subalgebra N (or co-amenability of N in M). A longstanding open question of Connes [2] asks whether any
finite von Neumann algebra embeds into an ultraproduct of finite-dimensional matrix algebras. Song in
[22], proves that von Neumann algebras which satisfying Popa’s co-amenability have Connes’s embedding
property. So, the relative amenability concept of von Neumann algebra is a very useful and interesting
notion. The von Neumann algebra M is amenable relative to von Neumann subalgebra N if there exists
a norm one projection of < M,N > onto M. Monod and Popa in [17, Corollary 7], studied the relation
between relative amenability of von Neumann algebra with the relative amenability of subgroups, as the
following: Let H be a normal subgroup of the discrete group G. Then the group von Neumann algebras
L(G) is amenable relative to L(H) if and only if H is co-amenable in G. So, we can see a correspondence
between the relative amenability of group von Neumann algebra and the co-amenability of underlie group.

Given these issues, the question arises as if H is a closed normal subgroup of a locally compact group
G, is there a suitable closed ideal of L1(G) such that L1(G)/I is amenable if and only if G/H is an amenable
group?

This notations leads us to consider the idea of studying the amenability of Banach algebra A, relative
to a closed ideal I of A. We have seen above that there are two types of Banach algebra that they aren’t
amenable generally, but an appropriate quotient of them is amenable. With respect to these cases, and
with the motivation of relative amenability of groups and the question raised, we introduce the following
concept in this paper which is a natural generalization of the concept of amenability of Banach algebras.
We say that the Banach algebra A is amenable relative to closed ideal I (briefly say A is I-amenable), if A/I is
an amenable Banach algebra. In this article we study the properties of relative amenability of a Banach
algebra and we also ask some questions about this concept. Then we investigate the relative amenability
of triangular Banach algebras and Banach algebras associated to locally compact groups. We answer the
questions in some cases and also generalize some of the previous known results by applying the concept of
relative amenability of Banach algebras. Especially, we present a generalization of Johnson’s theorem in the
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concept of relative amenability which is in fact the answer to the question raised above about the relative
amenability of the group algebras L1(G).

This paper is organized as follows. In Section 2, we introduced relative amenability, and verify several
primarily properties of it. Also, we study some fundamental problems of relative amenability of Banach
algebras and ask some questions about this concept. Section 2 is devoted to examining of hereditary
properties for relative amenability of Banach algebras. In Section 3, we study the relative amenability of
triangular Banach algebras and Banach algebras associated to locally compact groups, and we get several
results in this regard, especially, we generalize some of the previous known results in the concept of relative
amenability. Moreover, we answer the questions raised is Section 2 in some cases.

2. Primarily properties

In this section, we introduced relative amenability, and verify several of its primarily properties. Also,
we study some fundamental problems of relative amenability of Banach algebras.

Definition 2.1. Let A be a Banach algebra and I be a closed ideal in A. We call that A is amenable relative to I or
briefly, we say that A is I-amenable, if A/I is an amenable Banach algebra.

In the introduction section, we observed numbers of non-amenable Banach algebras which they were I-
amenable, for some suitable closed ideal I of them. Also, it is clear that, if A is an amenable Banach algebra
then 0 is a closed ideal in it, and A is amenable relative to 0. It infer that this is a non-obvious definition,
and we can consider the amenability relative to a closed ideal as a natural generalization of the amenability
notion. Note that if I is a closed ideal in a Banach algebra A which is amenable, then by [21, Corollary 2.3.2
and Theorem 2.3.10] A is amenable if and only if A is I-amenable. So in this case I-amenability coincides
with the amenability.

Remark 2.2. Let A be a Banach algebra and I be a closed ideal in A. If X is a Banach A/I-bimodule, then it becomes
to a Banach A-bimodule by the following module operation:

a · x = (a + I) · x, x · a = x · (a + I) (x ∈ X, a ∈ A).

In this case, we denote the first group cohomology of A with coefficient in X by H1
I (A,X) (the achieved module with

the above module operation).

Now, this notion gives some necessary and sufficient conditions to consider amenability of A relative to
closed ideal I, in terms of the first group cohomology H1

I (A,X∗), where X is a Banach A/I-bimodule.

Theorem 2.3. Let A be a Banach algebra and I be a closed ideal of it.

(i) If H1
I (A,X∗) = 0 for every Banach A/I-bimodule X, then A is I-amenable.

(ii) If A is I-amenable and I2 = I, then H1
I (A,X∗) = 0, for every Banach A/I-bimodule X.

Proof. (i) Let X be a Banach A/I-bimodule, and δ : A/I → X∗ be a continuous derivation. Consider X as a
Banach A-bimodule (similarly to Remark 2.2), and define δ̃ : A → X∗ by δ̃ = δπ, where π : A → A/I is the
quotient map. So δ̃ is a continuous derivation, and by the hypothesis it is inner. Thus there is a ϕ in X∗ such
that δ̃(a) = a · ϕ − ϕ · a, for every a in A. Hence there is a ϕ in X∗ such that δ(a + I) = (a + I) · ϕ − ϕ · (a + I),
for every a + I in A/I. It concludes that δ is inner, and hence H1(A/I,X∗) = 0. Since X is an arbitrary Banach
A/I-bimodule, it follows that A is I-amenable.

(ii) Let X be a Banach A/I-bimodule, it turns to a Banach A-bimodule by the mentioned module operation
in Remark 2.2. Assume that δ : A → X∗ be a continuous derivation. If a, b ∈ I, then for every x ∈ X, we
observe that

< δ(ab), x > =< aδ(b), x > + < δ(a)b, x >
=< δ(b), x · a > + < δ(a), b · x >
=< δ(b), x · (a + I) > + < δ(a), (b + I) · x >
= 0.

(1)
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Therefore δ(ab) = 0 for every a, b ∈ I. Assume that c ∈ I. By hypothesis, c = limn→∞
∑kn

i=1 aibi, where ai, bi ∈ I
and n, kn ∈ N . Since δ is continuous, δ(c) = 0, by (1). Hence δ(I) = 0. Now, we define δ : A/I → X∗,
by δ(a + I) = δ(a). Since δ(I) = 0, it follows that δ is well defined. Simply check that δ is a derivation.
Also δπ = δ, where π is the quotient map. It follows from [3, Proposition 5.2.2] that δ is continuous. By
hypothesis A/I is amenable, so there exists ϕ ∈ X∗ such that for all a ∈ A, δ(a + I) = (a + I) · ϕ − ϕ · (a + I).
Hence δ(a) = a · ϕ − ϕ · a for all a ∈ A. Therefore δ is inner and hence H1

I (A,X∗) = 0.

If the closed ideal I is weakly amenable as a Banach algebra or has a bounded approximate identity, then
I2 = I. The next example shows that we can’t remove this condition in the statement (ii) of the above
theorem.

Example 2.4. Consider the triangular Banach algebra T =
(
A M
0 B

)
, where A and B are amenable unital Banach

algebras and M , 0 is a unital Banach (A,B)-bimodule. Let I =
(
0 M
0 0

)
. Then I is a closed ideal in T and T/I � A⊕B.

Hence T is I-amenable. It is clear that I2 , I, because I2 = 0. Now, we show that there is a Banach T/I-bimodule X
such that H1

I (T,X∗) , 0.
Since T/I � A ⊕ B and A ⊕ B is a closed subalgebra of T, it follows that T∗ is a Banach T/I-bimodule. So by the

following module actions T∗∗ is a Banach T/I-bimodule (see [7]):

(a, b) ·
(
x∗∗ y∗∗

0 z∗∗

)
=

(
a · x∗∗ a · y∗∗

0 b · z∗∗

)
and

(
x∗∗ y∗∗

0 z∗∗

)
· (a, b) =

(
x∗∗ · a y∗∗ · b

0 z∗∗ · b

)
,

where (a, b) ∈ A ⊕ B and
(
x∗∗ y∗∗

0 z∗∗

)
∈ T∗∗ =

(
A∗∗ M∗∗

0 B∗∗

)
. Now from Remark 2.2, by the following module actions T∗∗

becomes a Banach T-bimodule:(
a m
0 b

)
·

(
x∗∗ y∗∗

0 z∗∗

)
=

(
a · x∗∗ a · y∗∗

0 b · z∗∗

)
and (

x∗∗ y∗∗

0 z∗∗

)
·

(
a m
0 b

)
=

(
x∗∗ · a y∗∗ · b

0 z∗∗ · b

)
,

where
(
a m
0 b

)
∈ T and

(
x∗∗ y∗∗

0 z∗∗

)
∈ T∗∗ =

(
A∗∗ M∗∗

0 B∗∗

)
. We will show that H1

I (T,T∗∗) , 0. Define the continuous

linear map δ : T→ T∗∗ by δ(
(
a m
0 b

)
) =

(
0 m̂
0 0

)
, where m̂ is the canonical embedding of m in M∗∗ and T∗∗ is a Banach

T-bimodule as mentioned above. It is easily checked that δ is a derivation. We prove that δ is not inner. Suppose that

δ is inner, so there is an element
(
x∗∗ y∗∗

0 z∗∗

)
in T∗∗ such that for every

(
a m
0 b

)
∈ T,

δ(
(
a m
0 b

)
) =

(
a m
0 b

)
·

(
x∗∗ y∗∗

0 z∗∗

)
−

(
x∗∗ y∗∗

0 z∗∗

)
·

(
a m
0 b

)
=

(
a · x∗∗ − x∗∗ · a a · y∗∗ − y∗∗ · b

0 b · z∗∗ − z∗∗ · b

)
Hence m̂ = a · y∗∗ − y∗∗ · b for every a, b ∈ A and m ∈M. Let a = b = 0, then m̂ = 0 for all m ∈M and this infer that
M = 0. This is a contradiction, because M , 0. Therefore H1

I (T,T∗∗) , 0.

Recall that an ideal N of an algebra is nilpotent, if Nk = 0 for some non-negative integer k.
In the following result we provide a necessary condition for relative amenability.
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Theorem 2.5. Let A be Banach algebra and I be a closed ideal of A such that A is I-amenable. Let N be a non-zero
closed nilpotent ideal in A and let R be a closed subspace complement of N in A such that R + I and N + I are closed.
Then (R + I) ∩N , 0.

Proof. Suppose that (R + I) ∩ N = 0. Clearly R/I and N/I are closed subspaces of A/I. Let a ∈ A. Since
A = R ⊕ N as direct sum of closed subspaces, it follows that there are elements r ∈ R and n ∈ N such that
a+ I = r+ n+ I. Hence A/I = R/I +N/I. Let r+ I = n+ I, where r ∈ R and n ∈ N. So there is an element x ∈ I
such that r − n = x. Thus n = r − x ∈ (R + I)∩N = 0. So R/I ∩N/I = I. Therefore A/I = R/I ⊕N/I. Since N/I
is complemented in A/I and A/I is amenable, from [21, Theorem 2.3.7] it follows that N/I is amenable. On
the other hand N/I is a nilpotent ideal and hence N/I = I. So 0 , N ⊆ I, which is a contradiction. Hence
(R + I) ∩N , 0.

Let the Banach algebra A is amenable relative to the closed ideal I. If I is amenable, then A is amenable,
but the converse is not necessarily true. This is true for C∗-algebras. Connes and Haagerup proved that a
C∗-algebra is amenable if and only if it is nuclear; so a C∗-algebras A is amenable relative to a closed ideal
I if and only if A/I is nuclear. By [18, Theorem 6.5.3 and Page 216], we have A is nuclear if and only if I
and A/I are both nuclear. Moreover, by [18, Theorem 6.3.9] any finite-dimensional ideal in A is nuclear and
by [18, Theorem 6.4.15] any commutative closed ideal in A is nuclear. In view of these notes we have the
following remark.

Remark 2.6. Let A be a C∗-algebra and I be a closed ideal in A.

(i) If A is not amenable and A is I-amenable, then I is not finite-dimensional and is not commutative.

(ii) Let A be I-amenable. Then A is amenable if and only if I is amenable. While this conclusion, in general, is not
necessarily true for Banach algebras.

We remind that every Banach algebra A is amenable relative to trivial ideal A, and also every amenable
Banach algebra is amenable relative to any closed ideal of it. The following example shows that it isn’t
necessary true that any Banach algebra A has a non-trivial ideal I , A, such that A is I-amenable.

Example 2.7. Let F2 be the free group on two generators, then the group C∗-algebra C∗(F2) is a simple and non-
amenable C∗-algebra (see [1]). So it hasn’t a non-trivial ideal I , C∗(F2) such that C∗(F2) is I-amenable.

This notions motivated us to ask these questions: What kinds of non-amenable Banach algebras A has a
closed ideal I , A, such that A is I-amenable? We answer this question for some cases, in the last section.
Let A be an I-amenable Banach algebra. For which types of closed ideals J in A in relation to the I, the
Banach algebra A is J-amenable? In the next results, we answer this question, in some cases.

Theorem 2.8. Let A be a Banach algebra and I be a closed ideal in A.

(i) If A is I-amenable and J is an arbitrary closed ideal in A such that I ⊆ J, then A is J-amenable.

(ii) If A is I-amenable and J is an arbitrary closed ideal in A such that J ⊆ I and I is J-amenable, then A is J-amenable.

Proof. (i) Since I and J are closed ideals in A, it follows that J/I is a closed ideal in Banach algebra A/I. By
isomorphism theorems, the linear map θ : A/J → (A/I)/(J/I) defined by θ(a + J) = (a + I) + J/I (a ∈ A) is an
algebraic isomorphism. For any a ∈ A, we have

∥θ(a + I)∥ = ∥(a + I) + J/I∥
= in f {∥(a + I) + x + I∥ : x ∈ J}
= in f {∥a + x + I∥ : x ∈ J}
≤ in f {∥a + x∥ : x ∈ J}
= ∥a + J∥.
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So θ is a bounded isomorphism. By inverse mapping theorem A/J and (A/I)/(J/I) are isomorph as Banach
algebras. Since A/I is amenable and J/I is a closed ideal of it, from [21, Corollary 2.3.2], it follows that A/J
is amenable.

(ii) By a similar method as before, it is proved that A/I and (A/J)/(I/J) are isomorph as Banach algebras.
By hypothesis, it follows that (A/J)/(I/J) and I/J are amenable. Thus A/J is amenable, by [21, theorem
2.3.10].

According to Theorem 2.8-(i), It’s seen that if A is I-amenable and J is a closed ideal in A, then A is
I + J-amenable.

Theorem 2.9. Let A be a unital Banach algebra and I1, · · · , In be proper distinct closed ideals such that Ii + I j = A
when i , j. If A is Ii-amenable for any 1 ≤ i ≤ n, then A is

⋂n
i=1 Ii-amenable.

Proof. Define θ : A/
⋂n

i=1 Ii →
⊕n

i=1 A/Ii by θ(a +
⋂n

i=1 Ii) = (a + I1, · · · , a + In) (a ∈ A). By Chinese remainder
theorem, θ is an algebraic isomorphism. Consider

⊕n
i=1 A/Ii as l∞-direct sum of Banach algebras. For any

a ∈ A, we have

∥θ(a +
n⋂

i=1

Ii)∥ = ∥(a + I1, · · · , a + In)∥∞

= max{∥a1 + I∥, · · · , ∥an + I∥}
≤ ∥a∥.

So θ is a bounded isomorphism. By inverse mapping theorem A/
⋂n

i=1 Ii and
⊕n

i=1 A/Ii are isomorph as
Banach algebras. Since each A/Ii (1 ≤ i ≤ n) is amenable, by [21, page 55] it follows that l∞-direct sum⊕n

i=1 A/Ii is amenable. Hence A/
⋂n

i=1 Ii is amenable.

Now, we assume that A is an I-amenable Banach algebra, a natural question is how much we can minimize
the ideal I? According to this question, we introduce the following definition.

Definition 2.10. Let A be a Banach algebra. We say that the closed ideal I of A is a minimal co-amenable ideal, if A
is amenable relative to I and for any closed ideal J of A with J ⊆ I such that A/J is amenable, then I = J.

Example 2.11. In the following, we give some preliminary examples of above definition:

(i) For every amenable Banach algebra, 0 is a minimal co-amenable ideal.

(ii) For every non-amenable simple Banach algebra A (see Examplesee 2.7), the ideal A is a minimal co-amenable
ideal.

We ask two following natural questions: What kinds of Banach algebras has a minimal co-amenable ideal?
If a Banach algebras has minimal co-amenable ideals, is there any identification of them?

In the next theorem we give a sufficient condition for a closed ideal to be minimal co-amenable ideal.

Theorem 2.12. Let A be a Banach algebra and N be a complemented nilpotent closed ideal in A. If A is N-amenable,
then N is a minimal co-amenable ideal.

Proof. Assume that I is a closed ideal of A such that A/I is amenable and I ⊆ N. Let R be a complemented
closed subspace of N. So A = R ⊕N as direct sum of closed subspaces. Suppose that {rk}

∞

k=1 and {xk}
∞

k=1 are
sequences in R and I, respectively such that rk + xk → r + n where r ∈ R and n ∈ N. Since A = R ⊕ N and
I ⊆ N, it follows that ∥rk − r∥ + ∥xk − n∥ → 0. So r + n ∈ R + I and hence R + I is closed. Therefore, R/I is
a closed subspace of A/I. Moreover, it is clear that N/I is a closed subspace of A/I. Let a ∈ A. There are
elements r ∈ R and n ∈ N such that a + I = r + n + I. Hence A/I = R/I + N/I. Let r + I = n + I, where r ∈ R
and n ∈ N. So there is an element x ∈ I such that r− n = x. Since I ⊆ N, it follows that r = n+ x ∈ R∩N = 0.
So R/I ∩ N/I = I. Therefore A/I = R/I ⊕ N/I. Since N/I is complemented in A/I and A/I is amenable, it
follows that N/I is amenable. On the other hand N/I is a nilpotent ideal. So N = I and hence N is a minimal
co-amenable ideal.
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In Section 4 we give examples which satisfy the assumptions of the preceding theorem. Moreover, we
answer the above questions for some kinds of Banach algebras.

3. Hereditary properties

In this section we study some hereditary properties of relative amenability.

Theorem 3.1. Let A be an I-amenable Banach algebra and B be a Banach algebra. If ϕ : A → B is a continuous
epimorphism, then B is ϕ(I)-amenable.

Proof. Define ϕ̃ : A/I→ B/ϕ(I) by ϕ̃(a+ I) = ϕ(a)+ϕ(I). It is easily checked that ϕ̃ is well-defined and it is a
surjective homomorphism. Let πA : A→ A/I and πB : B→ B/ϕ(I) be quotient maps. So ϕ̃πA = πBϕ. Hence
ϕ̃πA is continuous and from [3, Proposition 5.2.2]-(i), it follows that ϕ̃ is continuous. Since A/I is amenable,
by [21, Proposition 2.3.1] we see that B/ϕ(I) is amenable.

Remark 3.2. Let ϕ : A→ B be a continuous epimorphism. It is clear that Ker(ϕ) is a closed ideal of A. By using a
similar method as the proof of Theorem 3.1 and inverse mapping theorem, we can see A/Ker(ϕ) � B as isomorphism
of Banach algebras. So A is Ker(ϕ)-amenable if and only if B is amenable.

Theorem 3.3. Let {Aλ}λ∈Λ be a collection of {Iλ}λ∈Λ-amenable Banach algebras, where each Iλ is a closed ideal in Aλ
(λ ∈ Λ). Then ⊕c0

λAλ is ⊕c0
λ Iλ-amenable.

Proof. It is obvious that⊕c0
λ Iλ is a closed ideal in⊕c0

λAλ. Defineθ : ⊕c0
λAλ/⊕c0

λ Iλ → ⊕c0
λAλ/Iλ byθ((aλ)+⊕c0

λ Iλ) =
(aλ + Iλ) ((aλ) ∈ ⊕c0

λAλ). θ is a well-defined and by isomorphism theorems, it is easily checked that θ is
an algebraic isomorphism. The linear map θπ is continuous, where π : ⊕c0

λAλ → ⊕
c0
λAλ/ ⊕c0

λ Iλ is the
quotient map. From [3, Proposition 5.2.2]-(i), it follows that θ is continuous. By inverse mapping theorem
⊕

c0
λAλ/ ⊕c0

λ Iλ and ⊕c0
λAλ/Iλ are isomorph as Banach algebras. Since each Aλ/Iλ are amenable, ⊕c0

λAλ/Iλ is
amenable again (see [21, Corollary 2.3.19]). This concludes that ⊕c0

λAλ is ⊕c0
λ Iλ-amenable.

The following result is immediate from Theorem 3.3

Corollary 3.4. Let A1, · · · ,An be I1, · · · .In-amenable Banach algebras, respectively. Then A1 ⊕∞ · · · ⊕∞ An is
I1 ⊕∞ · · · ⊕∞ In-amenable.

Remark 3.5. Let A be a Banach algebra and I be a closed ideal in A.

(i) Let A♯ be the unitization of A. Then I is a closed ideal in A♯ and it is easily checked that (A/I)♯ � A♯/I. From
[21, Corollary 2.3.11], it follows that A is I-amenable if and only if A♯ is I-amenable.

(ii) Let A be an I-amenable Banach algebra, and J be a closed ideal in A with I ⊆ J. If J has a bounded approximate
identity, then J is I-amenable. Because J/I is a closed ideal in A/I with a bounded approximate identity (J has a
bounded approximate identity) and from [21, Proposition 2.3.3], J/I is amenable.

(iii) Let (A∗∗,□) be the second dual of the Banach algebra A which is equipped with the first Arens product. In the
case where I is a closed ideal in A, we have the identification ([3, Page 250])

((A/I)∗∗,□) � (A∗∗,□)/I∗∗.

So if (A∗∗,□) is I∗∗-amenable, then ((A/I)∗∗,□) is amenable and hence by [12], A is I-amenable.

4. Relative amenability of special Banach algebras

In this section, we give various types of relative amenable Banach algebras and we answer some of the
questions in Section 2.
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Triangular Banach algebras
From this point up to the last subsection A and B are Banach algebras, M is a Banach (A,B)-bimodule.

Also Tri(A,M,B) denotes the triangular Banach algebra
(
A M
0 B

)
as defined in the Introduction section with

l1-norm. Let C ⊆ A, D ⊆ B and E ⊆M, then Tri(C,E,D) denotes the subset

Tri(C,E,D) =
{ (

x y
0 z

)
: x ∈ C, y ∈ E, z ∈ D

}
of Tri(A,M,B).

Remark 4.1. Let T = Tri(A,M,B), I be a closed ideal of A and J be a closed ideal of B. Then it is easily checked that
K = Tri(I,M, J) is a closed ideal of T and T /K and A/I ⊕ B/J are isometrically isomorphic, where A/I ⊕ B/J is the
l1-direct sum of Banach algebras. So T isK -amenable if and only if A is I-amenable and B is J-amenable. Especially,
we have the followings:

(i) T is Tri(0,M,B)-amenable if and only if A is amenable.

(ii) T is Tri(A,M, 0)-amenable if and only if B is amenable.

(iii) T is Tri(0,M, 0)-amenable if and only if A and B are amenable.

By Johnson’s theorem [13] (a locally compact group G is amenable if and only if L1(G) is an amenable Banach
algebra) and Remark 4.1, the following example is immediate.

Example 4.2. Let G be a locally compact group and M be a Banach L1(G)-bimodule. Let I be the any of the closed
ideals Tri(0,M,L1(G)), Tri(L1(G),M, 0) or Tri(0,M, 0) of triangular Banach algebraT = Tri(L1(G),M,L1(G)). Then
T is I-amenable if and only if G is an amenable group.

In the next result we give a necessary condition for a closed ideal Tri(I,M, J) to be minimal co-amenable
ideal.

Proposition 4.3. Let T = Tri(A,M,B), I be a closed ideal of A and J be a closed ideal of B. If K = Tri(I,M, J) is a
minimal co-amenable ideal of T , then I and J are minimal co-amenable ideals of A and B, respectively.

Proof. By Remark 4.1, A/I and B/J are amenable. Let I′ ⊆ I and J′ ⊆ J be closed ideals such that A/I′ and
B/J′ are amenable. By Remark 4.1, K ′ = Tri(I′,M, J′) is a closed ideal of T such that T is K ′-amenable.
Also K ′ ⊆ K and K is a minimal co-amenable ideal. So K = K ′ and hence I = I′ and J = J′. Therefore, I
and J are minimal co-amenable ideals of A and B, respectively.

The following proposition provides some examples which satisfy the assumptions of the Theorem 2.12.
Indeed, we find a minimal co-amenable ideal in some triangular Banach algebras.

Proposition 4.4. Let A and B be amenable Banach algebras. Then the closed ideal Tri(0,M, 0) is a minimal co-
amenable ideal in the Tri(A,M,B).

Proof. By Remark 4.1, Tri(A,M,B) is amenable relative to Tri(0,M, 0). It is clear that Tri(0,M, 0) is com-
plemented in Tri(A,M,B) (with complemented closed subspace Tri(A, 0,B)) and Tri(0,M, 0)2 = 0. So by
Theorem 2.12, Tri(0,M, 0) is a minimal co-amenable ideal.

If A and B are unital Banach algebras with unities 1A and 1B, respectively and M is a unital Banach (A,B)-

bimodule, then the triangular Banach algebra Tri(A,M,B) is unital with the unity 1 =
(
1A 0
0 1B

)
. In continue

we characterize all of the closed idealsL in a unital triangular Banach algebra T = Tri(A,M,B) such that T
is L-amenable. Moreover, in this case we describe all of the minimal co-amenable ideals in T .

Theorem 4.5. Let T = Tri(A,M,B) be a unital triangular Banach algebra and L be a closed ideal of it. Then
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(i) T isL-amenable if and only if there are closed ideals I and J of A and B, respectively such thatL = Tri(I,M, J),
A is I-amenable and B is J-amenable;

(ii) L is a minimal co-amenable ideal of T if and only if there are closed ideals I and J of A and B, respectively such
that L = Tri(I,M, J), I and J are minimal co-amenable ideals of A and B, respectively.

Proof. (i) Suppose that T is L-amenable. Let 1 =
(
1A 0
0 1B

)
be the unity of T , where 1A is the unity of A and

1B is the unity of B. We consider the elements
(
a 0
0 0

)
,
(
0 m
0 0

)
and

(
0 0
0 b

)
equal to a, b and b, respectively,

where a ∈ A, m ∈M and b ∈ B.
Define

I = L ∩ Tri(A, 0, 0), N = L ∩ Tri(0,M, 0) and J = L ∩ Tri(0, 0,B).

It is easily checked that I is a closed ideal of A, J is a closed ideal of B and N is a closed (A,B)-sub-bimodule

of M such that IM +MJ ⊆ N. Moreover, Tri(I,N, J) ⊆ L. Let
(
x y
0 z

)
∈ L. Since L is an ideal, it follows that

(
x 0
0 0

)
=

(
x y
0 z

) (
1A 0
0 0

)
∈ I,

(
0 0
0 z

)
=

(
0 0
0 1B

) (
x y
0 x

)
∈ J

and (
0 y
0 0

)
=

(
1A 0
0 0

) (
x y
0 x

) (
0 0
0 1B

)
∈ N.

So
(
x y
0 z

)
∈ Tri(I,N, J). Therefore L = Tri(I,N, J). It can be seen directly that T /L and Tri(A/I,M/N,B/J)

are isometrically isomorphic (M/N becomes a Banach (A/I,B/J)-bimodule by well-defined operations).
From hypothesis we have Tri(A/I,M/N,B/J) is an amenable Banach algebra. Since Tri(0,M/N, 0) is a closed
nilpotent ideal which is complemented in Tri(A/I,M/N,B/J), from [21, Theorem 2.3.7] it follows that N =M.
So L = Tri(I,M, J). By Remark 4.1, A/I and B/J are amenable.

The converse is immediate from Remark 4.1.
(ii) Suppose that L is a minimal co-amenable ideal of T . So T is L-amenable and by (i) we have

L = Tri(I,M, J) where I and J are closed ideals of A and B, respectively and A/I and B/J are amenable. Now
by Proposition 4.3, we obtain the desired result.

Conversely, let L = Tri(I,M, J), I and J are minimal co-amenable ideals of A and B, respectively. By
Remark 4.1, T /L is amenable. Suppose that L′ ⊆ L be a closed ideal such that T /L′ is amenable. From (i)
there are closed ideals I′ and J′ of A and B, respectively such that L′ = Tri(I′,M, J′), A is I′-amenable and B
is J′-amenable, respectively. So I′ ⊆ I and J′ ⊆ J. Since I and J are minimal co-amenable ideals, it follows
that I′ = I and J′ = J. So L = L′ and hence L is a minimal co-amenable ideal of T .

This theorem provides the converse of Proposition 4.3 in the case of unital triangular Banach algebras.
Also this theorem shows that if Tri(A,M,B) is a unital triangular Banach algebra and A and B are amenable
Banach algebras, then Tri(0,M, 0) is unique minimal co-amenable ideal of Tri(A,M,B). Moreover, by the
above theorem we can obtain minimal co-amenable ideals of various unital triangular Banach algebras.

Example 4.6. Let A be a unital amenable Banach algebra, B be a unital simple and non-amenable Banach algebra
and M be a unital Banach (A,B)-bimodule. Then by Theorem 4.5, the closed ideal Tri(0,M,B) is unique minimal
co-amenable ideal of Tri(A,M,B), since 0 and B are unique minimal co-amenable ideals of A and B, respectively.
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In the end of this subsection we study the relative amenability of upper triangular Banach algebras. The
upper triangular Banach algebra Tn(A) (n ≥ 1) contains all n×n upper triangular matrices over A with l1-norm.
The nilpotent closed ideal of all strictly upper triangular matrices in Tn(A) is denoted by NTn(A) and the
closed subalgebra of all diagonal matrices in Tn(A) is denoted by Dn(A).

Theorem 4.7. Let Tn(A) (n ≥ 1) be the upper triangular Banach algebra over the Banach algebra A. Then

(i) Tn(A) is amenable relative to NTn(A) if and only if A is amenable;

(ii) if A is amenable, then NTn(A) is a minimal co-amenable ideal of Tn(A).

Proof. (i) We have Tn(A) = Dn(A)⊕NTn(A) as direct sum of closed subspaces and Dn(A) = An. We can easily
see that Tn(A)/NTn(A) and Dn(A) are isometrically isomorphic. So Tn(A)/NTn(A) is amenable if and only if
A is amenable.

(ii) If A is amenable, by (i), Tn(A)/NTn(A) is amenable. Since NTn(A) is a nilpotent complemented closed
ideal in Tn(A), from Theorem 2.12, it follows that NTn(A) is a minimal co-amenable ideal of Tn(A).

We have the following examples which satisfy the assumptions of the preceding theorem.

Example 4.8. The upper triangular Banach algebra Tn(C) is NTn(C)-amenable and NTn(C) is a minimal co-amenable
ideal of Tn(C).

Example 4.9. Let G be a locally compact group. By Johnson’s theorem and Theorem 4.7, we find that Tn(L1(G)) is
NTn(L1(G))-amenable if and only if G is an amenable group. Moreover, if G is an amenable group, then NTn(L1(G))
is a minimal co-amenable ideal of Tn(L1(G)).

Banach algebras associated to locally compact groups
Johnson’s theorem [13] states that a locally compact group G is amenable if and only if L1(G) is an

amenable Banach algebra. We present a generalization of this theorem in the concept of relative amenability
which is in fact the answer to the question raised in Section 1 about the relative amenability of the group
algebras L1(G). To do this, we introduce special ideals of L1(G) that are associated with normal subgroups
of G. We provide the topics needed for this as follows from [20, Chapter 3].

Let H be a closed normal subgroup of G. Let dx, dξ and dẋ be Haar measures on G, H, and G/H
respectively, which are canonically related (dξdẋ = dx) and consider the mapping TH : Cc(G) → Cc(G/H)
defined by TH f (ẋ) =

∫
H f (xξ)dξ ( f ∈ Cc(G), ẋ ∈ G/H), where x is any element of G such that πH(x) = ẋ. The

mapping TH is a surjective bounded linear map. Let J(G,H) be the kernel of TH in Cc(G):

J(G,H) = {k ∈ Cc(G) : TH(k) = 0}.

Let J1(G,H) be the closure of J(G,H) in L1(G). Then

L1(G/H) � L1(G)/J1(G,H).

The isomorphism � is algebraic and isometric, L1(G)/J1(G,H) being provided with the quotient norm, and
is defined via the extension of the mapping TH, by continuity, to the whole space L1(G) ([20, Proposition
3.4.5]). We denote the extended mapping still by TH and also write

TH f (ẋ) =
∫

H
f (xξ)dξ ( f ∈ L1(G)).

TH maps L1(G) onto L1(G/H). TH is an algebra ∗-homomorphism and the subspace J1(G,H), i.e. the kernel
of TH, is a closed two-sided ideal of L1(G) ([20, Theorem 3.5.4 ]). Note that H = {e} if and only if J1(G,H) = 0,
where e is the identity of G.

In the following, the J1(G,H) is the closed ideal in L1(G) described above, where G is a locally compact
group and H is a closed normal subgroup of G.

In view of above discussions and the Johnson’s theorem, we obtain the following theorem.
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Theorem 4.10. Let G be a locally compact group. For each closed normal subgroup H of G there is a closed ideal
J1(G,H) such that L1(G) is J1(G,H)-amenable if and only if G/H is amenable as a locally compact group. Moreover,
H = {e} (e is the identity of G) if and only if J1(G,H) = 0.

According to this point that H = {e} if and only if J1(G,H) = 0, it follows that Theorem 4.10 is a generalization
of the Johnson’s theorem in the concept of relative amenability.

One of the topics of interest is the study of amenability of the second dual of group algebra. In [11], the
authors showed that L1(G)∗∗ with the first Arens product is amenable if and only if G is finite. We extend
this theorem in the concept of relative amenability. Also we check the relative amenability of the second
dual of L1(G).

Theorem 4.11. Let G be a locally compact group. For each closed normal subgroup H of G there is a closed ideal
J1(G,H) such that L1(G)∗∗ with the first Arens product is J1(G,H)∗∗-amenable if and only if G/H is finite.

Proof. The closed J1(G,H) ideal is obtained as above. We see that L1(G)/J1(G,H) � L1(G/H) as isometric
isomorphism. So by [11], G/H is a finite group if and only if L1(G/H)∗∗ (with the first Arens product)
is amenable, if and only if (L1(G)/J1(G,H))∗∗ is amenable, if and only if L1(G)∗∗ is J1(G,H)∗∗-amenable
(with the first Arens product). Note that in the above proof, this result is used that by [3, Page 250],
(L1(G)/J1(G,H))∗∗ � L1(G)∗∗/J1(G,H)∗∗ with the first Arens product.

Let G be a locally compact group. Let Cb(G) be the Banach algebra of all bounded continuous complex-
valued functions on G with the sup norm topology, and LUC(G) denote the closed subspace of all f ∈ Cb(G)
such that the map x 7→ lx f from G into Cb(G) is continuous, where (lx f )(y) = f (xy) and x, y ∈ G, i.e. f is a
left uniformly continuous function on G. Then LUC(G)∗ equipped with the Arens multiplication defined
by ⟨nm, f ⟩ = ⟨n,ml f ⟩, n,m ∈ LUC(G)∗, f ∈ LUC(G), where ml f (x) = ⟨m, lx f ⟩, x ∈ G, is a Banach algebra. Also,
the measure algebra M(G) may be identified with a closed subalgebra of LUC(G)∗ by the natural embeding
⟨ν, f ⟩ =

∫
f (x)dν(x), f ∈ LUC(G), ν ∈ M(G). We denote by C0(G) the functions in Cb(G) which vanish at

infinity. Let C0(G)⊥ = {m ∈ LUC(G)∗ : m( f ) = 0 for all f ∈ C0(G)}. From [10, Lemma 1.1 ], it follows that
LUC(G)∗ = M(G) ⊕ C0(G)⊥ as direct sum of closed subspaces and C0(G)⊥ is a closed ideal in LUC(G)∗. Let
E be a right identity of L1(G)∗∗ with E ≥ 0, ∥E∥ = 1. Then EL1(G)∗∗ is a closed sublagebra of L1(G)∗∗. In [9],
it is shown that EL1(G)∗∗ � LUC(G)∗ as isomorphism of Banach algebras. So we can consider C0(G)⊥ as a
closed subspace of L1(G)∗∗. Furthermore, (I − E)L1(G)∗∗ is a closed subspace of L1(G)∗∗ and it is clear that
C0(G)⊥

⋂
(I − E)L1(G)∗∗ = 0. In the following theorem we see that I = C0(G)⊥ ⊕ (I − E)L1(G)∗∗ is a closed ideal

of L1(G)∗∗. Also in this theorem the amenability of L1(G)∗∗ relative to I has been studied.

Theorem 4.12. Let G be a locally compact group, and let E be a right identity of L1(G)∗∗ with E ≥ 0, ∥E∥ = 1. Then
I = C0(G)⊥ ⊕ (I − E)L1(G)∗∗ is a closed ideal of L1(G)∗∗, and L1(G)∗∗ is I-amenable if and only if G is discrete and
amenable as a group.

Proof. We have the decomposition

L1(G)∗∗ = EL1(G)∗∗ ⊕ (I − E)L1(G)∗∗,

where EL1(G)∗∗ is a closed subalgebra of L1(G)∗∗ and (I − E)L1(G)∗∗ is a closed ideal of L1(G)∗∗. Also,
EL1(G)∗∗ � LUC(G)∗ = M(G) ⊕ C0(G)⊥ where C0(G)⊥ is a closed ideal in LUC(G)∗ and M(G) is a closed
subalgebra of LUC(G)∗. So L1(G)∗∗ �M(G)⊕C0(G)⊥⊕ (I−E)L1(G)∗∗. Since C0(G)⊥ is a closed ideal in LUC(G)∗

and (I − E)L1(G)∗∗ is a closed ideal of L1(G)∗∗, it is easily checked that I = C0(G)⊥ ⊕ (I − E)L1(G)∗∗ is a closed
ideal of L1(G)∗∗. All of the isomorphisms mentioned are Banach algebra isomorphisms. So L1(G)∗∗/I �M(G).
In [4], it has been proved that M(G) is amenable as a Banach algebra if and only if G is discrete and amenable
as a group. Given this result, the proof of the theorem is complete.

Let G be a locally compact group, and M(G) be the measure algebra. The subspace of M(G) consisting
of the continuous measures is denoted by Mc(G), so that, for ν ∈ M(G), we have ν ∈ Mc(G) if and only if
ν({s}) = 0 (s ∈ G), and the subspace of discrete measures is Md(G), identified with l1(G). The subspace Mc(G)
is a closed ideal of M(G) and l1(G) is a closed subalgebra of M(G). In the following theorem we check the
amenability of M(G) relative to Mc(G) (see [4]).
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Theorem 4.13. Let G be a locally compact group.

(i) If G is amenable as a discrete group, then M(G) is amenable relative to Mc(G).

(ii) If M(G) is amenable relative to Mc(G), then G is an amenable group.

Proof. We have M(G) = l1(G) ⊕Mc(G) as l1-sum of Banach spaces ([4]). So M(G)/Mc(G) � l1(G). Now by
Johnson’s theorem M(G) is Mc(G)-amenable if and only if G is amenable as a discrete group. Hence we
coclude (i). Also if G is amenable as a discrete group, then G is an amenable locally compact group and we
obtain (ii).

In the following theorem we extend the main result of [4] in the concept of relative amenability.

Theorem 4.14. Let G be a locally compact group. For each closed normal subgroup H of G there is a closed ideal IH
such that M(G) is IH-amenable if and only if G/H is discrete and amenable as a group. Moreover, H = {e} if and only
if IH = 0, where e is the identity of G.

Proof. Let H be a closed normal subgroup of G. By [14, Theorem 2.1], there exists a continuous epimorphism
ϕ : M(G) → M(G/H). Then IH = Ker(ϕ) is a closed ideal of M(G). From Remark 3.2, it follows that M(G)
is IH-amenable if and only if M(G/H) is amenable. Now the main result of [4] concludes the proof of the
theorem. Also by the proof of the [14, Theorem 2.1], it is obtained that H = {e} if and only if IH = 0.

Let G be a locally compact group, and let A(G) be the Fourier algebra of G. Let E be a closed subset of G.
Define

I(E) = {u ∈ A(G) : u(x) = 0 for every x ∈ E}.

I(E) is a closed ideal in A(G). Also I({e}) is a non-trivial closed ideal in A(G), where e is the identity of G. In
the following theorem we consider the I(H)-amenability of A(G) for a closed subgroup H of G. Especially,
we see that always there exists a non-trivial closed ideal I in A(G) such that A(G) is I-amenable.

Theorem 4.15. Let G be a locally compact group, and let A(G) be Fourier algebra of G.

(i) If H is a closed subgroup of G, then A(G) is amenable relative to I(H) if and only if H has an abelian subgroup
of finite index.

(ii) For every closed abelian subgroup H of G, the Fourier algebra A(G) is amenable relative to I(H). Especially,
A(G) is I({e})-amenable, where e is the identity of G.

Proof. (i) By [6, Lemma 3.8], A(G)/I(H) is is isometrically isomorphism to A(H). On the other hand, by [8,
Colloraly 2.5], A(H) is amenable if and only if H has an abelian subgroup of finite index. So we conclude
the proof of (i).

(ii) follows immediately from (i).

Remark 4.16. Let A be any of the Banach algebras L1(G), L1(G)∗∗ (with first Arens product), M(G) or A(G). In each
of the results of this subsection, there are certain conditions under which the Banach algebra A has a non-trivial closed
ideal I such that A is I-amenable, whenever A is not amenable. For example let G be the ax+b group with underlying
manifold (0,∞) × R and group action (x, y)(z,w) = (az, y + xw). The group G does not have any abelian subgroup
of finite index and hence A(G) is not amenable. But by Theorem 4.15-(ii), A(G) is I({e})-amenable, when I({e}) is a
non-trivial closed ideal in A(G). Therefore, these results provide answers to some of the questions in Section 1 for the
Banach algebra A.
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