
Filomat 36:6 (2022), 1837–1855
https://doi.org/10.2298/FIL2206837C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A New Two-Step Iteration Method for Discrete Ill-Posed Problems and
Image Restoration

Jingjing Cuia, Guohua Penga, Quan Lua, Zhengge Huangb

aDepartment of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P.R. China
bFaculty of Science, Guangxi University for Nationalities, Nanning, Guangxi, 530006, PR China

Abstract. In this study, for the augmented linear system of discrete ill-posed problems we establish a
new two-step (NTS) iteration method containing a parameter and a parameter matrix, which is based on
the Hermitian and skew-Hermitian splitting (HSS) and the upper and lower triangular splitting (ULT) of
the coefficient matrix. Then, we theoretically study its convergence properties and determine its optimal
iteration parameters. It is seen that the NTS method converges faster when the parameters are chosen
properly. Experimental examples are carried out to further validate the effectiveness and accuracy of the
new method compared to the newly developed methods in terms of the numerical performance and image
recovering quality.

1. Introduction

Linear ill-posed problems arise in essentially every branch of science and engineering, including in
computerized tomography [7], image restoration [10] and geoscience [31]. Due to the universal existence
and significance of the linear ill-posed problems, there has been a surge of interest in the problems, and
numerous solution techniques have been proposed in recent years [18, 20, 27, 29]. Discretization of these
problems gives rise to linear systems of equations

A f = 1, A ∈ Rn2
×n2
, f , 1 ∈ Rn2

, (1)

which is commonly referred to as linear discrete ill-posed problems in the sense the singular values of
A gradually decay and cluster at zero. The decay rate depends on the problem, and many large-scale
problems tend to have a rather slow decay, however, due to the large problem dimensions the matrix is
very ill conditioned. This makes the solution f of (1), if it exists, very sensitive to perturbations in the
right-hand side 1.
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As it is known, the right-hand side vector 1 of linear discrete ill-posed problems represents available
date and typically is contaminated by an error e ∈ Rn2

that may stem from measurement inaccuracies,
discretization error, and eletronic noise in the device used (such as in computerized tomography), which
we will refer to as ’noise’. Let 1̂ ∈ Rn2

denote the (unknown) noise-free vector associated with 1, i.e.,

1 = 1̂ + e, (2)

and assume that the unavailable linear system of equation with the noise-free right-hand side

A f = 1̂ (3)

is consistent. Let f̂ denote a desired least-squares solution of (3) in the sense of the minimal Euclidean
norm. We would like to determine an approximation of f̂ by computing a suitable approximate solution of
the available linear system of equations (1).

Because of the ill-conditioned of A and the error e in 1, the straightforward least-squares solution of
minimal Euclidean norm of (1) generally does not yield a meaningful approximate solution of the system (3).
Therefore, one often replaces (1) by a nearby problem that is less sensitive to the error e. This replacement
is referred to as regularization. The possibly most popular regularization method is due to Tikhonov
regularization [24, 26, 27]. This method replaces (1) by a penalized least-squares problem of the form

min
f∈Rn2

∥A f − 1∥22 + µ
2
∥L f ∥22, (4)

where L is a carefully selected regularization matrix (typically either the identity matrix or a discrete
approximation of the derivative operation) and µ > 0 is called the regularization parameter (generally
small, i.e., 0 < µ < 1). In the Tikhonov method, the factor µ controls the balance between the minimization
of ∥A f − 1∥22 and and the regularization term ∥L f ∥22 involving a smoothing norm. The regularization
parameter µ can be determined in a variety of ways [6, 12, 18, 21, 25]. Throughout this paper, ∥ · ∥ denotes
the Euclidean vector norm or the associated induced matrix norm. The solution of this system is considered
as an approximation of the solution of noise-free linear system (3). In this work, we limit our discussion to L
being the identity matrix. The other cases can be obtained by using the similar technique. It is easy to seen
that the Tikhonov minimization problem is mathematically equivalent to solving the following equation
[20]:

(ATA + µ2I) f = AT1. (5)

Several iterative methods have been proposed for investigating the solution of (5). In [22], Lv et al. presented
the following equivalent 2n2-by-2n2 augmented system(

I A
−AT µ2I

)
︸           ︷︷           ︸

A

(
e
f

)
︸︷︷︸

x

=

(
1

0

)
︸︷︷︸

b

, (6)

where the variable e denotes the additive noise, i.e., e = 1−A f . By recasting equivalently the original system
(1), employing the Tikhonov regularization method, into the 2n2-by-2n2 linear system (6), the behaviour of
ill-conditioned of latter system can be greatly improved.

It is obvious that the linear system (6) is a non-Hermitian positive-definite system, which is also a
saddle point problem. Many methods have been proposed in the literature to solve this linear system
efficiently, we can refer to [4, 11, 28, 30]. In the existing methods, the Hermitian and skew-Hermitian
splitting (HSS) method has attracted many researchers’ attentions due to its promising performance and
elegant mathematical properties. Bai et al. in [3] first put forward the HSS method which is a two-step
iteration method. Recently, Lv et al. in [22] used the idea of the HSS method and established a special case
of the HSS (SHSS) method to solve the proposed equation, and its convergence properties and the optimal
value of the iteration parameter were discussed. Inspired by the idea of [22], Cheng et al. in [9] derived
a new special HSS (NSHSS) iterative method and made comparisons between the proposed new method
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with the SHSS one. In order to improve the convergence rate of the HSS method, Benzi in [5] developed
a generalization of the HSS (GHSS) iteration method for solving a class of non-Hermitian linear systems.
The GHSS method split the Hermitian part of the coefficient matrix of the linear system into positive
definite and positive semi-definite matrices. After that, based on the GHSS method, Aghazadeh et al. [1]
proposed a restricted version of the generalized HSS (RGHSS) iteration method to solve image restoration
problem, and experimental results demonstrated that the RGHSS method is more effective and accurate
than the SHSS method. In [2], based on a new splitting of the Hermitian part of the coefficient matrix
for the GHSS method, Aminikhah and Yousefi newly presented a new special generalized Hermitian and
skew-Hermitian splitting (SGHSS) method for solving ill-posed inverse problems. Numerical experiments
showed that the SGHSS iterative method can compete with direct method, Tikhonov and RGHSS methods.
Lately, Fan in [13] presented a class of upper and lower triangular (ULT) splitting iteration methods, of
which optimal iteration parameters and corresponding convergence factors for some special cases were
derived. And numerical experiments illustrate the performance of the versions of ULT method.

In this paper, we continue research on solving the 2n2-by-2n2 linear system (6) and propose a new two-
splitting (NTS) iteration method in which the parameter α and the parameter matrix Q are incorporated.
The NTS iteration method is based on the Hermitian and skew-Hermitian splitting (HSS) and the upper
and lower triangular splitting (ULT) of the coefficient matrix A in (6). We analyze the convergence of the
NTS method and obtain the optimal parameters that minimize the spectral radius of the iteration matrix
of the NTS method. A few numerical examples are given to illustrate the behavior of the method of the
present paper and compare it with the SHSS method in [22] and the ULT method in [13] to solve ill-posed
problems and image restoration. And the NTS iteration method can result in more rapid convergence rate
with suitable choices of the parameters and parameter matrix.

The arrangement of this paper is organized as follows. In Section 2, we construct a new two-splitting
(NTS) iteration method in which the parameter α and the parameter matrix Q are incorporated. The
convergence properties of the NTS method for solving (6) are analyzed and the optimal parameters are also
given here in Section 3. Section 4 is devoted to presenting numerical examples to examine the feasibility
and effectiveness of the versions of NTS method.

2. The NTS iteration method

Motivated by the ideas of [13, 22], we construct a new two-splitting (NTS) iteration method for the
augmented system (6). For a given symmetric positive definite matrix Q ∈ Rn2

×n2
, we propose the following

two new splittings for the coefficient matrixA:

A =

(
I 0
0 µ2I

)
+

(
0 A
−AT 0

)
= H + S,

A =

(
I A
0 µ2I +Q

)
−

(
0 0

AT Q

)
= K1 − K2,

where I is the unit matrix with appropriate dimension. The first splitting is the Hermitian and skew-
Hermitian splitting (HSS) of the coefficient matrixA in (6), and the second one is on the basis of the upper
and lower triangular splitting of the coefficient matrixA. So based on the above two splittings, we design
a new iteration method as follows{

(αI +H)z(k+ 1
2 ) = (αI − S)z(k) + b

K1z(k+1) = K2z(k+ 1
2 ) + b

, (7)

where α is a positive scalar. The iteration method (7) is referred to as the new two-splitting (NTS) iteration
method, which is essentially obtained by combining the first step of the SHSS method in [22] and the second
step of the ULT-I method in [13]. By eliminating the intermediate vector z(k+ 1

2 ), the NTS iteration method
(7) can be written in a fixed-point form

z(k+1) = L(α)z(k) + c, k = 0, 1, 2, · · · ,
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where{
L(α) = K−1

1 K2(αI +H)−1(αI − S)
c = K−1

1 (K2 + αI +H)(αI +H)−1b , (8)

and L(α) is the iteration matrix of the NTS method. It is well known that the preconditioner M(α) can be
chosen by the splitting A=M(α) − N(α) with a reversible matrix M(α). From (8), by simple computations,
we have

M(α) = (αI +H)(K2 + αI +H)−1K1, N(α) =M(α) −A. (9)

Then M(α) can be used as a preconditioner for the matrixA, which is referred to as the NTS preconditioner.

3. Convergence of the NTS method

In this section, we study the convergence of the NTS method for solving (6). To this end, we first
investigate the eigenvalues of the iteration matrix L(α) of the NTS iteration method.

Theorem 3.1. For the system (6), let α be a positive scalar and the parameter matrix Q ∈ Rn2
×n2 be a symmetric

positive definite matrix. If λ is an eigenvalue of the iteration matrix L(α) of the NTS method in (7), then λ = 0 with
algebraic multiplicity at least n2, and other n2 eigenvalues of the matrix L(α) satisfyλi = 1−ξi. Here ξi (i = 1, 2, · · · n2)
is the eigenvalue of the matrix (I + 1

α+µ2 Q)(µ2I + ATA)(µ2I +Q)−1.

Proof. Since the iteration matrix L(α) defined as in (8) is similar to

L̃(α) = K2(αI +H)−1(αI − S)K−1
1 .

In the following, we only need to study the spectral properties of the matrix L̃(α) instead of L(α). By some
simple operations, we obtain

L̃(α) =

(
0 0

AT Q

) ( 1
α+1 I 0

0 1
α+µ2 I

) (
αI −A
AT αI

) (
I A
0 µ2I +Q

)−1

=

(
0 0

AT Q

) ( 1
α+1 I 0

0 1
α+µ2 I

) (
αI −A
AT αI

) (
I −A(µ2I +Q)−1

0 (µ2I +Q)−1

)
=

(
0 0

1
α+1 AT 1

α+µ2 Q

) (
αI −(α + 1)A(µ2I +Q)−1

AT (αI − ATA)(µ2I +Q)−1

)
=

(
0 0

( α
α+1 I + 1

α+µ2 Q)AT I − (I + 1
α+µ2 Q)(µ2I + ATA)(µ2I +Q)−1

)
.

From the structure of the matrix L̃(α) and the fact that L̃(α) and L(α) have same spectrum, λ = 0 is the
eigenvalue of the iteration matrix L(α) with algebraic multiplicity at least n2, and other n2 eigenvalues of
the matrix L(α) satisfy λi = 1 − ξi. Here ξi (i = 1, 2, · · · n2) is the eigenvalue of the matrix (I + 1

α+µ2 Q)(µ2I +
ATA)(µ2I +Q)−1. The completes the proof.

It is well known that the NTS iteration method is convergent if and only if the spectral radius of its iteration
matrix L(α) is less than one (i.e., ρ(L(α)) < 1). The following theorem describes the necessary and sufficient
conditions for guaranteeing the convergence of the NTS method.

Theorem 3.2. For the system (6), suppose that α is a positive scalar and the parameter matrix Q ∈ Rn2
×n2 is a

symmetric positive definite matrix. Let J = (I + 1
α+µ2 Q)(µ2I + ATA)(µ2I + Q)−1, then the NTS iteration method

converges to the exact solution of the system (6) if and only if

ξmin(J) > 0 and ξmax(J) < 2,

where ξmax and ξmin are the largest and smallest eigenvalues of the matrix J , respectively.
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Proof. It follows from Theorem 3.1 that ρ(L(α)) < 1 if and only if |λi| = |1−ξi| < 1 (i = 1, 2, · · · ,n2), where ξi is
the eigenvalue of the matrixJ . Thus, we have 0 < ξi < 2, which results in ξmin(J) > 0 and ξmax(J) < 2.

In particular, we choose the parameter matrix as Q = sI, the above convergence result can be simplified
and the optimal parameters minimizing the spectral radius of L(α, s) of the NTS method with Q = sI are
also derived in the following theorem.

Theorem 3.3. Let α, s be positive constants and the parameter matrix be defined as Q = sI, let σi (i = 1, 2, · · · ,n2)
satisfying σ1 ≥ σ2 ≥ · · · ≥ σn2 be the singular value of the matrix A. Then the NTS iteration method with the
parameter matrix Q = sI is convergent for any initial vector if and only if

σ2
1 <

(µ2 + α)(µ2 + s) + αs
α + µ2 + s

. (10)

The the optimal parameters α∗ and s∗ minimizing the spectral radius ρ(L(α, s)) satisfy the following equation

(α + µ2 + s)(σ2
1 + σ

2
n2 ) − 2αs = 0.

As a consequence, the optimal convergence factor can be obtained as follows

ρ(L(α∗, s∗)) =
σ2

1 − σ
2
n2

σ2
1 + σ

2
n2 + 2µ2

.

Proof. From Theorem 3.2, it can be seen that the NTS iteration method with Q = sI is convergent if and only
if

ξmin

(
α + µ2 + s

(α + µ2)(µ2 + s)
(µ2I + ATA)

)
> 0 and ξmax

(
α + µ2 + s

(α + µ2)(µ2 + s)
(µ2I + ATA)

)
< 2.

It follows immediately that

(α + µ2 + s)(µ2 + σ2
n2 )

(α + µ2)(µ2 + s)
> 0 and

(α + µ2 + s)(µ2 + σ2
1)

(α + µ2)(µ2 + s)
< 2. (11)

The first inequality of (11) holds true for all α, s > 0, and the second inequality of (11) holds if and only if

σ2
1 <

(µ2 + α)(µ2 + s) + αs
α + µ2 + s

.

Moreover,

ρ(L(α, s)) = max
σi∈σ(A)


∣∣∣∣∣∣1 − (α + µ2 + s)(µ2 + σ2

i )

(α + µ2)(µ2 + s)

∣∣∣∣∣∣


= max


∣∣∣∣∣∣1 − (α + µ2 + s)(µ2 + σ2

1)

(α + µ2)(µ2 + s)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1 − (α + µ2 + s)(µ2 + σ2

n2 )

(α + µ2)(µ2 + s)

∣∣∣∣∣∣
 ,

where σ(A) denotes the set of the singular values of the matrix A. Then the optimal parameters α∗ and s∗

minimizing ρ(L(α, s)) must satisfy the following equation

1 −
(α + µ2 + s)(µ2 + σ2

n2 )

(α + µ2)(µ2 + s)
=

(α + µ2 + s)(µ2 + σ2
1)

(α + µ2)(µ2 + s)
− 1.

After some calculations, the above equation is equivalent to

(α + µ2 + s)(σ2
1 + σ

2
n2 ) − 2αs = 0. (12)
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In the sequel, we examine the fact that the optimal parameters α∗ and s∗ determined by Equation (12) satisfy
the convergent condition (10) in details. It follows from Equation (12) that

α∗ + µ2 + s∗ =
2α∗s∗

σ2
1 + σ

2
n2

,

and the convergent condition (10) with the optimal parameters α∗, s∗ can be validated by

(µ2 + α∗)(µ2 + s∗) + α∗s∗

α∗ + µ2 + s∗
− σ2

1 =

[
(µ2 + α∗)(µ2 + s∗) + α∗s∗

]
(σ2

1 + σ
2
n2 )

2α∗s∗
− σ2

1

=
µ2(µ2 + s∗ + α∗)(σ2

1 + σ
2
n2 ) + 2α∗s∗σ2

n2

2α∗s∗
> 0.

Furthermore, it is easy to see that s∗ ,
σ2

1+σ
2
n2

2 . If s∗ =
σ2

1+σ
2
n2

2 , then from (12) we obtain µ2 +
σ2

1+σ
2
n2

2 = 0, which

is a contradiction. Thus, it follows from Equation (12) that α∗ =
(µ2+s∗)(σ2

1+σ
2
n2 )

2s∗−(σ2
1+σ

2
n2 ) , then after a few computations,

we have

α∗ + µ2 =
s∗(σ1 + σ2

n2 + 2µ2)

2s∗ − (σ2
1 + σ

2
n2 )

and α∗ + µ2 + s∗ =
2s∗(µ2 + s∗)

2s∗ − (σ2
1 + σ

2
n2 )
.

By substituting the above equations into 1 −
(α+µ2+s)(µ2+σ2

n2 )

(α+µ2)(µ2+s) , the optimal convergence factor can be obtained
as follows:

ρ(L(α∗, s∗)) =
σ2

1 − σ
2
n2

σ2
1 + σ

2
n2 + 2µ2

,

which completes the proof.

As in Theorem 3.3, the convergence result and the optimal parameters of the NTS iteration method are
given by the following theorem when the parameter matrix is defined as Q = sI + ATA.

Theorem 3.4. Let α, s be positive constants and parameter matrix be defined as Q = sI+ATA, let σi (i = 1, 2, · · · ,n2)
satisfying σ1 ≥ σ2 ≥ · · · ≥ σn2 be the singular value of the matrix A. Then the NTS iteration method is convergent
for any initial vector if and only if

α > max
 (µ2 + s + σ2

1)(σ2
1 − µ

2)

µ2 + σ2
1 + 2s

, 0
 . (13)

Furthermore, the optimal convergence factor ρ(L(α∗, s∗)) is

ρ(L(α∗, s∗)) = 1 −
(α∗ + s∗ + b)b

(α∗ + µ2)(s∗ + b)
, (14)

where the optimal parameters α∗ and s∗ satisfy the relation

(a + s)(b + s)(σ2
1 + σ

2
n2 ) − αs(a + b + 2s) = 0, (15)

with a = µ2 + σ2
1, b = µ

2 + σ2
n2 .

Proof. It follows from Theorem 3.2 that ρ(L(α, s)) < 1 if and only if

ξmin

(
1

α + µ2

[
(α + µ2 + s)I + ATA

]
(µ2I + ATA)

[
(µ2 + s)I + ATA

]−1
)
> 0
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and

ξmax

(
1

α + µ2

[
(α + µ2 + s)I + ATA

]
(µ2I + ATA)

[
(µ2 + s)I + ATA

]−1
)
< 2.

The above inequalities result in

ξmin

 (α + µ2 + s + σ2
i )(µ2 + σ2

i )

(α + µ2)(µ2 + s + σ2
i )

 > 0 and ξmax

 (α + µ2 + s + σ2
i )(µ2 + σ2

i )

(α + µ2)(µ2 + s + σ2
i )

 < 2. (16)

It is not difficult to check the function ψ(x) = (α+µ2+s+x)(µ2+x)
(α+µ2)(µ2+s+x) is monotonic increasing about x > 0. Then

Inequality (16) is equivalent to

(α + µ2 + s + σ2
n2 )(µ2 + σ2

n2 )

(α + µ2)(µ2 + s + σ2
n2 )

> 0 and
(α + µ2 + s + σ2

1)(µ2 + σ2
1)

(α + µ2)(µ2 + s + σ2
1)

< 2. (17)

The first inequality of (17) is obviously true for all α, s > 0, and the second inequality of (17) holds if and
only if

α >
(µ2 + s + σ2

1)(σ2
1 − µ

2)

µ2 + σ2
1 + 2s

,

which together with α > 0 can immediately deduce the convergent condition (13).
Notice that

ρ(L(α, s)) = max
σi∈σ(A)


∣∣∣∣∣∣1 − (α + µ2 + s + σ2

i )(µ2 + σ2
i )

(α + µ2)(µ2 + s + σ2
i )

∣∣∣∣∣∣


= max


∣∣∣∣∣∣1 − (α + µ2 + s + σ2

1)(µ2 + σ2
1)

(α + µ2)(µ2 + s + σ2
1)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1 − (α + µ2 + s + σ2

n2 )(µ2 + σ2
n2 )

(α + µ2)(µ2 + s + σ2
n2 )

∣∣∣∣∣∣
 .

To find the optimal parameters α∗ and s∗ of the NTS iteration method, we minimize the spectral radius of
the iteration matrix ρ(L(α, s)). Then the optimal points α∗ and s∗ must satisfy the following equation

(α + µ2 + s + σ2
1)(µ2 + σ2

1)

(α + µ2)(µ2 + s + σ2
1)

− 1 = 1 −
(α + µ2 + s + σ2

n2 )(µ2 + σ2
n2 )

(α + µ2)(µ2 + s + σ2
n2 )

.

After some manipulations, we deduce that the optimal parameters α∗ and s∗ satisfy the relation

(a + s)(b + s)(σ2
1 + σ

2
n2 ) − αs(a + b + 2s) = 0, (18)

where a = µ2 + σ2
1, b = µ

2 + σ2
n2 . In the sequel, we show that the optimal parameters α∗ and s∗ determined by

(18) satisfy the convergent condition (13). From (18) we can easily get

α∗ =
(a + s∗)(b + s∗)(σ2

1 + σ
2
n2 )

s∗(a + b + 2s∗)
. (19)

It can be seen that α∗ > 0, and we only prove that

α∗ >
(µ2 + s∗ + σ2

1)(σ2
1 − µ

2)

µ2 + σ2
1 + 2s∗

=
(a + s∗)(σ2

1 − µ
2)

a + 2s∗
. (20)
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If σ2
1 ≤ µ

2, it is obvious that (20) always holds due to α∗ > 0. Next, we prove the Inequality (20) also holds
for the case of σ2

1 > µ
2. Checking Inequality (20) can be translated to validate α∗(a+2s∗)

(a+s∗)(σ2
1−µ

2) > 1. It follows from
(19) that

α∗(a + 2s∗)
(a + s∗)(σ2

1 − µ
2)
=

(b + s∗)(σ2
1 + σ

2
n2 )(a + 2s∗)

s∗(a + b + 2s∗)(σ2
1 − µ

2)
,

then α∗(a+2s∗)
(a+s∗)(σ2

1−µ
2) > 1 is true inasmuch as

(b + s∗)(σ2
1 + σ

2
n2 )(a + 2s∗) − s∗(a + b + 2s∗)(σ2

1 − µ
2) = s∗(a + b + 2s∗)(σ2

n2 + µ
2) + b(a + s∗)(σ2

1 + σ
2
n2 ) > 0

holds for all s∗ > 0. Substituting α∗ and s∗ directly into 1 −
(α+µ2+s+σ2

n2 )(µ2+σ2
n2 )

(α+µ2)(µ2+s+σ2
n2 ) leads to (14). This completes

our proof of Theorem 3.4.

Remark 3.5. It follows from Theorem 3.4 that

ρ(L(α∗, s∗)) = 1 −
(α∗ + s∗ + b)b

(α∗ + µ2)(s∗ + b)
=

(µ2
− s∗ − b)b + (α∗ + u2)s
(α∗ + µ2)(s∗ + b)

. (21)

From (19), we can deduce that

α∗ + µ2 =
(a + s∗)(b + s∗)(σ2

1 + σ
2
n2 ) + µ2s∗(a + b + 2s∗)

s∗(a + b + 2s∗)
.

Substituting the above equation into (21) yields

ρ(L(α∗, s∗)) = ψ(s∗) =
s∗

[
b(a + b + 2s∗)(µ2

− s∗ − b) + (a + s∗)(b + s∗)(σ2
1 + σ

2
n2 ) + µ2s∗(a + b + 2s∗)

][
(a + s∗)(b + s∗)(σ2

1 + σ
2
n2 ) + µ2s∗(a + b + 2s∗)

]
(s∗ + b)

,

which implies that the optimal convergence factor ψ(s∗) will be sufficiently close to zero as s∗ → 0+. However, s∗ can’t
be equal to zero. Since s∗ = 0 is the contradiction with Equation (15). It makes sense to choose small s∗ to obtain
rapid convergence rate. Therefore, for the NTS method with Q = sI + ATA the optimal parameter s∗ is adopted as a
small positive constant and then the other parameter α∗ is computed by (19). Besides, after a few computations and
by making use of the properties of limit, one may deduce the following result

lim
s∗→∞

ρ(L(α∗, s∗)) = lim
s∗→∞

ψ(s∗) =
σ2

1 + σ
2
n2 + 2(µ2

− b)

σ2
1 + σ

2
n2 + 2µ2

=
σ2

1 − σ
2
n2

σ2
1 + σ

2
n2 + 2µ2

.

Here, the second equation is due to the symbol b = µ2 + σ2
n2 defined as in Theorem 3.4. It can be seen that the optimal

convergence factor of the NTS method with the parameter matrix Q = sI + ATA is the same with ones of the NTS
method with Q = sI and ULT− IIQ1 in [13] as s∗ is chosen sufficiently large. Then the NTS method with Q = sI+ATA
can have a fast convergence rate than NTS method with Q = sI and ULT−IIQ1 by choosing small s∗. The fact is further
verified by the experimental examples in Section 4. However, NTS method with Q = sI brings smaller computation
costs than NTS method with Q = sI + ATA, which can be observed from the following Algorithms 3.1 and 3.2.

The eigenvalue distributions of the preconditioned matrix relate closely to the convergence rates of the
Krylov subspace methods. A tightly clustered spectrum or positive real spectrum of the preconditioned
matrix may result in fast convergence of Krylov subspace acceleration. In light of this, we will discuss the
spectral properties of the preconditioned matrix. In the sequel, sp(•) represents the spectrum of the one
matrix.

Since

M(α)−1
A =M(α)−1(M(α) −N(α)) = I − L(α),
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then, it has

λ(M(α)−1
A) = 1 − λ(L(α)). (22)

From Theorem 3.1, the bounds for the eigenvalues of the NTS preconditioned matrix M(α)−1
A are given in

the following theorem indicating that the eigenvalues of M(α)−1
A lie in a positive box, which may result in

fast convergence of Krylov subspace acceleration.

Theorem 3.6. LetA ∈ R2n2
×2n2 be defined as in (6), Q ∈ Rn2

×n2 be a symmetric positive definite matrix, and α > 0
be a given constant. Suppose that sp(Q) ⊆ [τn2 , τ1] and σi (i = 1, 2, · · · ,n2) satisfying σ1 ≥ σ2 ≥ · · · ≥ σn2 are the
singular value of the matrix A. Then for any α > 0, λ(M(α)−1

A) has eigenvalue 1 with multiplicity at least n2, and
the remaining eigenvalues are located in the positive interval (α + µ2 + τn2 )(µ2 + σ2

n2 )

(α + µ2)(µ2 + τ1)
,

(α + µ2 + τ1)(µ2 + σ2
1)

(α + µ2)(µ2 + τn2 )

 .
Proof. It follows from the relation (22) and Theorem 3.1 that the eigenvalues of the preconditioned matrix
M(α)−1

A are given by 1 with multiplicity at least n2 and that the remaining n2 nonunit eigenvalues are
the same as the ones of the matrix J = (I + 1

α+µ2 Q)(µ2I + ATA)(µ2I + Q)−1, which is similar to the matrix

Ĵ = (µ2I+Q)−1(I+ 1
α+µ2 Q)(µ2I+ATA). Inasmuch as (µ2I+Q)−1(I+ 1

α+µ2 Q) and µ2I+ATA are both symmetric

positive definite matrices, the eigenvalues of the matrix Ĵ are real, then the eigenvalues of the matrix
(I + 1

α+µ2 Q)(µ2I + ATA)(µ2I +Q)−1 are also real.
Since the matrices Q and ATA are symmetric positive definite and symmetric positive semi-definite,

respectively, we know that τ1 ≥ · · · ≥ τn2 > 0 and sp(ATA) ⊆ [σ2
n2 , σ

2
1]. It follows immediately that

sp(µ2I +Q) ⊆
[
µ2 + τn2 , µ2 + τ1

]
, sp(µ2I + ATA) ⊆

[
µ2 + σ2

n2 , µ
2 + σ2

1

]
(23)

and

sp(I +
1

α + µ2 Q) ⊆
[
α + µ2 + τn2

α + µ2 ,
α + µ2 + τ1

α + µ2

]
. (24)

The first property of (23) implies that

sp((µ2I +Q)−1) ⊆
[

1
µ2 + τ1

,
1

µ2 + τn2

]
. (25)

Thus, it follows from (23)-(25) that the remaining eigenvalues of the preconditioned matrix M(α)−1
A are

real and located in the positive interval (α + µ2 + τn2 )(µ2 + σ2
n2 )

(α + µ2)(µ2 + τ1)
,

(α + µ2 + τ1)(µ2 + σ2
1)

(α + µ2)(µ2 + τn2 )

 ,
and the proof is completed.

In the sequel, two cases are given for the parameter matrix Q and the implementing processes for image
restoration problem are summarized in the following two concrete algorithms. The versions of NTS iteration
method with parameter matrices Q = sI and Q = sI+ATA are denoted by NTS −Q1 and NTS −Q2 methods,
respectively. The NTS −Q1 and NTS −Q2 iterative methods can be written as the following Algorithms 3.1
and 3.2 respectively. Algorithm 3.1 only requires the computing of the matrix-vector multiplications A f (k),
A f (k+1), ATe(k) and ATe(k+ 1

2 ), as well as scalar-vector multiplications. Note that the matrix A ∈ Rn2
×n2

that arises
in image restoration is highly structured, such as block circulant, block Toeplitz, block Toeplitz-plus-Hankel
matrices and so forth. Hence, arithmetic operations of matrix-vector multiplications with the blurring
matrix A ∈ Rn2

×n2
is O(n2 log n) by fast Fourier transforms (FFTs). In Algorithm 3.2, except for computing

of the matrix-vector multiplications, the linear sub-system with the coefficient matrix (u2 + s)I + ATA is
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solved. Due to the fact that (u2 + s)I+ATA is symmetric positive definite, the sparse Cholesky factorization
can be efficiently applied to solve the linear sub-systems. Moreover, for image restoration A ∈ Rn2

×n2
is

highly structured, we can use the FFTs to solve
[
(u2 + s)I + ATA

]
f (k+1) = ATe(k+ 1

2 ) + (sI +ATA) f (k+ 1
2 ) in step 7

of Algorithm 3.2.
(1) NTS −Q1 method

Algorithm 3.1.
1. Given an initial value f (0) = 1 and e(0) = 1 − A f (0).
2. Given a very small positive value τ, and N is the maximum prescribed number of outer iterations.
3. r(0) = b −Ax(0).
4. For k = 0, 1, 2, · · · , until ∥r

(k)
∥2

∥r(0)∥2
> τ or k < N,

5. e(k+ 1
2 ) =

αe(k)
−A f (k)+1

α+1 .

6. f (k+ 1
2 ) =

ATe(k)+α f (k)

α+µ2 .

7. f (k+1) =
ATe(k+ 1

2 )+s f (k+ 1
2 )

s+µ2 .
8. e(k+1) = 1 − A f (k+1).
9. r(k+1) = b −Ax(k+1).
10. end for

(2) NTS −Q2 method

Algorithm 3.2.
1. Given an initial value f (0) = 1 and e(0) = 1 − A f (0).
2. Given a very small positive value τ, and N is the maximum prescribed number of outer iterations.
3. r(0) = b −Ax(0).
4. For k = 0, 1, 2, · · · , until ∥r

(k)
∥2

∥r(0)∥2
> τ or k < N,

5. e(k+ 1
2 ) =

αe(k)
−A f (k)+1

α+1 .

6. f (k+ 1
2 ) =

ATe(k)+α f (k)

α+µ2 .

7.
[
(u2 + s)I + ATA

]
f (k+1) = ATe(k+ 1

2 ) + (sI + ATA) f (k+ 1
2 ).

8. e(k+1) = 1 − A f (k+1).
9. r(k+1) = b −Ax(k+1).
10. end for

4. Numerical example

In this section, we shall test the newly proposed Algorithms 3.1 and 3.2 with examples from ill-posed
inverse problems and image restoration to illustrate the performance of the algorithms. We compare the
NTS −Q1 and NTS −Q2 methods with the classical Tikhonov, SHSS, ULT-I and ULT-II ones in terms of
the number of iterations (denoted by ’IT’) and the total computing times in seconds (denoted by ’CPU’).
The following tests are carried out in MATLAB R2016b on a personal computer with 2.40-GHz central
processing unit (Intel(R) Core(TM) Q6600), 4.00 GB of memory, and Windows 7 operating system.

The error vector e in 1 has normally distributed entries with zero mean and is scaled so that the
contaminated 1, defined by (2), has a specified noise level relative error

ϵ = ∥e∥/∥1̂∥,

where the noise-free right-hand side 1̂ is defined as in (3). The initial approximate solution f (0) = 0 is used
for all the iterative methods in Examples 4.1 and 4.2, while for image restoration problems in Examples 4.3
and 4.4 the initial approximate solution f (0) = 1 is adopted. The parameter ϵ is set to 0.001 in all examples.

In actual computations, the parameters of the test iteration methods are always chosen to be optimal.
The optimal values of unknown parameters for the SHSS, ULT-I and ULT-II methods have been presented in



J. J. Cui et al. / Filomat 36:6 (2022), 1837–1855 1847

[13, 22], and the optimal parameters of NTS −Q1 and NTS −Q2 methods are computed by Theorem 3.3 and
Theorem 3.4, respectively. The parameters that are not involved in the iteration methods is denoted by ’-’ in
the tables of numerical examples. In our implementations, the linear sub-systems are solved by the sparse
Cholesky factorization when the coefficient matrix is symmetric positive definite for Examples 4.1-4.3, and
for image restoration problem in Examples 4.4 we can use the FFTs to solve them. The regularization
parameter µ is determined by generalized cross validation (GCV) method [14]. Because compared with
the L-curve criterion method [16] and the discrepancy principle method [23], the parameter choice in GCV
method does not depend on priori knowledge about the noise variance and GCV method is very practical
to approximate the regularization parameter.

There are two quantities, the relative error (RES) and peek signal-to-noise ratio (PSNR), are commonly
applied to measure the accuracy of these methods for ill-posed problems and image restoration problems.
The proposed quantities are defined as follows:

RES =
∥ fnumerical − fexact∥2

∥ fexact∥2
, PSNR = 10 log10

2552
× n2

∥ fnumerical − fexact∥
2
2

,

where the size of the image is n × n and fnumerical, fexact are the numerical solutions (or restored images) and
exact solutions (or the original images), respectively. In image restoration problems, a larger PSNR-value
usually implies that the restoration is of higher quality.

Example 4.1. This is a one-dimensional model of an image reconstruction problem. It arises from discretization of
the Fredholm integral equation of the first kind [15]∫ b

a
K(s, t) f (t)dt = 1(s), c ≤ s ≤ d (26)

with the kernel K(s, t) being the point spread function, right-hand side 1(s) and the exact solution f (t)

K(s, t) =
{

s(t − 1), s < t
t(s − 1), s ≥ t

, 1(s) =


(4s3
− 3s)/24, s <

1
2

(−4s3 + 12s2
− 9s + 1)/24, s ≥

1
2

and f (t) =


t, t <

1
2

1 − t, t ≥
1
2

.

This integral equation is discussed by deriv2 in Hansen’s Regularization Tools package [17].

We discretize the integral equation by the Galerkin method with orthonormal box functions as test and
trial functions by the MATLAB program deriv2(500, 3) from Regularization Tools [19] and obtain the matrix
A ∈ R500×500 and the discretized solution f̂ of the error-free linear system. The associated contaminated
vector 1 in (3) is obtained by adding Gaussian white noise ϵ = 0.001 to 1̂ in (2). We use Tikhonov
regularization method to compute a stable solution which is less sensitive to errors. The tested iteration
methods are terminated once the current residual satisfies ∥r(k)

∥2/∥r(0)
∥2 < 10−6 or if the iteration step exceeds

the largest prescribed iteration step N = 100, where r(k) = b − Az(k) is the residual at the kth iteration. We
adop GCV to select the regularization parameter µ, and for Examples 4.1 µ = 0.0148.

The exact and numerical solutions are shown in Figure 1 for N = 100. The relative error of Tikhonov
method is 0.0864, and IT, CPU times and relative errors of the SHSS, ULT-I, ULT-II and the versions of NTS
methods are reported in Table 1. From Table 1, it can be seen that ULT − IQ1 can achieve the smallest relative
error, while it requires more IT and CPU times. Moreover, the relative errors of ULT − IIQ1 , ULT − IIQ2

and NTS −Q2 are the same, however ULT − IIQ2 and NTS −Q2 methods require less iteration steps. Due
to the fact that no linear system needs to be solved in the NTS method, CPU times of the new method is
substantially lower than other ones. The plots of relative error with respect to iterations k are drawn in
Figure 2 to illustrate the convergence behaviour of our methods. From Figure 2, the convergence rates
of ULT − IIQ2 and NTS −Q2 methods are faster than other ones. Besides, the two methods have a little
semi-convergence. If we adopt smaller iteration step k, ULT − IIQ2 and NTS −Q2 methods may can achieve
a smaller relative error.

As this results, the proposed NTS method are more effective for solving the ill-posed problems.
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Table 1: Numerical results of iteration methods for deriv2(500, 3) of Example 4.1.

Method s α IT CPU RES

SHSS - 0.0051 100 3.0413 0.0880
ULT − IQ1 0.0152 - 100 1.2224 0.0827
ULT − IQ2 0.8 - 100 1.4373 0.3319
ULT − IIQ1 0.0105 - 100 0.5169 0.0861
ULT − IIQ2 0.0015 - 34 0.4834 0.0861
NTS −Q1 10 0.0051 100 0.0611 0.0885
NTS −Q2 0.0015 1.0018 40 0.2575 0.0861
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Figure 1: Comparison of the exact solution of deriv2(500, 3) problem and its numerical solutions.
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Figure 2: Residual errors versus iteration k for deriv2(500, 3).
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Table 2: Numerical results of iteration methods for f ox1ood(500) of Example 4.2.

Method s α IT CPU RES

SHSS - 0.2474 100 3.0280 0.1830
ULT − IQ1 0.6584 - 100 1.1680 0.1424
ULT − IQ2 0.8 - 100 1.4989 0.1083
ULT − IIQ1 0.6575 - 100 0.4134 0.1842
ULT − IIQ2 0.0015 - 73 1.0767 0.0082
NTS −Q1 10 0.3399 100 0.0739 0.1756
NTS −Q2 0.0001 1.0017 53 0.3185 0.0081

Example 4.2. Discretization of a Fredholm integral equation of the first kind∫ b

a
K(s, t) f (t)dt = 1(s), c ≤ s ≤ d

with both integration intervals [0, 1], with kernel K and right-hand side 1 given by

K(s, t) = (s2 + t2)
1
2 , 1(s) =

1
3

(
(1 + s2)

3
2 − s3

)
,

and with the solution f = t. This integral equation is discussed by f ox1ood.

Regularization Tools [19] provides the severely ill-posed test problem f ox1ood(500) with 500 being the
matrix size. The disturbed right-hand side vector 1 is constructed in the same way as in Example 4.1. We
use Tikhonov regularization method to compute a stable solution which is less sensitive to errors. τ in
Algorithms 3.1 and 3.2 is set to 10−6 and N = 100. We also adop GCV to select the regularization parameter
µ, and for Examples 4.2 µ = 0.0018.

In Table 2, we disclose IT, CPU times and relative errors of the SHSS, the ULT-I and ULT-II and versions
of the NTS methods. The relative error of Tikhonov method is 0.0206. The exact and numerical solutions
are shown in Figure 3 for N = 100 and the relative errors with respect to iterations k are drawn in Figure
4. From Table 2, it is seen that our proposed algorithms surpass other ones in terms of both the required
number of iterations and CPU times for the convergence. The NTS iteration method needs the least CPU
times and the NTS −Q2 method achieve smallest relation error with least iteration steps. It converges after
53 iteration for f ox1ood(500) while other ones are not terminated for N = 100 expect for ULT − IIQ2 method
needing 73 iteration steps. As Figure 4 shows that the NTS −Q2 method is the most effective one as its
residual reduces the fastest and it costs the less CPU times.

We would like to comment here that from the reported results from Table 2 and Figure 4, one may come
to this conclusion that our presented methods outperform the SHSS, the ULT-I and ULT-II ones.

Example 4.3. (Image restoration) The following examples are concerned with the restoration of images that have
been contaminated by blur and noise. Let the entries of the vector f̂ be pixel values for a desired, but unknown,
image. The matrix A is a discretization of a blurring operator and equation (3) shows that 1̂ represents a blurred, but
noise-free, image. The vector 1 in (2) represents the available blur- and noise-contaminated image associated with f̂ .
The blurring matrix A is determined by a point-spread function (PSF), which determines how each pixel is smeared
out (blurred), and by the boundary conditions, which specify our assumptions on the scene just outside the available
image; see [8, 20] for details.

In this example, consider the original ’cameraman’ image in Figure 5, which has an 256 × 256 matrix
representation. The white lines have been applied to show the observed image domain which is restored in
Figure 5. PSF = ps f De f ocus([7, 7], 3) in [20] is applied to blur the true image, and a ’noisy’ right-hand-side 1
is generated using MATLAB code 1 = 1̂+0.001×rand(size(1̂)). The reflexive boundary condition is imposed.
Furthermore, the PSNR of the degrade image is 53.9855.
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Figure 3: Comparison of the exact solution of f ox1ood(500) problem and its numerical solutions.
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Figure 4: Residual errors versus iteration k for f ox1ood(500).

Table 3: Numerical results of iteration methods of Example 4.3.

Method s α IT CPU PNSR

SHSS - 0.3438 200 73.4675 60.7997
ULT − IQ1 1.0735 - 200 3.1283 60.5340
ULT − IQ2 0.6 - 200 29.6901 60.4434
ULT − IIQ1 1.0505 - 200 0.5126 60.5516
ULT − IIQ2 0.0540 - 179 26.6037 60.8202
NTS −Q1 2 0.7108 200 0.3188 60.5480
NTS −Q2 0.0001 28.6869 6 0.4846 60.8202
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We use the blurred and noise image as an initial guess, and the stopping criterion is ∥r(k)
∥2/∥r(0)

∥2 < 10−7,
where r(k) denotes the residual after the kth iteration. The maximum iteration is set to be 200. We use
the GCV scheme to determine a suitable value for regularization parameter µ = 0.0527 for both iterative
methods. The matrix A is approximated by Bk and Ck minimizing ∥A −

∑
k

Bk ⊗ Ck∥. Due to the fact that the

intercepted image is 64×64, we store the matrix A sparsely and compute of the matrix-vector multiplications
directly in Algorithms 3.1-3.2 without fast algorithm.

In Table 3, we report the IT, CPU times and PSNR of the tested methods. From Table 3, it can be seen that
the NTS −Q2 method outperforms the other six ones as it needs the least IT, just 6 iterations, and less CPU
times to achieve a highest PSNR value. The restored images by the tested iteration methods are illustrated
in Figure 6. The obtained results reveal the superiority of Algorithms 3.1 and 3.2 over other examined
iterative schemes. As the numerical results show, the presented versions of NTS method can be effectively
applied to solve the image restoration problem.

The plots of PSNR with respect to the iterations k are drawn in Figure 7 to illustrate the convergence
behaviour of our methods. Figure 7 clearly shows that among these iteration methods, the convergence
rate of the NTS −Q2 method is the most effective as its PSNR increases the fastest and the NTS −Q2 method
requires the least iteration steps to give a better quality of the computed restoration than other ones.

(a) True Image (b) PSF

Figure 5: True image and PSF of Example 4.3.

Example 4.4. (Image restoration) The original image is a brain image of dimension 256 × 256 from MATLAB. It
is shown on the left-hand side of Figure 8. PSF and the ’noisy’ right-hand-side 1 are the same as in Example 4.3.
The blurred and noisy image is shown in the top left hand corner of Figure 9. Here the Periodic boundary condition
is employed, and therefore the matrix A is block circulant with circulant blocks, which can perform matrix-vector
multiplications via two-dimensional fast Fourier transformations (FFTs). Furthermore, the PSNR of the degrade
image is 27.5769.

The GCV scheme is used to determine a suitable value for regularization parameter µ = 0.042. The
stopping criterion is ∥r(k)

∥2/∥r(0)
∥2 < 10−4, where r(k) denotes the residual after the kth iteration. The

maximum iteration is set to be 600. The numbers of iterations, CPU times and PSNR of the tested methods
for solving the linear image restoration problem (6) are listed in Table 4. By comparing the results of Table
4, it can be clearly seen that the versions of NTS method needs the less CPU times, and the reason for
this is that no linear system is sloved in the proposed methods. Moreover, the NTS −Q2 iteration method
performs the best since it uses the least IT and CPU times to achieve a highest PSNR, implying the highest
quality of the restoration compared with the six ones. The image restoration results are shown in Figure 9
and demonstrate that a high visual quality of the restored images can be obtained.

As in the previous example, the PSNR with respect to the iterations k is shown in Figure 10. It can be
seen that the convergence behaviour of the NTS −Q1 method is almost same as ULT − IQ1 and ULT − IIQ1
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                   (g) NTS-Q1    (h) NTS-Q2

Figure 6: Restored images with various methods in Example 4.3.
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Figure 7: PSNR versus the iteration number k for the restored images in Example 4.3.
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(a) True Image (b) PSF

Figure 8: True image and PSF of Example 4.4.

Table 4: Numerical results of iteration methods of Example 4.4.

Method s α IT CPU PNSR

SHSS - 0.3491 600 6.3296 39.6913
ULT − IQ1 1.0197 - 600 6.0949 38.2191
ULT − IQ2 12 - 600 7.2344 30.6109
ULT − IIQ1 1.0179 - 600 4.7235 38.2232
ULT − IIQ2 0.1338 - 429 5.4728 41.4648
NTS −Q1 0.51 246.1933 600 4.7153 38.2232
NTS −Q2 0.03 1.5259 190 2.0037 41.4715

             (a) Blurred and noisy image (b) SHSS

      (e) ULT-I
Q1

      (f) ULT-I
Q2

(c) ULT-IIQ1
(d) ULT-IIQ2

(g) NTS-Q1 (h) NTS-Q2

Figure 9: Restored images with various methods in Example 4.4.
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Figure 10: PSNR versus the iteration number k for the restored images in Example 4.4.

ones, while the convergence rate of the NTS −Q2 method is much faster than ULT − IQ2 and ULT − IIQ2

ones, and it achieves the highest PSNR value. Comparison between these methods shows that the new
methods are more reliable and effective than the SHSS and the versions of ULT methods in solving image
restoration problems.

5. Conclusions

This paper studies the ill-posed inverse problems and proposes a new two-splitting (NTS) iteration
method in which the parameter α and the parameter matrix Q are incorporated. The NTS iteration method
is based on the Hermitian and skew-Hermitian splitting (HSS) and the upper and lower triangular splitting
(ULT) of the coefficient matrix A in (6). Besides, we obtain the convergence conditions and the optimal
parameters minimizing the spectral radius of the iteration matrix of the versions of NTS method. The
convergence rate of the NTS method can be speeded up by selecting appropriate parameters and parameter
matrix. The presented numerical examples from the ill-posed problems and image restoration illustrate the
efficiency of our method.
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