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Abstract. The main purpose of this paper is to establish a new variant of the Hildebrandt’s theorem for the
Weyl spectrum in a separable Banach space. This theorem asserts that the convex hull of the Weyl spectrum
of an operator T is equal to the intersection of the Weyl numerical spectra of operators that are similar to T.

1. Introduction and Main Results

In 1918, O. Toeplitz [21] and F. Hausdorff [12] introduced a stronger invariant set for a linear operator T
calling it the numerical range of T. This set is defined by

W(T) := {⟨Tx, x⟩, x ∈ X, ∥x∥ = 1}

where X = Cn is a finite dimensional space endowed with Euclidean norm ∥.∥.

The set W(T) is invariant only under unitary equivalence and has very nice properties making it a stronger
invariant than the spectrum of T denoted by σ(T). These properties are:

(1) W(T) contains σ(T).

(2) W(T) is closed.

(3) W(T) is convex.

(4) W(T) = {0} if and only if T = 0.

Later, the above formula of the numerical range was extended by M. H. Stone [20] to bounded operators
acting on Hilbert spaces. This extension led to the construction of a unitary invariant subset satisfying
properties (3) and (4), but lost properties (1) and (2).

In 1966 [13], S. Hildebrandt proved an important theorem which asserted that the convex hull of the
spectrum of a bounded operator T on a complex Hilbert space was equal to the intersection of the numerical
ranges of operators that were similar to T. This theorem reads as follows:
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Theorem 1.1. [13] For every bounded operator T in Hilbert spaceH , we have

conv(σ(T)) =
⋂{

W(VTV−1), V is a bounded invertible operator on H
}
.

The notion of the numerical range was extensively studied during last five decades and was used in
engineering as a rough estimate of eigenvalues of T. This set allows us to get more information about
operators (see for example [4, 5, 10, 11]). Furthermore, a considerable attention has been devoted to extend
the definition of the numerical range to operators acting on Banach spaces (see [3, 14, 17]), but all these
interesting definitions still lose at least one property among the four properties already cited. For this
reason, M. Adler et al. [1] have recently proposed a definition of the numerical spectrum, σn(T), of a closed
densely defined linear operator T on a Banach space X. Unlike the numerical range, the numerical spectrum
is always an isometric invariant and satisfies all properties (1) − (4).

In literature, spectral theory has witnessed an explosive development in the study of the Weyl spectrum
of linear operators which opened up a new line to investigate some spectral properties of the underlying
physical systems. The original definition of this spectrum goes back to H. Weyl [23] and later, which has
considerably attracted the attention of many authors [7, 8, 15, 16, 18, 19].

In [19], it was shown that the Weyl spectrum of an operator T acting on a Banach space X, consists of those
points of the spectrum which cannot be removed from the spectrum by the addition to T of a compact
operator, that is:

σw(T) :=
⋂

K∈K (X)

σ(T + K). (1)

We draw the attention of the reader that if there exists a compact operator K ∈ K (X) such that σ(T + K) =
σw(T), then the operator T is said to satisfy the problem of Salinas. This property is valid for all bounded
linear operators defined on a separable Hilbert space but not for all Banach spaces setting. (See [2] for more
details).

Recently, J. Bračič et al. in [6] proved the following Hildebrandt theorem for the Weyl spectrum:

Theorem 1.2. [6] For every bounded operator T on a Hilbert spaceH , we have:

conv(σw(T)) :=
⋂{

Ww(VTV−1), V is a bounded invertible operator onH
}

where the Weyl numerical range of T, denoted by Ww(T), is defined by

Ww(T) :=
⋂

K∈K (X)

W(T + K).

A natural question can be asked about the extension of the Hildebrandt’s theorem to bounded operators
acting in Banach spaces. For this subject, analogously to the Weyl spectrum, we can define the Weyl
numerical spectrum for a bounded operator T acting on a Banach space X, as follows:

σw,n(T) :=
⋂

K∈K (X)

σn(T + K). (2)

This new concept allows us to provide an extension of Hildebrandt’s theorem to the case of Banach space.
Indeed, we will first generalize Theorem 1.1 by proving the following theorem:

Theorem 1.3. (Hildebrandt’s Theorem in Banach space) Let X be a separable Banach space and T a bounded
operator on X. Then

conv(σ(T)) =
⋂{
σn(VTV−1), V is a bounded invertible operator on X

}
.
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Next, we will extend Theorem 1.2 by proving the following result:

Theorem 1.4. Let X be a separable Banach space and T be a bounded operator on X satisfying the Salinas
problem. Then, we have:

conv(σw(T)) =
⋂{
σw,n(VTV−1), V is a bounded invertible operator on X

}
.

Now, let us outline the content of this paper. In Section 2, we shall present some basic notations and
properties connected to the main body of the paper. In Section 3, we will formulate straightforward
auxiliary results to prove the Hildebrandt’s theorem for the Weyl spectrum in a separable Banach space.

2. Basic Notations and Preliminary results

To outline the main topics of this paper, we need first to agree on some standard notations and introduce
some terminology.

Let X be an infinite dimensional and separable Banach space and X′ its dual. We denote by L(X) the set
of all bounded linear operators on X and by K (X) the set of all compact operators which is a subspace of
L(X). The range of a bounded operator T is denoted by R(T).

In the sequel, convM denotes the closed convex hull of a given set M.

Definition 2.1. [1, Corollary 2.7] Let T ∈ L(X), the numerical spectrum of T is defined by

σn(T) := conv{< Tx, J(x) >, x ∈ X, ∥x∥ = 1, J(x) ∈ J(x)}

where J(x) denotes the (non empty) duality set defined by

J(x) := {J(x) ∈ X′ : < x, J(x) >= ∥x∥2 = ∥J(x)∥2}.

Now, we recall some several basic properties about the numerical spectrum and we refer the reader to
the paper of M. Adler et al. in [1] for more details.

Proposition 2.2. [1] Let T ∈ L(X). Then, we have

(i) σn(T) is closed and convex.

(ii) σn(αT + β) = ασn(T) + β for all complex numbers α and β.

(iii) σn(T) = σn(U−1TU) for all isometric isomorphisms U on X.

(iv) σ(T) ⊆ σn(T).

(v) σn(T) ⊆ {λ ∈ C such that |λ| ≤ ∥T∥}.

Remark 2.3. (i) The role of the Weyl numerical spectrum in comparison with the Weyl spectrum mimics
the role of the numerical spectrum in comparison with the spectrum.

(ii) From Proposition 2.2 (ii) and the definition of the Weyl numerical spectrum σw,n(.) given by (2), we infer
that this set is closed and convex being the intersection of closed convex sets.

One of the impediments to the development of a clear parallel theory for operators on Banach spaces
compared to there for Hilbert spaces is the lack of a suitable notion of an adjoint operator. For this reason,
T. L. Gill et al. in [9] gave the construction of the adjoint of bounded linear operators on a separable Banach
space. This construction was established in order to generalize the well-known result of J. von Neumann
given in [22] for bounded operators in Hilbert spaces. Let first recall the following result:
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Theorem 2.4. [9, Theorem 5] Let X be a separable Banach space and let T ∈ L(X). Then, T has a well-defined
adjoint T∗ defined on X such that:

(i) the operator T∗T ≥ 0 called maximal accretive,

(ii) (T∗T)∗ = T∗T,

(iii) I + T∗T has a bounded inverse.

3. Proof of Main Results

The proofs of theorems 1.3 and 1.4 of this paper require some preparatory results. For this purpose,
we consider in this section a separable Banach space X. Due to [9, Theorem 1.2], there exists two Hilbert
spacesH1 andH2 satisfyingH1 ⊆ X ⊆ H2 as continuous dense embedding where we consider in the next
that X′ ⊂ H2. Now, let us start by proving the following lemma.

Lemma 3.1. Let T ∈ L(X), then T has a bounded extension T toH2 and ρ(T) = ρ(T).

Proof. Clearly, since T is bounded, then by Theorem 1.4 in [9], it can be extended to a bounded linear
operator T onH2.

First, we will prove that ρ(T) ⊂ ρ(T).

Indeed, if λ ∈ ρ(T), then λI − T has an inverse which entails that λI − T also has one. So, ρ(T) ⊂ ρ(T).

Second, we can show that ρ(T) ⊂ ρ(T). That is, since T ∈ L(X), then ρ(T) , ∅. Let’s λ ∈ ρ(T), then (λI − T)−1

is a continuous mapping on X.

On the other hand, let’s f ∈ H2. Since T is continuous, then there exists a sequence { fn} ⊂ X, such that
lim
n→∞

fn = f and lim
n→∞

T fn = T f inH2. Obviously, T fn = T fn. This entails (λI − T) f = lim
n→∞

(λI − T) fn.

However, by the boundedness fact of the operator (λI − T)−1 on X,we have

∥(λI − T) f ∥H2 = lim
n→∞
∥(λI − T) fn∥H2 ≥ lim

n→∞
δ∥ fn∥H2 = δ∥ f ∥H2 , for some δ > 0.

Thus, λI − T has a bounded inverse and we conclude that ρ(T) ⊂ ρ(T). □

Now, we need to prove the following lemma which is useful in the proof of our main results.

Lemma 3.2. Let T ∈ L(X). If σ(T) is contained in the open unit disk, then

V :=
∞∑

k=0

(T
∗

)kT
k

is an invertible and accretive operator with

∥V
1
2 TV−

1
2 ∥H2 < 1,

where T and T
∗

are respectively the extensions of T and its adjoint T∗ onH2.

Proof. Since T is bounded, Theorem 1.4 in [9] asserts that it has an adjoint T∗. Thus, these both operators
can be extended to bounded linear operators T and T

∗

onH2. Furthermore, following Lemma 3.1, we have
σ(T) = σ(T).

We notice that
lim sup

k→∞
∥(T
∗

)kT
k
∥

1
k
H2
≤ lim sup

k→∞
∥T

k
∥

2
k
H2
= r(T)2,
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where r(T) is the spectral radius of T. Since σ(T) = σ(T) is a subset of the open unit disk , then r(T) < 1.

Consequently, lim sup
k→∞

∥(T
∗

)kT
k
∥

1
k
H2
< 1. Hence, the sum converges absolutely. Clearly, V is an accretive

operator being a sum of accretive operators.

One has

⟨T
∗

VTx, x⟩H2 ≥ 0, ∀x ∈ H2,

it follows that T
∗

VT = V − IH2 . So, we infer that V ≥ I. Thus, we claim that V is an invertible operator.

Now, since V is an accretive operator, we define the bounded operator V
1
2 TV−

1
2 satisfying

∥V
1
2 TV−

1
2 ∥

2
H2
≤ ∥V−

1
2 T
∗

VTV−
1
2 ∥H2 = ∥V

−
1
2 (V − I)V−

1
2 ∥H2 = ∥I − V−1

∥H2 .

On the other hand, since V and V − I are accretive operators, then σ(V) ⊆]1,+∞[.
Hence, we conclude that σ(V−1) ⊆ (0, 1]. That is,

σ(I − V−1) ⊆ [0, 1),

and thus
∥I − V−1

∥H2 < 1.

Which yields ∥V
1
2 TV−

1
2 ∥H2 < 1 as desired.□

In the next, we will prove Theorem 1.3 by double inclusion.

Proof of Theorem 1.3 First, let us prove the first inclusion, that is:

conv(σ(T)) ⊆
⋂{
σn(VTV−1), Vis a bounded invertible operator onH2

}
.

Clearly, for every invertible operator V ∈ L(H2), we have σ(VTV−1) = σ(T).
Therefore, following Proposition 2.2 (iv), we obtain

σ(T) = σ(VTV−1) ⊆ σn(VTV−1).

According to the convexity of the numerical spectrum (see Proposition 2.2 (i)), we infer that

conv(σ(T)) ⊆ σn(VTV−1).

Consequently, we get the desired inclusion

conv(σ(T)) ⊆
⋂{
σn(VTV−1), Vis a bounded invertible operator onH2

}
.

In order to prove the second inclusion, we suppose that there existsλ ∈ C, which satisfies thatλ ∈ σn(VTV−1),
for all invertible operator. Yet λ < conv(σ(T)).

Now, by translating, scaling and thanking into account Proposition 2.2 (ii), we may assume that conv(σ(T))
is a subset of the open unit disk of radius and |λ| ≥ 1.

Since σ(T) ⊆ conv(σ(T)) is a subset of the open disk of radius, then Lemma 3.2 implies that there exists an
invertible element V ∈ L(H2) such that ∥VTV−1

∥H2 < 1. From Proposition 2.2 (vi), one has σn(VTV−1) is a
subset of the open unit disk which contradicts the fact that λ ∈ σn(VTV−1) and |λ| ≥ 1. Hence, we get the
second inclusion and we conclude that

conv(σ(T)) =
⋂{
σn(VTV−1), Vis a bounded invertible operator onH2

}
.
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From here, taking the restriction T of T to X, the result follows and we get

conv(σ(T)) =
⋂{
σn(VTV−1), Vis a bounded invertible operator on X

}
.□

Remark 3.3. Note that, Theorem 1.3 can be considered as a generalization and an extension of Theorem 2.2
in [6] to the Banach space case.

Now, we are able to prove Theorem 1.4 which gives an improvement of [6, Theorem 2.3].

Proof of Theorem 1.4. The proof of Theorem 1.4 requires two steps:

Step 1: Let T ∈ L(X), we claim that

conv(σw(T)) ⊆
⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
.

Indeed, since V is a bounded invertible operator, we have σ(VTV−1) = σ(T). Following Proposition 2.2 (iv),
one has

σ(T) = σ(VTV−1) ⊆ σn(VTV−1).

Therefore
σ(T + K) = σ(V(T + K)V−1) ⊆ σn(V(T + K)V−1), ∀K ∈ K (X).

Let K̃ be the compact operator defined by K̃ := VKV−1. Clearly, we have

σ(VTV−1 + K̃) ⊆ σn(VTV−1 + K̃).

So, ⋂
K∈K (X)

σ(T + K) ⊆
⋂

K∈K (X)

{
σn(VTV−1 + K̃), Vis a bounded invertible operator on X

}
.

In other terms, we have

σw(T) ⊆
⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
.

Therefore, taking the convex hulls, we deduce that

conv(σw(T)) ⊆
⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
.

Step 2: At this step, we will prove the opposite inclusion, that is:⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
⊆ conv(σw(T)).

Indeed, Since the operator T satisfy the Salinas problem, we infer that there exists a compact operator
K ∈ K (X), such that

σw(T) = σ(T + K).

Therefore, by the convexity hulls of the Weyl spectrum of T and the spectrum of T + K, we deduce that

conv(σw(T)) = conv(σ(T + K)). (3)

Using Theorem 1.3, it follows that:

conv(σ(T + K)) =
⋂{
σn(V(T + K)V−1), Vis a bounded invertible operator on X

}
=
⋂{
σn(VTV−1 + VKV−1), Vis a bounded invertible operator on X

}
=
⋂{
σn(VTV−1 + K̃), Vis a bounded invertible operator on X

}
, (4)
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where K̃ := VKV−1 is a compact operator as the product of the compact operator K and the bounded
invertible operator V.

On the other hand, we have: ⋂
K∈K (X)

σn(VTV−1 + K) ⊆ σn(VTV−1 + K̃),

which allows us to conclude that:

⋂ 
⋂

K∈K (X)

σn(VTV−1 + K), Vis a bounded invertible operator on X


⊂

⋂{
σn(VTV−1 + K̃), Vis a bounded invertible operator on X

}
.

According to Eqs. (4) and (3), we assert that:⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
⊂ conv(σw(T)).

Now, combining the results of the two steps, we conclude that

conv(σw(T)) =
⋂{
σw,n(VTV−1), Vis a bounded invertible operator on X

}
,

which ends the proof.□

Remark 3.4. Our results improve and extend those established by J. Bračič et al. given in [6] from Hilbert
to Banach spaces by using the concept of numerical spectrum on the Banach space.
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[23] H. Weyl, Über gewöhnliche ifferentialgleichungen mit singularitäten und die zugehörigen entwicklungen willkürlicher funktio-

nen, Mathematische Annalen 68 (1910) 220–269.


