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Abstract. In this paper, we study the category of quantale-valued preordered spaces. We show that it is a
normalized topological category and give characterization of zero-dimensionality and D-connectedness in
the category of quantale-valued preordered spaces. Moreover, we characterize explicitly each of T0, T0, T1,
pre-T2, T2 and NT2 quantale-valued preordered spaces. Finally, we examine how these characterization are
related to each other and show that the full subcategory Ti(pre-T2(L-Prord)) (i = 0, 1, 2) of pre-T2(L-Prord),
and the full subcategory Ti (L-Prord) (i = 1, 2) of L-Prord are isomorphic.

1. Introduction

Order theory is a branch of mathematics that deals with many kinds of binary relations. These binary
relations apprehend the intuitive concept of mathematical ordering which covers the field of mathematics
and its related areas like computer science (see, [15, 34–36]). Domain theory is an interface between
mathematics and computer science and it is a fast-growing branch and deals with special kinds of partially
ordered sets that are commonly known as domains. Thus, domain theory can be considered a branch of
order theory. These domains were firstly studied by Dana Scott in the 1960s. The primary motivation for
the study of domains was the search of denotational semantics of lambda calculus, especially for functional
programming languages in computer science (see, [34–36]).

In 1921, zero-dimensional spaces were defined by Sierpinski. A topological space (X, τ) is called zero-
dimensional provided that X has a basis consisting of clopen sets [18] and it has been used to construct
many useful classes of topological spaces (see [14, 23]). This notion has been extended to an arbitrary
topological category by Stine [37, 38].

Classical separation axioms of topology have been extended to topological category by several authors
[12, 29]. In 1991, Baran [3] introduced these axioms in a set-based topological category in terms of initial,
final structures and discreteness. Also, he introduced pre-Hausdorff objects in an arbitrary topological
category [3, 10] which are reduced to pre-Hausdorff topological space (X, τ), where (X, τ) is called pre-
Hausdorff provided that for any two distinct points, if there is a neighborhood of one missing the other,
then the two points have disjoint neighborhoods. One of the important use of pre-Hausdorff objects is
to define several different forms of Hausdorff [6], regular, normal and completely regular objects [8] in
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arbitrary topological categories. In 1994, M. V. Mielke [30] proved that the pre-Hausdorff objects play an
important role in the theory of geometric realization.

With the advancement of fuzzy theory, distinct mathematical frameworks have been acquainted with
fuzzy structures including fuzzy topology [28], quantale-valued approach space [20, 21], quantale-valued
metric space [22], fuzzy convergence space [19, 31] and fuzzy closure space [27]. Considering the fuzzy
counterparts of ordered structures, it has been generalized by introducing some suitable quantales on
ordered structures [13, 16, 28, 39] and several interesting results have been found. This motivates us to
consider zero-dimensionality and separation axioms of topological category in quantale-valued preordered
spaces.

The aims of this paper are stated as under:

(i) to give the characterization of zero-dimensional and D-connected quantale-valued preordered spaces,
(ii) to characterize each of T0, T0, T1, pre-T2, T2 and NT2 objects in the category of quantale-valued

preordered spaces,
(iii) to examine how these characterization are related,
(iv) to show that the full subcategory Ti(pre-T2(L-Prord)) (i = 0, 1, 2) of pre-T2(L-Prord), and the full

subcategory Ti (L-Prord) (i = 1, 2) of L-Prord are isomorphic.

2. Preliminaries

Recall, [21] that a partially ordered set or poset (L,≤) is called a complete lattice if all subsets of L have
both supremum (

∨
) and infimum (

∧
). For any complete lattice, the top element and bottom element is

denoted by ⊤ and ⊥, respectively.
In any complete lattice (L,≤), we define the well-below relation, α ◁ β if for all subsets A ⊆ L such that

β ≤
∨

A there is δ ∈ A such that α ≤ δ. Similarly, we define the well-above relation, α ≺ β if for all subsets
A ⊆ L such that

∧
A ≤ α there exists δ ∈ A such that δ ≤ β. Furthermore, a complete lattice (L,≤) is called a

completely distributive lattice provided that we have α =
∨
{β : β ◁ α} for any α ∈ L.

The triple (L,≤, ∗) is called a quantale if (L, ∗) is a semi group, and the operation ∗ satisfies the following
properties: for all αi, β ∈ L, (

∨
i∈I αi) ∗ β =

∨
i∈I(αi ∗ β) and β ∗ (

∨
i∈I αi) =

∨
i∈I(β ∗ αi) and (L,≤) is a complete

lattice.
A quantale (L,≤, ∗) is called commutative if (L, ∗) is a commutative semi group and it is called integral if

α ∗ ⊤ = ⊤ ∗ α = α for all α ∈ L.
Note that we denote a quantale byL = (L,≤, ∗) if it is commutative and integral where (L,≤) is completely

distributive.
A quantale L = (L,≤, ∗) is called a value quantale if (L,≤) is completely distributive lattice such that

∀α, β ◁⊤, α ∨ β ◁⊤ [16].

Definition 2.1. ([22, 39]) Let X be a nonempty set. A map R : X × X −→ L = (L,≤, ∗) is called an L-
preordered relation on X if it satisfies (i) for all x ∈ X, R(x, x) = ⊤ (Reflexivity), and (ii) for all x, y, z ∈ X,
R(x, y) ∗ R(y, z) ≤ R(x, z) (transitivity). The pair (X,R) is called an L-preordered space.

Note that an L-preordered space (X,R) is called an L-equivalence space (X,R) if for all x, y ∈ X,
R(x, y) = R(y, x) (symmetric property). Also, (X,R) is called separated L-preordered space if x = y
whenever R(x, y) = ⊤.

A map f : (X,RX) −→ (Y,RY) is called an L-order preserving map if RX(x1, x2) ≤ RY( f (x1), f (x2)) for all
x1, x2 ∈ X.

Let L-Prord denotes the category whose objects are L-preordered spaces and morphisms are L-order
preserving mappings.

Example 2.2. (i) For L = 2 = ({0, 1},≤,∧), 2-Prord � Prord, where Prord is the category of preordered
sets and monotone maps.
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(ii) For L = ([0,∞],≥,+) (Lawvere’s quantale), [0,∞]-Prord � ∞qMet, where ∞qMet is the category of
extended quasi metric spaces and non-expansive maps.

(iii) ForL = (△+,≤, ∗) (distance distribution functions quantale defined in [21]), then△+-Prord � ProbqMet,
where ProbqMet is the category of probabilistic quasi metric spaces and non-expansive maps [16].

Note that in some literature,L-preordered space is often called a continuity space ifL is a value quantale
(see [16]), an L-metric space (see [22]) and an L-category (see [17]).

Recall, [1] a functor U : C → Set (the category of sets and functions) is called topological if (i) U is
concrete (i.e., faithful and amnestic) (ii) U consists of small fibers and (iii) every U-source has a unique
initial lift, i.e., if for every source ( fi : X → (Xi, ζi))i∈I there exists a unique structure ζ on X such that
1 : (Y, η) → (X, ζ) is a morphism iff for each i ∈ I, fi ◦ 1 : (Y, η) → (Xi, ζi) is a morphism. Moreover, a
topological functor is called a discrete (resp. indiscrete) if it has a left (resp. right) adjoint. In addition,
a functor is called a normalized topological functor if constant objects, i.e., subterminals, have a unique
structure.

3. L-Prord as a Normalized Topological Category

Note that the forgetful functorU : L-Prord→ Set is a topological (see [17]), that are defined as follows.

Lemma 3.1. ([17]) Let (Xi,Ri) be a collection of L-preordered spaces. A source ( fi : (X,R) → (Xi,Ri))i∈I is initial
in L-Prord iff for all x, y ∈ X,

R(x, y) =
∧
i∈I

Ri( fi(x), fi(y)).

Lemma 3.2. ([17]) Let X be a non-empty set and (X,R) be an L-preordered space. For all x, y ∈ X,

(i) The discrete L-preordered structure on X is given by

Rdis(x, y) =

⊤, x = y,
⊥, x , y.

(ii) The indiscrete L-preordered structure on X is given by

Rind(x, y) = ⊤.

Remark 3.3. The topological functor U : L-Prord → Set is a normalized since a unique L-preordered
structure exists on X = ∅ or X = {x}, where X ∈ Obj(L-Prord).

4. Zero-Dimensional and D-ConnectedL-Preordered Spaces

Recall that a topological space (X, τ) is called zero-dimensional provided that X has a basis consisting of
clopen sets. In 1997, Stine [37] examined that a topological space (X, τ) is zero-dimensional provided that
for all i ∈ I, there exists a family of functions fi : (X, τ) → (Xi, τidis ) such that τ is the topology induced (i.e.,
initial topology) by (Xi, τidis ) via fi, where (Xi, τidis ) is the family of discrete topological spaces. Considering
the categorical counterparts, we have the following definition given in [38].

Definition 4.1. (cf. [38]) Let U : C → E be a topological and D : E → C be a discrete functor. Any object
X ∈ Obj(C) is called a zero-dimensional object provided that for all i ∈ I, there exists Ai ∈ Obj(E) and
morphisms fi :U(X)→ Ai such that ( f i : X→D(Ai))i∈I is the initial lift of ( fi :U(X)→U(D(Ai)) = Ai)i∈I.

Remark 4.2. (i) For C = Top (category of topological spaces and continuous maps) and E = Set, By
Theorem 4.3.1 of [37], Definition 4.1 reduces to usual zero-dimensional topological space.
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(ii) For C = Prord and E = Set, by Theorem 5.3 of [11], (X,R) is zero-dimensional iff R is an equivalence
relation on X.

(iii) If U : C → E is a normalized topological functor, by Theorems 4.3.4 and 5.3.1 of [37], then every
indiscrete object in C is a zero-dimensional object.

Theorem 4.3. Every L-preordered space (X,R) with card(X) = 1 is zero-dimensional.

Proof. Let (X,R) be an L-preordered space and X = {x}. Then, R = Rdis = Rind. By Remarks 3.3 and 4.2 (iii),
(X,R) is zero-dimensional.

Theorem 4.4. Let (X,R) be an L-preordered space with card(X) ≥ 2 and (Xi,Ridis ) be discrete L-preordered space
for i ∈ I. (X,R) is zero-dimensional if and only if there exists fi : (X,R)→ (Xi,Ridis ) such that for all x, y ∈ X,

R(x, y) =

⊤, fi(x) = fi(y),∀i ∈ I
⊥, fi(x) , fi(y),∃i ∈ I.

Proof. Suppose (X,R) is a zero-dimensional L-preordered space. By Definition 4.1, there exist non-empty
discrete L-preordered spaces (Xi,Ridis ), i ∈ I and a family of functions fi : X → Xi such that fi : (X,R) →
(Xi,Ridis ) is the initial lift of fi : X→ Xi. Note that for all x, y ∈ X,

R(x, y) =
∧
i∈I

{Ridis ( fi(x), fi(y))}

=
∧
i∈I

⊤, fi(x) = fi(y)
⊥, fi(x) , fi(y).

Case I: If fi(x) = fi(y), ∀i ∈ I, by definition of initial structure, R(x, y) = ⊤.
Case II: Similarly, if fi(x) , fi(y), ∃i ∈ I, then R(x, y) = ⊥.
Conversely, suppose the condition holds. We show that (X,R) is zero-dimensional, i.e., by Definition

4.1, fi : (X,R)→ (Xi,Ridis ) is the initial lift of fi : X→ Xi. It is obvious that for each i ∈ I, fi : (X,R)→ (Xi,Ridis )
is an L-order preserving map. Suppose 1 : (Y,RY) → (X,R) is a mapping. We prove that 1 is an L-order
preserving if and only if fi ◦ 1 is an L-order preserving for all i ∈ I. The necessity is obvious. Let fi ◦ 1 is an
L-order preserving map for each i ∈ I. It follows that for x, y ∈ Y,

RY(x, y) ≤

∧
i∈I

{Ridis ( fi(1(x)), fi(1(y)))}

and

R(1(x), 1(y)) =

⊤, fi(1(x)) = fi(1(y)),∀i ∈ I
⊥, fi(1(x)) , fi(1(y)),∃i ∈ I.

Case I: If fi(1(x)) = fi(1(y)), ∀i ∈ I, then RY(x, y) ≤ R(1(x), 1(y)) = ⊤.
Case II: Let fi(1(x)) , fi(1(y)), ∃i ∈ I. It follows that R(1(x), 1(y)) = ⊥, and RY(x, y) = ⊥ since RY(x, y) ≤∧

i∈I {Ridis ( fi(1(x)), fi(1(y)))} = ⊥. Consequently, RY(x, y) ≤ R(1(x), 1(y)).
Hence, 1 : (Y,RY)→ (X,R) is an L-order preserving and consequently, (X,R) is zero-dimensional.

Corollary 4.5. Every discrete L-preordered space (X,R) is zero-dimensional.

Example 4.6. Let L = ([0, 1],≤, ∗) be a triangular norm with a binary operation ∗ defined as ∀α, β ∈ [0, 1],
α ∗ β = (α − 1 + β) ∨ 0 (Lukasiewicz t-norm) [24], where the bottom and top elements are ⊥ = 0 and ⊤ = 1.
Let X = {x, y, z}, Yi = {ai, bi} for i = 1, 2, 3 and Ridis be the discrete L-preordered relation on Yi for i = 1, 2, 3
with the Lukasiewicz t-norm L = ([0, 1],≤, ∗). The map fi : (X,R) −→ (Yi,Ridis ), i = 1, 2, 3, is defined as

fi(t) =

ai, t = x
bi, t = y, z.
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Define an L-preordered relation R : X × X −→ L by

R(u, v) = R(v,u) =

⊤, u = v or u = y and v = z
⊥, u = x and v = y, z.

It follows that (X,R) is zero-dimensional.

Now, we give the characterization of D-connected objects in L-Prord.

Definition 4.7. ([9, 32]) Let U : C → Set be a topological functor and X ∈ Obj(C). X is D-connected
provided that any morphism from X to any discrete object is constant.

Theorem 4.8. An L-preordered space (X,R) is D-connected if and only if R(x, y) > ⊥ or R(y, x) > ⊥ for some
x, y ∈ X with x , y.

Proof. Suppose (X,R) is D-connected and R(x, y) = ⊥ = R(y, x) for all x, y ∈ X with x , y. Let (Y,Rdis) be a
discreteL-preordered space with card(Y) > 1 and f : (X,R)→ (Y,Rdis) be anL-order preserving map. Then,

⊥ = R(x, y) ≤ Rdis( f (x), f (y))

and

⊥ = R(y, x) ≤ Rdis( f (y), f (x)).

It follows that f does not have to be a constant map, a contradiction.
Conversely, suppose that the condition holds. We show that (X,R) is D-connected. Let (Y,Rdis) be a

discrete L-preordered space and f : (X,R) → (Y,Rdis) be an L-order preserving map. If card(Y) = 1, then
(X,R) is D-connected since f is a constant map. Suppose card(Y) > 1 and f is not a constant map. Then,
there exist distinct points x and y in X such that f (x) , f (y) and consequently,

R(x, y) ≤ Rdis( f (x), f (y)) = ⊥

and

R(y, x) ≤ Rdis( f (y), f (x)) = ⊥.

It follows that R(x, y) = ⊥ = R(y, x), a contradiction since R(x, y) > ⊥ or R(y, x) > ⊥ for some distinct points
x, y ∈ X. Hence, f is a constant map and by Definition 4.7, (X,R) is D-connected.

Theorem 4.9. Let (X,RX) and (Y,RY) be L-preordered spaces and f : (X,RX) → (Y,RY) be an L-order preserving
map. If (X,RX) is D-connected and f is surjective, then (Y,RY) is D-connected.

Proof. Let f (x), f (y) ∈ f (X) with f (x) , f (y). Since f is anL-order preserving map, it follows that RX(x, y) ≤
RY( f (x), f (y)). By the assumption that (X,RX) is D-connected, ⊥ < RX(x, y) ≤ RY( f (x), f (y)) which implies
⊥ < RY( f (x), f (y)). Similarly, we have ⊥ < RY( f (y), f (x)). Therefore, f (X) is D-connected. Since f is
surjective, it follows that f (X) = Y is D-connected.

Theorem 4.10. Every D-disconnected (not D-connected) L-preordered space is zero-dimensional.

Proof. Let (X,R) be an L-preordered space. If (X,R) is D-disconnected, then, by Theorem 4.8, R(x, y) =
⊥ = R(y, x) for all x, y ∈ X with x , y. It follows that (X,R) is discrete and by Corollary 4.5, (X,R) is
zero-dimensional.
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5. Hausdorff Objects inL-Prord

Let X be a non-empty set and the wedge X2
∨△ X2 be the pushout of the diagonal △ : X → X2 along

itself. More precisely, if i1 and i2 : X2
→ X2

∨△ X2 denote the inclusion of X2 as the first and second factor,
respectively, then i1△ = i2△ is the pushout diagram.

A point (x, y) in X2
∨△X2 is denoted as (x, y)1 (resp. (x, y)2) if it lies in the first (resp. second) component.

Note that (x, y)1 = (x, y)2 if and only if x = y.

Definition 5.1. (cf. [3]) A map A : X2
∨△ X2

−→ X3 is called a principal axis map provided that

A(x, y)i =

(x, y, x), i = 1
(x, x, y), i = 2.

Definition 5.2. (cf. [3]) A map S : X2
∨△ X2

−→ X3 is called a skewed axis map provided that

S(x, y)i =

(x, y, y), i = 1
(x, x, y), i = 2.

Definition 5.3. (cf. [3]) A map ∇ : X2
∨△ X2

−→ X2 is called a folding map provided that ∇(x, y)i = (x, y) for
i = 1, 2.

Definition 5.4. LetU : C −→ Set be a topological functor and X ∈ Obj(C) withU(X) = B.

(i) X is called T0 provided that the initial lift of the U-source {A : B2
∨△ B2

−→ U(X3) = B3 and
∇ : B2

∨△ B2
−→ UD(B2) = B2

} is discrete, whereD is the discrete functor [3].
(ii) X is called T0 provided that X doesn’t contain an indiscrete subspace with at least two points [29].

(iii) X is called T1 provided that the initial lift of the U-source {S : B2
∨△ B2

−→ U(X3) = B3 and
∇ : B2

∨△ B2
−→ UD(B2) = B2

} is discrete [3].
(iv) X is called pre-T2 provided that the initial lift of the U-source {A : B2

∨△ B2
−→ U(X3) = B3 and

S : B2
∨△ B2

−→ U(X3) = B3
} agree [3, 10].

(v) X is called T2 provided that X is T0 and pre-T2 [6].
(vi) X is called NT2 provided that X is T0 and pre-T2 [6].

In Top, by Theorem 2.1 of [7] and [29], T0 and T0 (resp. T1) reduce to the usual T0 (resp. T1) separation
property, and T2 and NT2 reduce to usual Hausdorff separation property.

Theorem 5.5. An L-preordered space (X,R) is T0 if and only if R(x, y) ∧ R(y, x) = ⊥ for all x, y ∈ X with x , y.

Proof. Suppose (X,R) is T0 and x, y ∈ X with x , y. Let Rdis be the discrete L-preordered structure on X2

and prk : X3
→ X be the projection map for k = 1, 2, 3. For u = (x, y)1, v = (x, y)2 ∈ X2

∨△ X2 with u , v. Note
that

Rdis(∇u,∇v) = Rdis((x, y), (x, y)) = ⊤,
R(pr1Au, pr1Av) = R(pr1(x, y, x), pr1(x, x, y)) = R(x, x) = ⊤,
R(pr2Au, pr2Av) = R(pr2(x, y, x), pr2(x, x, y)) = R(y, x),
R(pr3Au, pr3Av) = R(pr3(x, y, x), pr3(x, x, y)) = R(x, y).

Since u , v and (X,R) is T0, by Lemma 3.1 and Definition 5.4,

⊥ =
∧
{Rdis(∇u,∇v),R(prkAu, prkAv) : k = 1, 2, 3}

=
∧
{⊤,R(x, y),R(y, x)}

= R(x, y) ∧ R(y, x).
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Conversely, let R1 be the initial L-preordered structure on X2
∨△ X2 induced by A : X2

∨△ X2
→

U(X3,R3) = X3 and ∇ : X2
∨△ X2

→ U(X2,Rdis) = X2, where Rdis is the discrete L-preordered structure on
X2 and R3 is the product structure on X3 induced by the projection map prk : X3

→ X for k = 1, 2, 3.
Suppose R(x, y) ∧ R(y, x) = ⊥ for all x, y ∈ X with x , y and u, v ∈ X2

∨△ X2.
Case I: If u = v, then R1(u, v) = R1(u,u) = ⊤
Case II: If u , v and ∇u , ∇v, then Rdis(∇u,∇v) = ⊥. By Lemma 3.1,

R1(u, v) =
∧
{Rdis(∇u,∇v),R(prkAu, prkAv) : k = 1, 2, 3}

=
∧
{⊥,R(prkAu, prkAv) : k = 1, 2, 3}

= ⊥.

Case III: Suppose u , v and ∇u = ∇v. If ∇u = (x, y) = ∇v for some x, y ∈ X with x , y, then u = (x, y)1
and v = (x, y)2 or u = (x, y)2 and v = (x, y)1 since u , v.

If u = (x, y)1 and v = (x, y)2, then

Rdis(∇u,∇v) = Rdis((x, y), (x, y)) = ⊤,

R(pr1Au, pr1Av) = R(pr1A(x, y)1, pr1A(x, y)2)
= R(x, x) = ⊤,

R(pr2Au, pr2Av) = R(pr2A(x, y)1, pr2A(x, y)2)
= R(y, x)

and

R(pr3Au, pr3Av) = R(pr3A(x, y)1, pr3A(x, y)2)
= R(x, y).

It follows that for k = 1, 2, 3,

R1(u, v) =
∧
{Rdis(∇(x, y)1,∇(x, y)2),R(prkA(x, y)1, prkA(x, y)2)}

=
∧
{⊤,R(x, y),R(y, x)}

= R(x, y) ∧ R(y, x).

By the assumption that R(x, y) ∧ R(y, x) = ⊥ and we have R1(u, v) = ⊥.
Similarly, if u = (x, y)2 and v = (x, y)1, then R1(u, v) = ⊥.
Therefore, for all u, v ∈ X2

∨△ X2, we have

R1(u, v) =

⊤, u = v
⊥, u , v.

and by Lemma 3.2 (i), R1 is the discreteL-preordered structure on X2
∨△X2. Hence, by Definition 5.4, (X,R)

is T0.

In a quantale (L,≤, ∗), if α ∈ L and α , ⊤, then α is called prime element provided that ζ ∧ η ≤ α implies
ζ ≤ α or η ≤ α for all ζ, η ∈ L.

Corollary 5.6. Let (X,R) be an L-preordered space, where L has a prime bottom element. Then, (X,R) is T0 if and
only if R(x, y) = ⊥ or R(y, x) = ⊥ for all x, y ∈ X with x , y.

Proof. It follows from Theorem 5.5 and the definition of prime bottom element.

Theorem 5.7. An L-preordered space (X,R) is T0 if and only if (X,R) is separated.
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Proof. Let (X,R) be T0, for distinct x, y ∈ X, A = {x, y} ⊂ X and RA be the initial L-preordered structure
induced by the inclusion map i : A → (X,R). For all x, y ∈ X with x , y, RA(x, y) ≤ R(i(x), i(y)) = R(x, y) or
RA(y, x) ≤ R(i(y), i(x)) = R(y, x). It follows that R(x, y) < ⊤ or R(y, x) < ⊤ otherwise R(x, y) = ⊤ = R(y, x)
and X contains an indiscrete subspace with at least two element.

Conversely, suppose (X,R) is separated. Let A be an indiscrete subspace of X with at least two elements
x, y ∈ A with x , y. Let RA be the initial L-preordered structure induced by the inclusion map i : A →
(X,R). It follows that ⊤ = RA(x, y) ≤ R(i(x), i(y)) = R(x, y) and ⊤ = RA(y, x) ≤ R(i(y), i(x)) = R(y, x) and
consequently, R(x, y) = ⊤ = R(y, x), a contradiction. Therefore, X does not contain an indiscrete subspace
with at least two elements. Hence, by Definition 5.4, (X,R) is T0.

Theorem 5.8. An L-preordered space (X,R) is T1 if and only if R(x, y) = ⊥ = R(y, x) for all x, y ∈ X with x , y.

Proof. Suppose that (X,R) is T1 and x, y ∈ X with x , y. Let u = (x, y)1, v = (x, y)2 ∈ X2
∨△ X2. Note that

Rdis(∇u,∇v) = Rdis((x, y), (x, y)) = ⊤,
R(pr1Su, pr1Sv) = R(pr1(x, y, y), pr1(x, x, y)) = R(x, x) = ⊤,
R(pr2Su, pr2Sv) = R(pr2(x, y, y), pr2(x, x, y)) = R(y, x),
R(pr3Su, pr3Sv) = R(pr3(x, y, y), pr3(x, x, y)) = R(y, y) = ⊤,

where Rdis is the discrete L-preordered structure on X2
∨△ X2 and prk : X3

→ X are the projection maps for
k = 1, 2, 3. Since u , v and (X,R) is T1, by Lemma 3.1 and Definition 5.4,

⊥ =
∧
{Rdis(∇u,∇v),R(prkSu, prkSv) : k = 1, 2, 3}

=
∧
{⊤,R(y, x)} = R(y, x).

Similarly, if u = (x, y)2, v = (x, y)1 ∈ X2
∨△ X2, then

⊥ =
∧
{Rdis(∇u,∇v),R(prkSu, prkSv) : k = 1, 2, 3}

=
∧
{⊤,R(x, y)} = R(x, y).

Conversely, letR1 be the initialL-preordered structure on X2
∨△X2 induced by S : X2

∨△X2
→ U(X3,R3) =

X3 and ∇ : X2
∨△ X2

→ U(X2,Rdis) = X2, where Rdis is the discrete L-preordered structure on X2 and R3 is
the product structure on X3 induced by the projection map prk : X3

→ X for k = 1, 2, 3.
Suppose R(x, y) = ⊥ = R(y, x) for all x, y ∈ X with x , y and u, v ∈ X2

∨△ X2.
Case I: If u = v, then R1(u, v) = R1(u,u) = ⊤.
Case II: If u , v and ∇u , ∇v, then Rdis(∇u,∇v) = ⊥ since Rdis is the discrete structure on X2. By Lemma

3.1,

R1(u, v) =
∧
{Rdis(∇u,∇v),R(prkSu, prkSv) : k = 1, 2, 3}

=
∧
{⊥,R(pr1Su, pr1Sv),R(pr2Su, pr2Sv),R(pr3Su, pr3Sv)}

= ⊥.

Case III: Suppose u , v and ∇u = ∇v. If ∇u = (x, y) = ∇v for some x, y ∈ X with x , y, then u = (x, y)1
and v = (x, y)2 or u = (x, y)2 and v = (x, y)1 since u , v.

If u = (x, y)1 and v = (x, y)2, then by Lemma 3.1,

R1(u, v) =
∧
{Rdis(∇u,∇v),R(prkSu, prkSv) : k = 1, 2, 3}

=
∧
{⊤,R(y, x)}

= R(y, x) = ⊥

since x , y and R(y, x) = ⊥.
Similarly, if u = (x, y)2 and v = (x, y)1, then R1(u, v) = ⊥.
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Hence, for all u, v ∈ X2
∨△ X2, we get

R1(u, v) =

⊤, u = v
⊥, u , v

and it follows that R1 is the discrete L-preordered structure on X2
∨△ X2. By Definition 5.4, (X,R) is T1.

Theorem 5.9. An L-preordered space (X,R) is pre-T2 if and only if the following conditions are satisfied.

(I) For all x, y ∈ X with x , y, R(x, y) ∧ R(y, x) = R(x, y) = R(y, x).
(II) For any three distinct points x, y, z ∈ X, R(y, x) ∧ R(z, x) ∧ R(y, z) = R(y, x) ∧ R(z, x) = R(x, y) ∧ R(z, y) =
R(z, x) ∧ R(y, z).

(III) For any four distinct points x, y, z,w ∈ X, R(x, z) ∧ R(y, z) ∧ R(y,w) = R(x, z) ∧ R(y, z) ∧ R(x,w) =
R(x,w) ∧ R(y, z) ∧ R(y,w) = R(x, z) ∧ R(y,w) ∧ R(x,w).

Proof. Suppose that (X,R) is pre-T2 and x, y ∈ X with x , y. Let prk : X3
→ X be the projection map for

k = 1, 2, 3 and u = (x, y)1, v = (x, y)2 ∈ X2
∨△ X2. By Definition 5.4 (iv), we have∧

{R(prkAu, prkAv) : k = 1, 2, 3} =
∧
{R(prkSu, prkSv) : k = 1, 2, 3}∧

{⊤,R(x, y),R(y, x)} =
∧
{⊤,R(y, x)}

R(x, y) ∧ R(y, x) = R(y, x).

Similarly, if u = (x, y)2, v = (x, y)1, then we have R(x, y) ∧ R(y, x) = R(x, y). Hence, R(x, y) ∧ R(y, x) =
R(x, y) = R(y, x).

Let x, y, z be any three distinct points of X. Since (X,R) is pre-T2 and by Definition 5.4 (iv), for k = 1, 2, 3,
we have∧

{R(prkA(y, z)1, prkA(x, z)2)} =
∧
{R(prkS(y, z)1, prkS(x, z)2)}∧

{R(y, x),R(z, x),R(y, z)} =
∧
{⊤,R(y, x),R(z, x)},

∧
{R(prkA(x, z)1, prkA(y, z)2)} =

∧
{R(prkS(x, z)1, prkS(y, z)2)}∧

{R(x, y),R(z, y),R(x, z)} =
∧
{⊤,R(x, y),R(z, y)},

∧
{R(prkA(x, y)1, prkA(z, y)2)} =

∧
{R(prkS(x, y)1, prkS(z, y)2)}∧

{R(x, z),R(y, z),R(x, y)} =
∧
{⊤,R(x, z),R(y, z)}.

By the condition (I), it follows that R(y, x) ∧ R(z, x) ∧ R(y, z) = R(y, x) ∧ R(z, x) = R(x, y) ∧ R(z, y) = R(z, x) ∧
R(y, z).

Let x, y, z,w be any four distinct points of X. Since (X,R) is pre-T2 and by Definition 5.4 (iv), for k = 1, 2, 3,
we have∧

{R(prkA(x, y)1, prkA(z,w)2)} =
∧
{R(prkS(x, y)1, prkS(z,w)2)}∧

{R(x, z),R(y, z),R(x,w)} =
∧
{R(x, z),R(y, z),R(y,w)},

∧
{R(prkA(x, y)1, prkA(w, z)2)} =

∧
{R(prkS(x, y)1, prkS(w, z)2)}∧

{R(x,w),R(y,w),R(x, z)} =
∧
{R(x,w),R(y,w),R(y, z)},
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{R(prkA(w, z)1, prkA(y, x)2)} =

∧
{R(prkS(w, z)1, prkS(y, x)2)}∧

{R(w, y),R(z, y),R(w, x)} =
∧
{R(w, y),R(z, y),R(z, x)}.

By the condition (I), it follows that R(x, z)∧R(y, z)∧R(y,w) = R(x, z)∧R(y, z)∧R(x,w) = R(x,w)∧R(y, z)∧
R(y,w) = R(x, z) ∧ R(y,w) ∧ R(x,w).

Conversely, suppose that the conditions hold. We show that (X,R) is pre-T2. Let RA and RS be initial
structures on X2

∨△ X2 induced by A : X2
∨△ X2

→ U(X3,R3) = X3 and S : X2
∨△ X2

→ U(X3,R3) = X3

respectively, and R3 be the product structure on X3 induced by the projection maps prk : X3
→ X for

k = 1, 2, 3. We need to show that RA = RS.
First, note that RA and RS are symmetric by the assumption (I).
Suppose u and v are any two points in X2

∨△ X2.
If u = v, then RA(u, v) = ⊤ = RS(u, v).
If u , v and they are in the same component of the wedge X2

∨△ X2, i.e., u = (x, y)i and v = (z,w)i for
i = 1, 2, then

RA(u, v) =
∧
{R(prkAu, prkAv) : k = 1, 2, 3}

=
∧
{R(x, z),R(y,w)}

=
∧
{R(prkSu, prkSv) : k = 1, 2, 3}

= RS(u, v).

Suppose u , v and they are in the different component of the wedge X2
∨△ X2. We have the following

cases for u and v:
Case I: u = (x, y)1 or (y, x)1 and v = (x, y)2 or (y, x)2 for x , y.
If u = (x, y)1 and v = (x, y)2 (resp. v = (y, x)2), then for k = 1, 2, 3

RA(u, v) =
∧
{R(prkAu, prkAv)} = R(x, y) ∧ R(y, x) (resp. R(x, y))

and

RS(u, v) =
∧
{R(prkSu, prkSv)} = R(y, x) (resp. R(x, y) ∧ R(y, x)).

By the assumption (I), it follows that RA(u, v) = RS(u, v).
Similarly, if u = (y, x)1 and v = (x, y)2 (resp. v = (y, x)2), then we have RA(u, v) = RS(u, v).
Case II: u = (x, y)1, (x, z)1, (y, z)1, (y, x)1, (z, x)1 or (z, y)1 and v = (x, y)2, (x, z)2, (y, z)2, (y, x)2, (z, x)2 or (z, y)2

for three distinct points x, y, z of X.
If u = (x, y)1 or (y, x)1 and v = (x, y)2 or (y, x)2, u = (x, z)1 or (z, x)1 and v = (x, z)2 or (z, x)2, u = (y, z)1 or

(z, y)1 and v = (y, z)2 or (z, y)2, then by the case I, we have RA(u, v) = RS(u, v).
If u = (x, y)1 and v = (x, z)2 or (y, z)2 (resp. u = (y, x)1 and v = (x, z)2 or (y, z)2), then by the assumption

(I),

RA(u, v) =
∧
{R(prkAu, prkAv) : k = 1, 2, 3}

= R(y, x) ∧ R(x, z) (resp. R(y, x) ∧ R(y, z))

and

RS(u, v) =
∧
{R(prkSu, prkSv) : k = 1, 2, 3}

= R(y, x) ∧ R(y, z) (resp. R(y, x) ∧ R(x, z)).

By the assumption (II), we have RA(u, v) = RS(u, v).
Similarly, if u = (x, y)1 or (y, x)1 and v = (z, x)2 or (z, y)2, u = (x, z)1 or (z, x)1 and v = (x, y)2 or (y, z)2 or

(y, x)2 or (z, y)2, u = (y, z)1 or (z, y)1 and v = (x, y)2 or (x, z)2 or (y, x)2 or (z, x)2, then by the assumption (II),
we have RA(u, v) = RS(u, v).
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Case III: Let x, y, z,w be four distinct points of X.
If u = (x, y)1 and v = (z,w)2 (resp. u = (z,w)1 and v = (x, y)2), then by the assumption (I),

RA(u, v) =
∧
{R(prkAu, prkAv) : k = 1, 2, 3}

= R(x, z) ∧ R(y, z) ∧ R(x,w),

RS(u, v) =
∧
{R(prkSu, prkSv) : k = 1, 2, 3}

= R(x, z) ∧ R(y, z) ∧ R(y,w)
= (resp. R(x, z) ∧ R(y,w) ∧ R(x,w))

and by the assumption (III), we have RA(u, v) = RS(u, v).
If u = (x, y)1 and v = (w, z)2 (resp. u = (w, z)1 and v = (x, y)2), then by the assumption (I),

RA(u, v) = R(x, z) ∧ R(y,w) ∧ R(x,w),
RS(u, v) = R(x,w) ∧ R(y, z) ∧ R(y,w)

= (resp. R(x, z) ∧ R(y, z) ∧ R(x,w))

and by the assumption (III), we have RA(u, v) = RS(u, v).
Similarly, if u = (y, x)1 and v = (z,w)2 or (w, z)2, u = (z,w)1 or (w, z)1 and v = (y, x)2, u = (x, z)1 or (z, x)1

and v = (y,w)2 or (w, y)2, u = (y,w)1 or (w, y)1 and v = (x, z)2 or (z, x)2, u = (x,w)1 or (w, x)1 and v = (y, z)2 or
(z, y)2, u = (y, z)1 or (z, y)1 and v = (x,w)2 or (w, x)2, then by the assumption (III), we haveRA(u, v) = RS(u, v).

It is shown similarly that for all u and v in the cases above, we get RA(v,u) = RS(v,u).
Hence, we have RA(u, v) = RS(u, v) for all points u, v ∈ X2

∨△ X2, and by Lemma 3.1 and Definition 5.4
(iv), (X,R) is pre-T2.

Theorem 5.10. An L-preordered space (X,R) is T2 if and only if R(x, y) = ⊥ = R(y, x) for all x, y ∈ X with x , y.

Proof. It follows from Definition 5.4 (v), Theorems 5.5 and 5.9.

Theorem 5.11. Let (X,R) be an L-preordered space. The followings are equivalent.

(i) (X,R) is T1.
(ii) (X,R) is T2.

(iii) (X,R) is discrete.

Proof. It follows from Lemma 3.2 (i), and Theorems 5.8 and 5.10.

Theorem 5.12. An L-preordered space (X,R) is NT2 if and only if the following conditions hold.

(I) (X,R) is a separated L-equivalence space.
(II) For any three distinct points x, y, z ∈ X, R(y, x) ∧ R(z, x) ∧ R(y, z) = R(y, x) ∧ R(z, x) = R(x, y) ∧ R(z, y) =
R(z, x) ∧ R(y, z).

(III) For any four distinct points x, y, z,w ∈ X, R(x, z) ∧ R(y, z) ∧ R(y,w) = R(x, z) ∧ R(y, z) ∧ R(x,w) =
R(x,w) ∧ R(y, z) ∧ R(y,w) = R(x, z) ∧ R(y,w) ∧ R(x,w).

Proof. It follows from Definition 5.4 (vi), Theorems 5.7 and 5.9.

Theorem 5.13. Let (X,R) be a pre-T2 L-preordered space, then the following are equivalent.

1. (X,R) is T0

2. (X,R) is T1

3. (X,R) is T2

Proof. It follows from Theorems 5.5, 5.8, 5.9, and 5.10.



S. Özkan, M. Qasim / Filomat 36:7 (2022), 2311–2323 2322

6. Conclusion

Let C be a topological category. By Theorem 3.4 of [10], the full subcategory pre-T2(C) of C consisting of
all pre-T2 objects in C is a topological category.

Let Ti(C) be the full subcategory of C consisting of all Ti objects, i = 0, 1, 2, where T0 is T0 or T0 and T2

is T2 or NT2, and C is pre-T2(L-Prord) or L-Prord.

Corollary 6.1. The following categories are isomorphic.

(a) T1 (L-Prord)
(b) T2 (L-Prord)
(c) T0 (pre-T2(L-Prord))
(d) T1 (pre-T2(L-Prord))
(e) T2 (pre-T2(L-Prord))

Proof. It follows from Theorem 3.5 of [10] and Theorems 5.8, 5.10, and 5.13.

Corollary 6.2. Every T1 L-preordered space (X,R) is zero-dimensional but the converse is not true, in general.

Corollary 6.3. If an L-preordered space (X,R) is D-disconnected, then it is T1.

Remark 6.4. (I) For any arbitrary topological category, there is no relationship between T0 and T0 [5].
Also , it is proved in [6], that the notions of T2 and NT2 are independent of each other, in general.

(a) In CP (category of pairs and pair preserving maps), all objects are T0 and T1 and T2 and pre-T2
[2].

(b) In CHY (category of Cauchy spaces and Cauchy continuous maps), T0 = T0 = T1 = T2 ⇒ pre-T2
[25]. Similarly, in Prox (category of proximity spaces and proximity maps), if a proximity space
(X, δ) is T0 or T1 or T2, then (X, δ) is pre-T2 [26].

(c) In ConFCO (the category of constant filter convergence spaces and continuous maps), T2 =

NT2 ⇒ T0 = T0 = T1 but in ConLFCO (the category of constant local filter convergence spaces
and continuous maps), T0 ⇒ T0 = T1 and T0 = NT2 ⇒ T2 [4].

(d) In V-Cls (category of V-valued closure spaces and contractive maps) [27], T2 = T1 ⇒ T0 ⇒ T0
[33].

(II) InL-Prord, by Theorems 5.5, 5.7 and 5.11, T2 = T1 ⇒ T0 ⇒ T0. Moreover, by Theorems 5.10 and 5.12,
if (X,R) is T2, then it is NT2.
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[19] G. Jäger, A category of L-fuzzy convergence spaces, Quaest. Math. 24 (2001) 501–517.
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