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Abstract. The multiplicative order convergence was studied and investigated on Riesz algebras. This paper
deals with Riesz algebras and different topologies on them. In this paper, we investigate Riesz algebras on
which we define various kinds of continuities. We give the relation between them under certain specific
conditions. We show some relations among locally full, locally convex and locally solid Riesz algebras. Also,
we introduce the notions of order and topological continuity of algebraic multiplications on topological
Riesz algebras. Also, we extend the multiplication to quotient spaces of Riesz algebras.

1. Introduction

It is known that the theory of lattice-ordered group is an important class of partially ordered algebraic
systems. The concept of lattice-ordered groups was started to study in [13, 18], and it was followed
in [22, 27, 38]. A lattice-ordered group with a topology satisfying the continuity of group and lattice
operations is called a topological lattice-ordered group or topological l-group. That is a generalization
of topologies on Riesz spaces. Topological lattice-ordered groups were firstly studied on Riesz spaces by
Šmarda [36, 37]. We also refer to the reader for linear topologies to [11, 26, 29, 32, 34].

Another important class of Riesz space is Riesz algebra. A Riesz algebra is an associative algebra that is
at the same time a Riesz space such that the partial ordering and the multiplication are compatible. It was
introduced by Birkhoff and Pierce [14]. After then, some important works have been done on this concept
[12, 15, 16, 24, 25, 33]. In recent years, contributions to the theory of Riesz algebras have been made in
[6, 8, 10]. As far as we know, there seems to be no work about the concept of topology on Riesz algebras
except Aydın that just constructed the multiplicative norm topology using the norm convergence in [7].
In the present paper, we introduce the concept of topological Riesz algebras with different types of linear
topologies. Thus, we hope that this paper will fill this gap.

The structure of the paper is as follows. In Section 2, we recall some notations and terminologies
of Riesz algebras and topological Riesz spaces are used in this paper. Section 3 contains the definition of
topological Riesz algebras and examples. Theorem 3.3 and Theorem 3.6 give some relations between locally

2020 Mathematics Subject Classification. 06B35, 46A40, 06F15, 06F20
Keywords. Riesz algebra, locally solid Riesz algebra, locally full Riesz algebra, topological lattice-ordered group, Riesz space,

f -algebra
Received: 16 June 2021; Revised: 26 September 2021; Accepted: 02 October 2021
Communicated by Dijana Mosić
Corresponding author: Abdullah Aydın
Email addresses: a.aydin@alparslan.edu.tr (Abdullah Aydın), hueroglu@erbakan.edu.tr (Hatice Ünlü Eroğlu),
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full and locally solid Riesz algebras. Also, an extension of the algebraic multiplication to topological and
Dedekind completion is shown in Theorem 3.9. In Section 4, we present the notions of topological and
order continuity of algebraic multiplication in topological Riesz algebras, and some examples. Moreover,
we give some relations between them. The last section is devoted to the multiplicative continuity of Riesz
algebras.

2. Notation and preliminaries

Let E be a non-empty set with an order relation (i.e. it is an antisymmetric, reflexive and transitive
relation). A set E with an order relation is said to be a lattice whenever the supremum x∨ y = sup{x, y} and
the infimum x ∧ y = inf{x, y} both exist for each pair of vectors x, y ∈ E.

An ordered set E is called an ordered group if (E, ∗) is a group and x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ x ≤ z ∗ y
for all x, y, z ∈ E. A lattice E is called a lattice ordered group (an l-group, for short) whenever it is at the same
time an ordered group.

A topology τ on a group (E, ∗) is called a group topology if the mapping f : G × G → G defined by
f (x, y) = x ∗ y−1 is continuous. Also, an l-group E is said to be a topological lattice group (or, topological
l-group) if the group and lattice operations are all continuous, i.e., E is a topological l-group whenever it
satisfies the following properties:

(1) (E, ∗) is a topological group;

(2) the mapping (x, y)→ x ∨ y is continuous;

(3) the mapping (x, y)→ x ∧ y is continuous.

A real vector space E with an order relation is called an ordered vector space if the order relation is
compatible with the algebraic structure of E which means that y ≤ x implies y + z ≤ x + z for all z ∈ E and
λy ≤ λx for each 0 ≤ λ ∈ R. An ordered vector space E is called a Riesz space (or, vector lattice) whenever
it is at the same time a lattice. An element x in a Riesz space E is said to be positive whenever 0 ≤ x, and
also, the set of all positive elements in E is denoted by E+. For an element x in a Riesz space E, x+ := x ∨ 0,
x− := (−x) ∨ 0 and |x| := x ∨ (−x) are called the positive part, negative part, and module of x, respectively. A
subset A of a Riesz space E is called a solid if, for each x ∈ A and y ∈ E, |y| ≤ |x| implies y ∈ A. A Riesz space
E is said to be Archimedean whenever 1

n x ↓ 0 holds in E for each x ∈ E+. In this article, unless otherwise
stated, all Riesz spaces are assumed to be Archimedean.

Let I be a partially ordered set. Then it is called a directed set if, for each α1, α2 ∈ I, there is another α ∈ I
such that α ≥ α1 and α ≥ α2 (or, α ≤ α1 and α ≤ α2). A function from a directed set I into a set E is called a
net in E. Let (xα)α∈A be a net in a Riesz space E. Then it is called order convergent (or, shortly, o-convergent) to
x ∈ E whenever there is another net (yβ)β∈B satisfying yβ ↓ 0 and, for any β ∈ B, there exists αβ ∈ A such that
|xα − x|≤ yβ for all α ≥ αβ. Thus, we write xα

o
−→ x. We refer the reader for some different types of the order

convergence to [2].
A Riesz space E with an associative algebra multiplication (i.e., the multiplicative operation “·” from

E × E to E satisfies the properties: u · (v + w) = u · v + u · w, (v + w) · u = v · u + w · u, v(αu) = αv · u, and
u · (v ·w) = (u ·v) ·w for all u, v,w ∈ E) is called a Riesz algebra (or, for short, an l-algebra) if the positive cone E+
is closed under the algebra multiplication, i.e., x · y ∈ E+ whenever x, y ∈ E+. Moreover, if x · y = y · x holds
for all x, y ∈ E then l-algebra E is called commutative. In this paper, in order to simplify the presentation, we
always suppose l-algebras under consideration to be commutative. An algebra ideal in a Riesz algebra E
(i.e., a linear subspace of E which is a two-sided ring ideal) is called an r-ideal. Moreover, an r-ideal which
is also an order ideal is said to be an l-ideal (cf. [25, 33]).

A linear topology τ on a vector space E is a topology on E that makes the addition and the scalar
multiplication continuous, i.e., the topology τmakes the mappings + : E × E→ E defined by (x, y)→ x + y
and · : R × E → E defined by (λ, x) → λx continuous. It is well known that the topological convergence
of nets on topological vector spaces is linear. Also, for each topological vector space, there is a base N
consisting of zero neighborhoods and which satisfies the following properties: for each U ∈ N, λU ∈ N for
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all |λ| ≤ 1; for any U1,U2 ∈ N, there is another zero neighborhood U ∈ N such that U ⊆ U1 ∩ U2; for every
U ∈ N, there is a zero neighborhood V ∈ N with V + V ⊆ U; for each zero neighborhood U in N and scalar
λ > 0, we have λU ∈ N (cf. [4]). A topological Riesz space (E, τ) has the Lebesgue property whenever xα

o
−→ x

implies xα
τ
−→ x.

We remind that a subset A in an ordered vector space is said to be a full set whenever [x, y] ⊆ A for every
x, y ∈ A with x ≤ y. A linear topology τ on an ordered vector space is called locally full whenever it has a
τ-neighborhood base at zero consisting of full neighborhoods (cf. [3, Exer.1, p.72]). A linear topology τ on a
Riesz space E is called a solid topology if τ has a base that consists of solid sets, and so, (E, τ) is called a locally
solid Riesz space. It can be seen that topological Riesz spaces may not be locally solid (cf. [28, Exam.2.3]).
Similarly, a locally convex topology on a vector space is a linear topology that has a base at zero consisting
of convex sets. We refer the reader for unexplained notions and terminology to [3–5, 9, 19, 21, 30, 31, 39, 40].

3. Topological l-algebras

The notion of topological l-group with a locally solid topology has been introduced on a lattice ordered
group (cf. [27, 29]) recently. We prefer an approach based on the following definition which reflects our
understanding of this notion.

Definition 3.1. An l-algebra E with a linear topology τ is called a topological Riesz algebra, or topological
l-algebra, for short.

If the topology is, in particular, a kind of an arbitrary linear topology τ on E then we shall speak that it
is a τ topological l-algebra.

Example 3.2. It is well known that every Riesz seminorm is a Riesz pseudonorm (cf. [40, Exer.100.19]) and a family
of Riesz pseudonorms generates a locally solid topology (cf. [3, Thm.2.28]). Now, letN be a nonempty family of Riesz
seminorms on a Riesz algebra E. Thus, the topology generated by the family of seminorms ρ j(x) := j(|x|) for all j ∈ N
and x ∈ E is the absolute weak topology |σ|(E,N) on E relative toN . Therefore, the topology σ(E,G) is locally convex,
solid, and full (cf. [3, 4]), where G = {ρ j : j ∈ N}. Thus, E with the absolute weak topology is a locally convex, solid,
and full l-algebra.

Theorem 3.3. Every locally solid l-algebra is a locally full l-algebra.

Proof. Suppose that (E, τ) is a locally solid l-algebra. It is enough to show that τ is a locally full topology.
Consider the solid base at zero N consisting of solid neighborhoods. Then, for a fixed U ∈ N , there exists
another zero neighborhood solid set V ∈ N such that V + V ⊆ U. Take the full hull W := ∪{[x, y] : x, y ∈ V}
of V. It is clear that V ⊆ W and W is a zero neighborhood set. Now, for an arbitrary w ∈ W, there are some
elements x, y ∈ V such that x ≤ w ≤ y, and so, we have |w| ≤ |x| + |y| ∈ V + V ⊆ U. Hence, we obtain that
V ⊂W ⊆ U. Therefore, τ is a locally full topology.

Remark 3.4. (i) It follows from Theorem 3.3 and [3, Thm.2.25] that if the topology τ of a topological l-algebra
(E, τ) is generated by a family of Riesz seminorms then E is a locally convex, solid, and full l-algebra.

(ii) It follows from [10, Lem.2.1] that a topological l-algebra (E, τ) is a locally full l-algebra if and only if xα
τ
−→ 0

and zα
τ
−→ 0 imply yα

τ
−→ 0 for all nets (xα)α∈A, (yα)α∈A and (zα)α∈A in E with xα ≤ yα ≤ zα for all α ∈ A.

The converse of Theorem 3.3 does not hold in general. It means that a locally full l-algebra need not to
be a locally solid l-algebra. To see this, we consider [10, Exam.3].

Example 3.5. Take the Riesz algebra E := L∞[0, 1] with the pointwise multiplication. Then it follows from Theorem
3.6 that the weak topology ω on E is a locally full, but not locally solid because xn

ω
−→ 0 yet |xn|

ω
−→ 1 for a sequence

xn ∈ X of Rademacher’s functions on [0, 1].

By considering [32, Thm.8.1], we show the following result.
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Theorem 3.6. A locally full l-algebra is a locally solid l-algebra if and only if the lattice operations are topological
continuous.

Proof. Assume that the topology τ in a locally full l-algebra is locally solid. Then we show that x → |x|
is continuous. All other continuities of lattice operations are analogous. Take an element x ∈ E and a
neighborhood U such that |x| ∈ U. Then there is a solid neighborhood of zero set V such that |x| + V ⊂ U.
Choose W := x + V as a neighborhood of x. Note that for every w ∈ W, w − x ∈ V and ||w| − |x|| ≤ |w − x|.
Since V is a solid set, |w| − |x| ∈ V. Thus, we obtain the desired result from |w| ∈ |x| + V ⊆ U.

For the converse, suppose that (E, τ) is a locally full l-algebra and the lattice operations are τ-continuous
in E. Take a full neighborhood of zero set V. Then there exists another full neighborhood of zero U such
that {x+ : x ∈ U} ⊆ V since the operation x→ x+ is continuous. It is clear that U is a subset of its solid hull
Sol(U) = {x ∈ E : ∃u ∈ U, |x| ≤ |u|}, and also, Sol(U) is a solid neighborhood of zero. On the other hand, for
each u ∈ U, we have u+ ∈ V, and so, one can see that x ∈ V for all x ∈ E with |x| ≤ u+ because V is a full set.
Therefore, we obtain that Sol(U) ⊆ V. Thus, it follows that τ is also a locally solid topology.

For a relation between solid and full topologies on l-algebras, we observe the following example.

Example 3.7. Let E be an l-algebra with a locally full topology τ. Since the full topological convergence is linear, the
multiplicative τ-convergence on E (i.e., xα

mτ
−−→ x whenever u · |xα − x| τ−→ 0 for all u ∈ E+) is topological with respect

to the locally solid topology τm on E; see [10, Thm.17]. Then (E, τm) is a locally solid l-algebra.

We give the following example to see that a topological l-algebra does not need to be locally full.

Example 3.8. Consider the Riesz space E consisting of all eventually zero real sequences with coordinatewise ordering
and algebra multiplication. Then E is a Riesz algebra. Take a norm q on E such that q(x) is the sum of all 1

n |xn − xn+1|

for all n. Then E with the topology generated by the norm q is not a locally full l-algebra because q is not a monotone
norm.

Now, we turn our attention to the completion of locally solid l-algebras. It is known that every Hausdorff
topological vector space (E, τ) has a unique, up to a topological and algebraic isomorphism, Hausdorff
topological completion (Ê, τ̂) (cf. [1, p.1]).

Theorem 3.9. Let (E, τ) be a locally solid l-algebra. Then we have:

(i) If every order bounded increasing sequence in E is a τ-Cauchy sequence and τ is a Hausdorff topology then the
topological completion (Ê, τ̂) of (E, τ) is also a Hausdorff locally solid l-algebra.

(ii) If E is a Dedekind complete locally solid l-algebra and E is an order ideal in the topological completion (Ê, τ̂) of
(E, τ) then (Ê, τ̂) is a locally solid l-algebra.

Proof. (i) It follows from [3, Thm.2.40] that the topological completion (Ê, τ̂) of (E, τ) exists, and also, it
is a Hausdorff locally solid Riesz space. By applying [1, Thm.3.1(ii)], one can obtain that the topological
completion Ê is a Dedekind complete Riesz space. Now, by considering the same as above item in [33], we
show that Ê is the l-algebra with an extension of the algebra multiplication “∗” in E to the multiplication
“∗” in Ê. Indeed, take x̂, ŷ ∈ Ê. Then there exist x, y ∈ E+ such that 0 ≤ x̂ ≤ x and 0 ≤ ŷ ≤ y because E
is a majorizing set in its Dedekind completion Ê. Moreover, define x̂ = sup{w ∈ E+ : 0 ≤ w ≤ x̂} ≤ x and
ŷ = sup{z ∈ E+ : 0 ≤ z ≤ ŷ} ≤ y. From [33, Prop3.2(ii)], we have 0 ≤ w ∗ z ≤ x ∗ y for all 0 ≤ w, z ∈ E with
0 ≤ w ≤ x̂ and 0 ≤ z ≤ ŷ. Then there exists the element

û := sup{w ∗ z : w, z ∈ E+,w ≤ x̂, z ≤ ŷ}.

Thus, we define û = x̂ ∗ v̂ in Ê. Moreover, it can be seen that the multiplication makes Ê an l-algebra and
extends the original multiplication in E to Ê. Also, one can show that the extension “∗”to Ê is unique.

(ii) From [1, Thm.2.6(ii)], the topological completion (Ê, τ̂) of (E, τ) is Dedekind complete because E is
Dedekind complete. By using the fact that E is an order ideal in Ê and the same argument in the proof of
(i), we get the desired result.
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Problem 3.10. Is it possible to extend the algebraic multiplication to the topological completion without condition of
Dedekind completeness?

We now turn our attention to quotient algebras. Let I be an order ideal in a Riesz space E. Then the set
E/I = {x+ I : x ∈ E} is a Riesz space with respect to the order relation [x] ≤ [y] whenever there exist elements
ux ∈ [x] and vy ∈ [y] satisfying ux ≤ vy (cf.[5, Thm.2.22]), where we denote x + I with [x]. Then the Riesz
space E/I is called the quotient space of E with respect to the ideal I. On the other hand, we remind that an
r-ideal which is also an order ideal is said to be an l-ideal.

Theorem 3.11. Let E be a locally solid Riesz algebra and I be an l-ideal in E. Then E/I is a locally solid Riesz algebra.

Proof. Suppose that (E, τ, ∗) is a locally solid l-algebra. We define a mapping “◦” on E/I denoted by
[x] ◦ [y] := [x ∗ y]. Then it is a binary operation on E/I. Indeed, assume that ([x], [y]) = ([a], [b]) holds in
E/I × E/I. Then we have x − a ∈ I and y − b ∈ I (cf. [30, Thm.27.2]). Then it follows that

[x] ◦ [y] = [x ∗ y] = x ∗ y + I = (x − a + a) ∗ (y − b + b) + I
= (x − a) ∗ (y − b) + (x − a) ∗ b + a ∗ (y − b) + a ∗ b + I
= a ∗ b + I
= [a] ◦ [b].

So the mapping “◦” is well defined, and so, it is a function. Next, we show that (E/I, ◦) is an algebra. For
arbitrary x, y, z ∈ E and λ ∈ R, we observe the following facts:

(1) [x] ◦ ([y] + [z]) = [x] ◦ ([y + z]) = [x ∗ (y + z)] = [x ∗ y + x ∗ z] = [x ∗ y] + [x ∗ z] = [x] ◦ [y] + [x] ◦ [z];
(2) [x] ◦ (λ[z]) = [x] ◦ [λz] = [x ∗ (λz)] = λ[x ∗ y] = λ([x] ◦ [z]);
(3) [x] ◦ ([y] ◦ [z]) = [x] ◦ ([y ∗ z]) = [x ∗ (y ∗ z)] = [(x ∗ y) ∗ z] = ([x] ◦ [y]) ◦ [z]).

Therefore, (E/I, ◦) is an associative algebra. Now, take a pair of positive elements 0 ≤ [x], [y] ∈ E/I. Then
there exist ax ∈ [x], by ∈ [y] and ux, vy ∈ [0] such that ux ≤ ax and vy ≤ by. Hence, it follows from 0 ≤ ax − ux
and 0 ≤ by − vy that

(ax − ux) ∗ (by − vy) = ax ∗ by − ax ∗ vy − ux ∗ by + ux ∗ vy ≥ 0

because “∗” is an algebraic Riesz multiplication. Then, [0] ≤ [ax ∗ by − ax ∗ vy − ux ∗ by + ux ∗ vy] = [ax ∗ by]
because I is an l-ideal. Thus, following from the order relation on E/I, we obtain [x] ◦ [y] = [x ∗ y] ≥ [0]. As
a result, E/I is an l-algebra. It follows from [3, Thm.2.24] that E/I is a locally solid l-algebra.

4. The continuity of multiplications

Definition 4.1. Let (E, τ) be a topological l-algebra with the algebraic multiplication “∗”. Then “∗”is called

(1) a topological continuous multiplication if the mapping x → x ∗ y is topological continuous on E for all
x, y ∈ E;

(2) an order continuous multiplication if the mapping x→ x ∗ y is order continuous on E for all x, y ∈ E.

Both continuities are not well-matched in topological l-algebras. To see this, we consider [10, Exam.6].

Example 4.2. Let U be an ultra filter onN. Define the multiplication “∗” on ℓ∞ by x ∗ y := (limU xn) · (limU yn) ·⊮,
where ⊮ is a sequence of reals identically equal to 1, and limU is the limit of real sequences with respect to the
convergence alongU. Thus, Banach lattice ℓ∞ is a topological l-algebra, and the algebra multiplication “∗” in ℓ∞ is
topological continuous, but not order continuous.

All multiplications in topological l-algebras do not need to be topological continuous.

Example 4.3. Take the l-algebra X = (ℓ∞, ∗) from Example 4.2 with the locally solid topology inherited from the
Tychonoff topology τ on Xu = s = RN. Then the multiplication “∗” in the locally solid l-algebra (ℓ∞, ∗, τ) is not
topological continuous.
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Remark 4.4.

(i) An order bounded operation π on a Riesz space is called an orthomorphism whenever it follows from x ⊥ y
thatπ(x) ⊥ y. Let E be a Banach lattice. Thus, it follows from Remark 3.4(i), [5, Thm.4.77] and [40, Thm.140.9]
that Orth(E) is a locally solid, convex Riesz algebra with an order continuous multiplication.

(ii) An l-algebra E is called an f -algebra if x ∧ y = 0 implies (u · x) ∧ y = (x · u) ∧ y = 0 for all u ∈ E+. Every
algebraic multiplication in any topological f -algebra is order continuous (cf. [24, p.57]).

Recall that the topological convergence on metric spaces and the relatively uniform convergence on
Riesz spaces are sequential. But, not all topological spaces are sequential. It is well know that a topology τ
in any topological space X is sequential if and only if, for every Y ⊆ X and for every x ∈ clτ(Y), there exists
a sequence xn

τ
−→ x in Y. We remind the following classical example of not sequential topological spaces.

Example 4.5. Take the order topology on the ordinal w1 + 1 = [0,w1]. Then every sequence of countable ordinals has
a countable supremum because w1 has cofinality w1. So, w1 is not open as w1 is a limit ordinal. So the order topology
on [0,w1] is not sequential.

A standard theorem in metric spaces states that the sequential continuity is equivalent to the topological
continuity. This is not true in arbitrary topological spaces. However, we have the following standard fact
from the point-set topology.

Assertion 4.6. A mapping T : X → Y is continuous between topological spaces if and only if xα
τ
−→ x implies

T(xα)
τ
−→T(x) for every net (xα)α∈A in X.

It can be seen from Assertion 4.6 that the algebra multiplication in a locally solid l-algebra E is topological
continuous if and only if xα

τ
−→ x implies xα · y

τ
−→ x · y for each net (xα)α∈A and every x, y in E. One can give the

same argument for the order continuity of the algebraic multiplication. It follows from [10, Exam.11] that
the algebra multiplication in any universally complete l-algebra does not need to be topological continuous.
Also, we can observe the following example.

Example 4.7. Consider a Riesz space E consisting of all eventually zero real sequences with the coordinatewise
ordering and algebra multiplication. Then E is a Riesz algebra. Since E is a subset of ℓ∞, one can take the topology τ
on E as the supremum norm topology. Then it follows from [3, Thm.2.17] that the lattice operations are continuous
because τ is a solid topology. Then the algebra multiplication on E is topological continuous.

It is well known that the order convergence could be easily not topological (cf. [19, 23]). Thus, the
topological convergence of nets does not agree with the order convergence. However, it was proved that
the order convergence of nets in a Riesz space is topological if and only if the Riesz space is finite dimensional
in [20].

Definition 4.8. An algebraic multiplication “∗” in any topological l-algebra (E, τ) is said to have the multiplicative
Lebesgue property whenever it follows xα ↓ x that xα ∗ y τ−→ x ∗ y for all y ∈ E.

Theorem 4.9. Let E be a topological l-algebra with a Hausdorff locally solid topology. Then the Lebesgue property of
multiplication implies the order continuity of it in E.

Proof. Assume that the multiplication in a Hausdorff locally solid l-algebra (E, τ) satisfies the multiplicative
Lebesgue property. Then take a net xα ↓ x and an arbitrary element y in E. Thus, we have xα ∗ y τ−→ x ∗ y
for all y ∈ E because of the multiplicative Lebesgue property. Without loss of generality, we assume that
y ∈ E+. Since the net (xα)α∈A is decreasing, we have (xα ∗ y)α∈A ↓. Thus, for an arbitrary index α0, we have
0 ≤ xα0 ∗ y − xα ∗ y for all α ≥ α0. Then xα0 ∗ y − xα ∗ y τ−→ xα0 ∗ y − x ∗ y ≥ 0 because τ is a Hausdorff solid
topology. Hence x ∗ y is a lower bound of (xα ∗ y)α∈A. Take another lower bound w of (xα ∗ y)α∈A, and so, we
have xα ∗ y − w τ

−→ x ∗ y − w ≥ 0. Therefore, we obtain w ≤ x ∗ y. This shows that xα ∗ y ↓ x ∗ y, and so, the
multiplication is order continuous.
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We observe the following straightforward fact.

Proposition 4.10. Let (E, τ) be a topological l-algebra with the Lebesgue property. Then the order continuity of the
algebraic multiplication implies the topological continuity.

Recall that an element x in an l-algebra is called nilpotent if there exists a natural number n ∈ N such
that xn = 0 (cf. [33, 40]). We denote the set of all nilpotent elements in E by N(E). Thus, we complete the
section with the following result.

Proposition 4.11. Let E be a locally solid f -algebra. Then the algebra multiplication is topological continuous on
the set N(E).

Proof. Let (xα)α∈A be a net in N(E) such that xα
τ
−→ x ∈ E. Fix an element y ∈ E. Then it follows from [33,

Thm.10.2(iii)] that
y · (xα − x) = y · xα − y · x = y · x τ−→ 0.

Therefore, we get the desired result.

5. The multiplicative continuous Riesz algebras

Definition 5.1. Let (E, τ) be a locally solid l-algebra. Then E is said to be a multiplicative continuous Riesz
algebra, or an mc-algebra, for short, if the following conditions hold:

(1) the mapping (x, y)→ x ∗ y from E × E to E is continuous;
(2) the lattice operations are continuous.

An mc-algebra is a pair (E, τ) of an l-algebra E and a locally solid topology τ on E. It is clear that
the structure of a topological Riesz algebra is richer than a topological l-group. So, we expect to achieve
stronger results.

Remark 5.2. Every mc-algebra is also a topological lattice group because addition and scalar multiplication operations
are continuous on Riesz algebras.

Proposition 5.3. Let (E, τ) be a locally full topological Riesz algebra. Then (E, τ) is an mc-algebra in each of the
following cases for an arbitrary net (xα)α∈A in E:

(i) xα
τ
−→ x implies |xα|

τ
−→ |x|;

(ii) xα
τ
−→ x implies (xα)+

τ
−→ x+;

(iii) xα
τ
−→ x implies (xα)−

τ
−→ x−.

It follows from [32, Thm.8.1] that the properties (i)−(iii) of Proposition 5.3 are equivalent. Also, it follows
from [5, Thm.1.3] and the linearity of the solid topologies that the continuity of the infimum and supremum
operations are equivalent. Hence, by using Theorem 3.6, one can omit the continuity requirements of the
lattice operations in Definition 5.1. Recall that a net (xα)α∈A is said to be eventually order bounded in a Riesz
space E if we can find an index α0 ∈ A such that the set (xα)α≥α0 is order bounded in E. Chuchaev proved
that the topological convergence agrees with the order convergence of eventually topologically bounded
nets; see [17].

Theorem 5.4. Let E be an l-algebra with the τ-continuous multiplication. If every net in E is eventually order
bounded then E is an mc-algebra.

Proof. Assume that (xα)α∈A
τ
−→ x and (yβ)β∈B

τ
−→ y hold in E. Also, without loss of generality, suppose that

there exist an index α0 and an element w ∈ E such that |xα| ≤ w for all α ≥ α0. Following from the inequality
|xα · yβ − x · y| ≤ |xα| · |yβ − y| + |y| · |xα − x|, we have

|xα · yβ − x · y| ≤ w · |yβ − y| + |y| · |xα − x|

for all α ∈ A, α ≥ α0, β ∈ B. Now, one can obtain (w · |yβ − y|)β
τ
−→ 0 and (|y| · |xα − x|)α≥α0

τ
−→ 0 by using Theorem

3.6 and the τ-continuity of the multiplication in E. Thus, we get (xα · yβ)(α,β)∈A×B
τ
−→ x · y.



A. Aydın et al. / Filomat 36:7 (2022), 2325–2332 2332

It follows from [3, Thm.2.19] that every order bounded subset in a locally solid Riesz space is topological
bounded. But, the converse does not hold in general (cf. [28, Exam.2.2]). Every topological bounded subset
is order bounded in a locally solid Riesz space whenever it has an order bounded zero neighborhood (cf.
[28, Thm.2.2]). Thus, we obtain the following result.

Corollary 5.5. s If every τ-convergent net is eventually τ-bounded in an l-algebra E with the τ-continuous multi-
plication and an order bounded zero neighborhood then it is an mc-algebra.
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