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Abstract. This paper introduces a novel approach, withen the context of energy market, by employ-
ing a three-factor mean reverting Ornstein-Uhlenbeck process with a stochastic nonlinear autoregressive
drift term having a dependent error. Initially the unique solvability for the given nonlinear system is
investigated. Then, to estimate the nonlinear regression function, a semiparametric method, based on the
conditional least square estimator for the parametric approach, and the nonparametric kernel method for
autoregressive modification estimation have been presented . A maximum likelihood estimator has been
used for parameter estimation of the Ornstein-Uhlenbeck process. Finally, some numerical simulations and
real data studies have been provided to support the main conclusions of the study.

1. Introduction

The Ornstein-Uhlenbech processes (OU processes) have been employed as the main structure of the
Barndroff-Nielsen-Shephard stochastic volatility model [1]. The modeling, based on the mean-reverting
price processes of the diffusion type applicable to energy prices, has attracted a huge interest in the latest
literature. Generally, there are one to three-factor models that motivate the concept of mean reversion.
Pilipovic (1997) presented a one-factor mean-reverting OU process for the spot price of energy markets
[2]. Tifenbach (2000) generalized the proposed model of Pilipovic to the case where the mean-reverting
parameter was made time-dependent to capture seasonality [3]. Two-factor models have been used through
either permitting the long-run mean or the volatility ruled via a stochastic differential equation. Some
numerical implementation of these models can be found in [3–5]. Modeling electricity price processes is
presently an energetic space of educational analysis. Here capturing the spikes occurring in the price is the
main issue. Different groups of dynamic of these pricing processes are identified using the two factors mean-
reverting OU processes. The additional flexibility is provided by the three-factor models to reproducing
spikes. This paper aims at introducing a three-factor model. An OU process with an intermediate model of
stochastic mean lt and the second level of stochastic mean reversion Mt, incorporating stronger local shocks
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to St via lt, is the first three-factor mean-reverting model that suits modeling electricity price spikes is as
follows [4].

dSt = α(lt − St)dt + σSγt dZt
dlt = µ(Mt − lt)dt + ξltdWt
dMt = βMtdt + λMγ

t dVt γ = 0 or 1,

where the parameters are constants. Another three-factor mean-reverting model is an OU process with both
stochastic mean and volatility. Local price shocks are caused by combined nonlinear effects of stochastic
mean and volatility.

dSt = α(lt − St)dt + σtS
γ
t dZt

dlt = µltdt + ξlγt dWt
dσt = β(σ0 − σt)dt + λσγt dVt γ = 0 or 1,

Considering an OU process with a stochastic mean governed by a first order nonlinear autoregressive (AR)
model with a dependent error is the innovation presented in this paper. When the AR function in a model is
a nonlinear function of previous data, linear analysis can not be appropriate, [6]. There are many approaches
to the estimation of nonlinear AR functions of the model. Zhuoxi et al. (2009) suggested a semiparametric
(SP) methodology for the estimation of nonlinear autoregression functions in an AR model [7]. Farnoosh
and Mortazavi (2011) followed the method of Zhuoxi et al. (2009) for the AR models by considering
a dependent error and explored the asymptotic manner of the SP estimators [8]. The standard way of
analyzing an AR model is based on the Gaussian hypothesis of errors, whereas in some actual conditions,
the data contradict this hypothesis [9, 10]. There are researches permitting changing the Gaussian error
by a non-Gaussian error to make and study an AR model (for more details see [11], [12], [13], [14, 15]).
SP estimation of the AR parameter in non-Gaussian OU processes has been explored by Jammalamadaka
and Taufer (2019), [17]. Nabati (2021), has also investigated the nonlinear AR model with OU processes
driven with white noise [16]. For many years, the parameter estimation of SDEs has been discussed in
the literature. The nonparametric drift and diffusion function estimators by using the kernel regression
method have been proposed by Fan and Yao (1998), Jacod (2000), and Fan and Zhang (2003), [18–20]. The
performance of this approach is determined by the kernel function and its bandwidth; more information
can be founded in Fan and Gijbles (1996), [21]. A functional estimation procedure for homogeneous SDE
based on a discrete sample of observation has been studied by Bandi and Philips [22]. Hernandez et al.
(2012) developed a moment method algorithm for the estimation of the parameters of both the observable
process and the unobservable stochastic mean [5]. A maximum likelihood (ML) approach to estimate the
parameters of a one-dimensional stationary process of the Ornstein-Uhlenbeck type has been proposed
by Valdivieso et al. (2009), [23]. In this paper, we consider a three-factor OU process similar to the work
of Lari Lavassani (2001)with the difference that we assumed a nonlinear AR drift term in the model and
allowed the dependent errors as the AR(1) model instead of a sequence of independent and identically
distributed random variables. The estimation of the parameters through the SP methodology and the Least
square estimators (LSE) of model parameters have been emphasized throughout the paper. Also, the closed
iterative form for the LSE of parameters has been obtained. This paper has been organized as follows. In
section 2, the mathematical modeling for the three-factor mean-reverting OU process with nonlinear AR
drift term by considering dependent error is presented. The existence of a unique positive solution for
this system with initial values is proved in this section. The SP estimation for the nonlinear AR function is
discussed in section 3. Parameters estimation for the OU process is carried out in section 4 using the ML
estimator. Section 5 provides numerical simulations and a computational real case illustrating the use of
the presented method. Our conclusions are drawn in the final section.

2. The OU process with nonlinear AR drift term and a dependent error

To illustrate the stochastic price process in commodities markets, various models have been proposed.
In theory, by considering the dominating volatility and market deregulation, these models should be able to
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provide a reliable representation of the evolution of electricity prices. One of these models, is the three-factor
model for energy and commodity spot price [5]. Now consider the following three-factor model:

dSt = β(lt − St)dt + σSγt dBt
lt = 1(lt−1) + at
at = ρat−1 + zt, γ = 0 or 1,

(1)

where β, σ are constants and |ρ| < 1. 1(.) is the unknown nonlinear AR function and zt is a sequence of i.i.d
random variables with mean zero and variance σ2

zt
. We can get

at = lt − 1(lt−1)→ at−1 = lt−1 − 1(lt−2), (2)

and therefore, the model in (1) can be written as follows{
dSt = β(lt − St)dt + σSγt dBt
lt = 1(lt−1) + ρ(lt−1 − 1(lt−2)) + zt.

(3)

This model allows for price to fluctuate around a level that is stochastic and also has the dependent error in
form of AR(1). To investigate this model, at first, we prove the existence of a unique global positive solution
for this system. Let γ = 1 and (Ω,F ,P) be a complete probability space with a filtration Ft(t ≥ 0).

Theorem 2.1. For any initial value (S0, l0) ∈ R2
+ and every t ≥ 0, the system (3) have the unique solution. This

solution will remain positive with probability one namely, (S(t), l(t)) ∈ R2
+ .

Proof. The coefficient of system (3) are locally lipschitz continuous. Hence, this system has unique solution
(S(t), l(t)) on [0, τe) where τe is the explosion time [24]. Now, we show that τe = ∞ almost surely (a.s.),
and as a result the solution is global. Suppose ω0 ≥ 1 is sufficiently large such that the initial values
S(0), l(0) ∈ [ 1

ω0
, ω0]. Define the stopping time

τω = inf{t ∈ [0, τe) : S(t) < (
1
ω
,ω) or l(t) < (

1
ω
,ω)}

for any ω ≥ ω0. Set infϕ = ∞ where ϕ shows the empty set. Then τω is increasing when ω → ∞. Let
τ∞ = limω→∞ τω, so τ∞ ≤ τ0 a.s. If we can prove τ∞ = ∞ a.s. then τe = ∞ a.s. Let τ∞ , ∞, therefore, there
exists two constants δ̂ > 0 and ϵ̃ ∈ (0, 1) such that P(τ∞ ≤ δ̂) ≥ ϵ̃. So

∃ω1 ∈ Z, ω1 > ω0 s.t. P(τω ≤ δ̂) ≥ ϵ̃ ∀ ω ≥ ω1 (4)

Consider the twice differentiable functionΨ : R2
+ → R+ with the definition,

Ψ(S, l) = (S − 1 − log S) + (l − 1 − log l)

since log u ≤ u − 1 for every u ≥ 0, henceΨ is nonnegtive. Using the system (3) and Ito formula,

dΨ(S(t), l(t)) = LΨ(S(t), l(t))dt + (1 − 1
S(t) )σS(t)dB(t)

+ (1 − 1
l(t) )dl(t) + 1

2l2(t) (dl(t))2 (5)

Where

LΨ(S(t), l(t)) = (1 −
1

S(t)
)
(
β(l(t) − S(t))

)
+
σ2

2
= J

which is bounded for S(t) ≥ 1 and J ∈ R+. Integrating both sides of (5) from 0 to τω ∧ δ̂ and taking the
expectations, concluded that

E
(
Ψ(S(t), l(t)

)
≤ E

(
Ψ(S(0), l(0)

)
+JE(.)

≤ E
(
Ψ(S(0), l(0))

)
+J δ̂

(6)
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where E shows the mathematical expectation. Let Ωω := τω ≤ δ̂ for ω ≥ ω1. From equation(4), we have
P(Ωω) ≥ ϵ̃. Define

Γτω := Ψ
(
(S(τω), l(τω))

)
then

Γτω ≥ (ω − 1 − logω) ∧ (
1
ω
− 1 + logω).

Hence equations (5) and (6) results:

E(Γ0) +J δ̂ ≥ E
(
IΩωΓτω

)
≥ ϵ̃[(ω − 1 − logω) ∧ ( 1

ω − 1 + logω)]

where IΩω is the indicator of set Ωω. If ω → ∞ then ∞ > E(Γ0) + Jδ̂ = ∞ which is contradiction. So the
hypothesis P(t∞ ≤ δ̂) > ϵ̃ is wrong and t∞ = ∞ a.s.

3. Semiparametric estimation

The unknown function 1(.) is estimated using an SP technique based on Farnoosh and Mortazavi’s
(2011) work. We assume that 1(.) has a parametric form ζ(x, θ), θ ∈ Θ which is a known and previous
function selection where Θ ∈ Rp is the parameter space. In this scenario, 1̂(x) = ζ(x, θ̂) is used to estimate
the regression function 1(.), where θ̂ is an estimator of θ. The exact value of θ is denoted by θ0 that is
defined as follows:

θ0 = ar1minθ∈Θ,|ρ|<1E(lt − Eθ(lt|lt−1) − ρ(lt−2 − Eθ(lt|lt−2))2.

It is obvious that

Eθ(lt|lt−1, lt−2) = 1(lt−1) + ρ(lt−1 − 1(lt−2)).

In model (3), the estimators of θ and ρ are obtanied via conditional nonlinear least square errors method as
follows:

An(θ, ρ) =
n∑

t=2

{

(
lt − 1(lt−1) + ρ(lt−1 − 1(lt−2))

)2
},

therefore

(θ̂n, ρ̂n) = ar1minAn(θ, ρ).

The strong consistency of (θ̂n, ρ̂n) under a variaty of conditions has been studied in work of Farnoosh and
Mortazavi (2011) [8]. Because ζ(x, θ) is a rough approximation of 1(x), the SP form ζ(x, θ)χ(x) is used to
correct the previous estimate, where χ(x) is the adjustment factor. For determining χ(x), the local L2-fitting
criterion is used as follows:

B(x, χ) =
1
bn

n∑
t=2

K(
lt−1 − x

bn
){1(lt−1) − ζ(lt−1, θ̂).χ(x)}2

+
1
bn

n∑
t=2

K(
lt−2 − x

bn
){1(lt−2) − ζ(lt−2, θ̂).χ(x)}2, (7)

where K and bn are the kernel and bandwidth respectivly. The estimator χ̂(x) is obtained by minimizing the
criterion in equation (7) with regard to χ(x).

χ̂(x) =

∑n
t=2 1(lt−1)K( lt−1−x

bn
)ζ(lt−1, θ̂n) + 1(lt−2)K( lt−2−x

bn
)ζ(lt−2, θ̂n)∑n

t=2 K( lt−1−x
bn

)ζ2(lt−1, θ̂n) + K( lt−2−x
bn

)ζ2(lt−2, θ̂n)
. (8)
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Unfortunately, the equation(8) containe the unknown function 1(x), therefore by using at = lt − 1(lt−1) and
at−1 = lt−1−1(lt−2) and with considering the fact that E(at) = 0 and E(at−1) = 0, the equation (8) can be written
as,

χ̃(x) =

∑n
t=2 ltK( lt−1−x

bn
)ζ(lt−1, θ̂n) + lt−1K( lt−2−x

bn
)ζ(lt−2, θ̂n)∑n

t=2 K( lt−1−x
bn

)ζ2(lt−1, θ̂n) + K( lt−2−x
bn

)ζ2(lt−2, θ̂n)
.

Therefore, the AR estimator is obtained by

1̃(x) = ζ(x, θ̂).χ̃(x).

4. Parameter estimation

The ML estimation is a method of estimating the unknown parameters by maximizing a likelihood
function when the observed data is most probable. A set of observations is a random sample from
an unknown population in statistical terms. Let Πn = {0,∆t, 2∆t, ...,n∆t} is a partition for time interval
[0,T],where ∆t = T

n . The Euler Maruyama scheme for model (3) is as follows,

St+∆t = S(t) + β(lt − St)∆t + σSt∆Bt,

where ∆Bt ∼ N(0,∆t). It is clear that

E(St+∆t|St) = St + β
(
E(lt) − St

)
∆t

= St + β
(
1(lt−1) + ρlt−1 − ρ1(lt−2) − St

)
∆t,

The distribution of St+∆t in the Euler scheme is given by,

f (St+∆t|St) =
1√

2πσ2S2
t∆t

exp{
Λ

2σ2S2
t∆t
},

where
Λ = −[St+∆t − ((1 − β)St + β

(
1(lt−1) + ρlt−1 − ρ1(lt−2)

)
∆t]2

so the log-likelihood is as follows,

log(L(β, σ)) = log f0(S0|β, σ) +
n∑

t=1

log f (St|St−1, β, σ) (9)

The purpose of ML estimation is to identify model parameter values that maximize the likelihood function
throughout the parameter space, i.e. (β, σ) = ar1max(L(β, σ)). The logarithm is a monotonic function, the
maximum of L occurs at the same value of (β, σ) as does the maximum of log(L).

5. Simulation study and empirical application

We investigate the suggested framework in this part using both simulated and real data sets.

5.1. Simulation study
We consider a simulation study by generating the data sets from model (1) with two different AR drift

term functions as follows,

11(x) = 5e−x2
+ 0.3 cos(x), by assuming ζ1(x, θ) = θ11e−x2

and ρ = 0.9
12(x) = e−3x + 0.1 sin(x), by assuming ζ2(x, θ) = θ21eθ22x and ρ = 0.5
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The use of nonparametric adjustment, χ̂(x) requires the optimal selection of the smoothing parameter called
the bandwidth, bn, that is chosen by an opening the window technique, i.e. by trying several bandwidths
and deciding for a good compromise which is neither too smooth nor too rough [13]. By trying several
bandwidths, we get bn = 0.04. Tables 1 and 2 show the estimation of the parameters and mean square error
(MSE) for SP estimation with 1000 iteration with a different sample size of the simulation. Figures 1 and 2
show the curves of 1(x) and 1̃(x) for chosen bandwidth respectively. The solid line represents the function
1(x), whereas the broken line represents the function’s estimator. The simulation results show that the SP
estimator performs well.

Table 1: Parmeters estimation for AR functions with different sample size.

Sample Size
AR Function Parameters 100 500 1000

θ11 5.1104 5.0655 5.0501
11(x) ρ 0.9985 0.9995 0.9992

θ21 0.9986 0.9955 0.9993
12(x) θ22 -2.1146 -2.0861 -2.084

ρ 0.9958 0.9937 0.9928

Table 2: MSE for semiparametric estimation of the AR functions.

Sample Size
AR Function 100 500 1000

11(x) 0.0648 0.0594 0.0514
12(x) 0.0061 0.0057 0.0052

Figure 1: Exact and estimated functions for nonlinear AR function 11(x).
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Figure 2: Exact and estimated functions for nonlinear AR function 12(x).

5.2. Empirical application
In this section, we provide a real-world example to illustrate the usefulness of the proposed model

in applications. We consider a data set consisted of the Tabarrok stock price (TSP) downloaded from,
http://www.tsetmc.com, for the period 2018-10-27 to 2019-03-03. The time series plot of TSP is shown in Fig.
3 (bottom) and also the top plot of Fig. 3 illustrates the linearity price of Tabarrok stock at time t, (St) against
time t − 1, (St−1). Table 3, shows descriptive statistics indices for this data. The pvalue of the Shapiro-Wilk
indicates the normality of the model. Since the local variance of the time series was larger, we normalized
the data sets. At first, according to the nature of observations that have the mean reverting properties, we
consider three nonlinear AR functions for drift term of the data sets as follows:

11(x, α) = 0.5 exp(−x2) + 0.3 cos x, by assuming ζ1(x, α) = α11 exp−x2
and ρ = 0.5

12(x, α) = exp(−3x) + 0.1 sin x, by assuming ζ2(x, α) = α21 expα22x and ρ = 0.5
13(x, α) = 0.48 + 0.1 sin x, by assuming ζ3(x, α) = α31 + α32 sin x and ρ = 0.5

For estimation of the model parameters, the value of bandwidths must be obtained. The bandwidth depends
on the sample size N for consistency of the kernel function then we must have bn → 0 and Nbn → ∞ for
N → ∞. But for practical implementation, this condition is not very helpful. So, the bandwidth bn was
chosen by an opening the window technique, i.e., by trying several bandwidths [11].

Table 4 summarizes the parameters estimation and MSE criteria for TSP according to model (1) using
these nonlinear AR drift terms with different bandwidths. The independent sample paths of the model using
these drift terms were simulated. Figures 4-6 shows the curves of the observations and its semiparametric
estimator with selected bandwidth bn = 0.04 and drift terms 11, 12, and 13 respectively. The blue and red
lines are the curves of the observations and the semiparametric predictor and the green line show the path
of drift term. Considering the measures of MSE for three models, we get that the exponential model 11 is
more efficient than the other models.
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Table 3: Descriptive statistics for Tabarrok data

Mean Median LCL Mean UCL Mean
2180.3604 2187.5000 2161.8968 2198.8240

Variance Std.deviation Skewness Kurtosis
Tabarrok data 7416.1861 86.1172 -0.0707 -0.5670

W (Shapiro-Wilk) P-Value
0.97967 0.1939

Figure 3: Plot of St against St−1 (Top) and time series plot of TSP (bottom).
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Table 4: Parameters estimation and MSE criteria for different 1(x, θ)

Autoregressive Function bn = 0.01 bn = 0.04 bn = 0.08
β̂ = 0.1192 β̂ = 0.1199 β̂ = 0.1199

11(x, θ) = 0.5 exp(−x2) + 0.3 cos x σ̂ = 0.2318 σ̂ = 0.1719 σ̂ = 0.1839
MSE = 0.2625 MSE = 0.2469 MSE = 0.2501

β̂ = 0.1189 β̂ = 0.1190 β̂ = 0.1199
12(x, θ) = exp(−3x) + 0.1 sin x σ̂ = 0.0468 σ̂ = 0.0472 σ̂ = 0.0467

MSE = 0.2705 MSE = 0.2666 MSE = 0.2748

β̂ = 0.1190 β̂ = 0.1195 β̂ = 0.1185
13(x, θ) = 0.48 + 0.1 sin x σ̂ = 0.0140 σ̂ = 0.0186 σ̂ = 0.0164

MSE = 0.2706 MSE = 0.2720 MSE = 0.2727

Figure 4: The exact and estimated price with AR function 11(x, θ) = 0.5 exp(−x2) + 0.3 cos x.
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Figure 5: The exact and estimated price with AR function 12(x, θ) = exp(−3x) + 0.1 sin x.

Figure 6: The exact and estimated price with AR function 13(x, θ) = 0.48 + 0.1 sin x.
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6. Conclusion

In this paper, a new three-factor mean-reverting OU process with nonlinear AR drift term with a
dependent error has been presented. The stochastic drift term has many important characteristics, which
can model the spikes of the prices in markets. For a stochastic system, the unique solvability of the presented
model is demonstrated. The SP technique has been used to estimate the nonlinear AR function. Parameter
estimation for the OU process has been carried out using the ML estimator. Finally, real-world data set and
computer numerical simulations have been presented to support the accuracy of the findings.
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