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Abstract. The aim of the present paper is to give some spectral results about generalized Fredholm
operators and the so called S-generalized Fredholm operators, where S is a given bounded linear operator
acting on a Banach space X. When X possesses some properties, we provide then some sufficient conditions
for which a bounded linear operator will be a generalized Fredholm. The obtained results are applied to
characterize the so called generalized S-essential spectrum, in particular the generalized Jeribi S-essential
spectrum [17]. These results are formulated by means of measure of weak noncompactness.

1. Introduction

Throughout the paper, X and Y are two Banach spaces. The set of all bounded linear operators acting
from X into Y is denoted by L(X,Y). We denote by K (X,Y) (resp. W(X,Y)) the subset of compact (resp.
weakly compact) operators ofL(X,Y). For a linear bounded operator T : X→ Y, we denote byR(T),Y/R(T)
and N(T) the range, the co-kernel and the kernel of T respectively. The dual (resp. the second dual or
bidual) is denoted by X∗ (resp. X∗∗), T∗ is the conjugate of an operator T and T∗∗ is the second conjugate.
For a non negative real number, the disc centered at 0 with radius r shall be referred by D(0, r), its closure is
D(0, r) and for r1 ≤ r2, we conventionally write C[r1, r2] = D(0, r2)\D(0, r1). We denote by→ for the strong
convergence and by ⇀ for the weak convergence. Now T ∈ L(X,Y) is called tauberian if T∗∗−1(Y) ⊂ X, also
T is co-tauberian when its conjugate T∗ is tauberian. This definition cannot be reversed as proved by T.
Álvarez and M. Gonzàlez in [2]. Another definition of tauberian operator consists in T is tauberian if and
only if, Tco is injective where Tco is the residuum operator of T [15]. For more details on tauberian operators
we refer readers to the book of M. González and A. Martinez-Abejón [16] and for more examples to [2, 3, 15].
Tauberian operators have been useful in the study of real interpolation theory of (non reflexive) Banach
spaces and some questions related to the preservation of isomorphic properties between those spaces [22],
they have also some similar actions on weakly compact sets like upper semi Fredhlom operators whose
act on compact sets. The classes of tauberian and co-tauberian operators from X into Y are respectively
denoted by T (X,Y) and T d(X,Y).

In 1976, K. W. Yang [26] introduced the class of generalized Fredholm operators for linear bounded operators
acting on a Banach space as some extension of the class of Fredholm operators. The sets of upper generalized
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semi-Fredholm operators and lower generalized semi-Fredholm operators are respectively defined and
denoted by Φ1+(X,Y) and Φ1−(X,Y) as:

Φ1+(X,Y) := {T ∈ L(X,Y) such thatN(T) is reflexive and R(T) is closed in Y},

Φ1−(X,Y) := {T ∈ L(X,Y) such that Y/R(T) is reflexive and R(T) is closed in Y}.

The set Φ1(X,Y) := Φ1+(X,Y) ∩Φ1−(X,Y) is formed by all generalized Fredholm operators and Φ1±(X,Y) :=
Φ1+(X,Y)∪Φ1−(X,Y). Now, for S ∈ L(X,Y), a complex number λ is inΦ1+,T,S(X,Y),Φ1−,T,S(X,Y),Φ1±,T,S(X,Y)
or Φ1,T,S(X,Y) if λS − T is in Φ1+(X,Y), Φ1−(X,Y), Φ1±(X,Y) or Φ1(X,Y), respectively. Clearly, similarity
brings out the correspondence between reflexive Banach spaces and finite-dimensional spaces, generalized
Fredholm operators and Fredholm operators, tauberian operators with closed range and semi-Fredholm
operators. Identity operator is the simplest example of generalized Fredholm operator. We will present
some nontrivial examples of generalized Fredholm operators at the end of section 3.
Recently, C. Schmoeger [24, 25] presented different definitions of generalized Fredholm operators, we
mention the following ones: T is a generalized Fredholm operator if and only if T = T1 ⊕ T2, where T1
is a Fredholm operator with vanish jump and T2 is a finite-dimensional nilpotent operator, many other
definitions are also given but will be dropped in this paper.
In a Banach space which has no reflexive infinite dimensional subspace, the upper semi-Fredholm operators
(operators with closed range and finite dimensional kernel) are trivial examples of tauberian operators [20].
Furthermore, the class of upper generalized semi-Fredholm operators acting on a Banach space is strictly
contained in the class of tauberian operators. Indeed, it was proved in [19] that there exists a tauberian
operator (with non closed range) which cannot be an upper generalized semi-Fredholm. Finally, notice
that Φ(X,Y) ⊂ Φ1(X,Y), where Φ(X,Y) is the set of Fredholm operators from X to Y [17]. When X = Y, all
the sets L(X,Y), K (X,Y),W(X,Y), Φ(X,Y), Φ1(X,Y), Φ1+(X,Y), Φ1−(X,Y), T (X,Y), T d(X,Y) are replaced by
L(X),K (X),W(X), Φ(X), Φ1(X), Φ1+(X), Φ1−(X), T (X), T d(X) respectively.

We recall the S-resolvent set and the S-spectrum of a closed linear operator T acting on a Banach space X,
when S , 0 is a bounded linear operator on X, respectively by

ρS(T) := {λ ∈ C such that λS − T has a bounded inverse},

and
σS(T) := C\ρS(T).

Subsequently, the operator S should be taken as non invertible. Otherwise the S-resolvent coincides with
usual resolvent of the operator S−1T. Notice that relative spectra (or S-spectra) is introduced in [13] in order
to show the characterization of essential spectrum of the pencil operators. Finally, we recall that an operator
T ∈ L(X) is weakly compact if T(M) is relatively weakly compact set for every bounded subset M ⊂ X.Note
thatW(X) is a closed two-sided ideal of L(X) containingK (X), we refer to [10, 14] for more details.

Our motivation to use the class of generalized Fredholm operators is to describe the generalized S-essential
spectra of a bounded linear operator acting on a (non necessary reflexive) Banach space. In particular,
the generalized Wolf and the generalized Gustafson S-essential spectrum. These results may extend some
results established by Jeribi in [17] for the Fredholm theory’s frame.

The paper is organized as follow. In Section 2, we present some basic facts of weakly compact operators
and their connections with tauberian operators and some measurement tools. We suggest in Section 3,
some Banach spaces X having some properties, denoted for instance by (H1) and (H2) or one of them to get
some results concerning generalized Fredholm operators. Therefore, we obtain extensions of some results
in [1, 6, 11, 21]. In particular, we provide some sufficient conditions for a linear bounded operator to be
generalized Fredholm. In Section 4, we introduce and investigate the generalized S-essential spectrum and
so we provide a characterization of the generalized S-essential spectral radius via the concept of measure
of weak noncompactness.
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2. Basic facts

The notion of a measure of weak noncompactness was introduced by De Blasi [8] and subsequently
used in topology, functional analysis and theory of differential and integral equations, (see [4, 5, 12] for
instance). Let X be a Banach space, andMX (resp. Kw(X)) stands to the set of bounded sets of X (resp. the
set of all weakly compact subsets of X). Let Br = B(0, r) be the open ball centered at 0 and with radius r.
Finally we denote by conv(A) the convex hull of the set A, A ⊂ X.
The De Blasi measure of noncompactness of a non empty bounded subset A ⊂ X, denoted by ω : MX −→

[0,+∞[ is defined as follow:
ω(A) = inf{r > 0, there exists N ∈ Kw(X) such that A ⊂ N + Br}.

This definition can be also reformulated as axiomatic statements [5, 18].

Definition 2.1. A function µ : MX −→ [0,+∞[ is said to be a measure of weak noncompactness in X if it
satisfies the following conditions.
(i) µ(A) = 0 if, and only if, A is relatively weakly compact set,
(ii) if A ⊂ B, then µ(A) ≤ µ(B),
(iii) µ(conv(A)) = µ(A),
(iv) µ(A ∪ B) = max{µ(A), µ(B)},
(v) µ(A + B) ≤ µ(A) + µ(B),
(vi) µ(λA) = |λ|µ(A), for λ ∈ C.
From [5], the measure of weak noncompactness, guarantees the Cantor intersection condition, and the
following inequality for any measure µ

µ(A) ≤ µ(Br)ω(A).

We also can define the measure of weak noncompactness of a bounded linear operator T, denoted by ω(T),
as follow:

ω(T) = inf {k such that ω(T(A)) ≤ kω(A), for all A ∈ MX} .

The following proposition collects some similar properties of ω(·) showed in Definition 2.1.

Proposition 2.2. Let X be a Banach space, T and S ∈ L(X) and let B ∈ MX. Then, we have the following
properties:

(i) ω(T) = 0 if, and only if, T is weakly compact.
(ii) ω(T(B)) ≤ ω(T)ω(B).
(iii) ω(TS) ≤ ω(T)ω(S).
(iv) ω(T + S) ≤ ω(T) + ω(S).
(v) ω(λT) = |λ|ω(T), for λ ∈ C.

Definition 2.3. Let X be a Banach space. We say that X has the property (H1) (resp. (H2)) if every closed
reflexive subspace admits a closed complementary subspace (resp. if every closed subspace with reflexive
quotient space admits a closed complementary subspace).
We say that X has the property (H), if it satisfies both properties (H1) and (H2).

A basic example of space having the property (H1) is given in [23]. Indeed, for 1 < p < ∞, p , 2, Lp(0, 1) has
the property (H1). Moreover, L1(µ) and C(S) the space of all bounded (real or complex valued) continuous
functions on an infinite compact Hausdorff space S do not have it [10, 16].
Now, let us recall a characterization of a generalized Fredholm operator using a definition due to K. W.
Yang [26].

Theorem 2.4. Let X and Y be two Banach spaces satisfying the properties (H1) and (H2) respectively, and
let T ∈ L(X,Y). Then the following assertions are equivalent.
(i) T is a generalized Fredholm operator .
(ii) There exist weakly compact operators W1 ∈ W(X), W2 ∈ W(Y) and an operator T0 ∈ L(Y,X) such that
T0T = I +W1 and TT0 = I +W2, and R(T) is closed in Y.
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Definition 2.5. [1] Let X and Y be two Banach spaces. An operator T ∈ L(X,Y) is said to be strictly singular
if there is no infinite dimensional subspace M of X such that T : M→ T(M), the restriction of T to M, is an
isomorphism.

Notice that singular operators need not to be compact, as shown in [1] where the natural embedding
J : lp −→ lr (for 1 ≤ p < r < ∞) is a non-compact singular operator.

The following is a simplest characterization of singular operators [1].

Theorem 2.6. For T ∈ L(X,Y), the following statements are equivalent.
(i) T is strictly singular.
(ii) For every infinite dimensional closed subspace X1 of X, there exists an infinite dimensional closed
subspace X2 of X1 such that T : X2 → Y is a compact operator.

3. Main results

Let X be a Banach space and let T ∈ L(X). Recall thatMX is the set of bounded sets of X. We introduce
the following non-negative quantities:

α(T) := sup
{ω(T(A))
ω(A)

such that A ∈ MX and ω(A) > 0
}
= ω(T),

β(T) := inf
{ω(T(A))
ω(A)

such that A ∈ MX and ω(A) > 0
}
.

We set α0(T) (resp. β0(T)) as the limit of the sequence α(Tn)
1
n (resp. β(Tn)

1
n ). These limits exist (see [[21],

Lemma 1.21]). The following result gives some properties of these functions.

Proposition 3.1. Let X be a Banach space. Let T, S ∈ L(X) and λ ∈ C, then the following properties hold:

(i) α(λT) = |λ|α(T) and β(λT) = |λ|β(T).
(ii) |α(T) − α(S)| ≤ α(T + S) ≤ α(T) + α(S).
(iii) β(T) − α(S) ≤ β(T + S) ≤ β(T) + α(S).
(iv) α(TS) ≤ α(T)α(S) and β(TS) ≥ β(T)β(S).
(v) α(T) = 0⇔ T is weakly compact.

Proof. Proofs of (i), (ii) and (iii) are standard when applying definitions of α and β together with Definition
2.1 and Proposition 2.2.
(iv) From the properties of ω (see Definition 2.1 and Proposition 2.2), we have

ω((TS)(A)) ≤ ω(T)ω(S)ω(A),

then,

sup
{ω((TS)(A))

ω(A)
, ω(A) > 0

}
≤ ω(T)ω(S),

thus,
α(TS) ≤ α(T)α(S).

It follows that
ω((TS)(A))
ω(A)

≤
ω(T(S(A)))
ω(A)

≤ α(T)
ω(S(A))
ω(A)

,

then
inf
{ω((TS)(A))

ω(A)
, ω(A) > 0

}
≥ α(T) inf

{ω(S(A))
ω(A)

, ω(A) > 0
}
,
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thus,

β(TS) ≥ α(T)β(S). (1)

Consequently,
β(TS) ≥ β(T)β(S).

(v) Let A be a bounded set. ω(A) = 0 implies that A is relatively weakly compact, hence T(A) is relatively

weakly compact. Now for ω(A) > 0, if α(T) = 0, then
ω(T(A))
ω(A)

= 0, implies that ω(T(A)) = 0 which also

implies that T(A) is relatively weakly compact. Conversely, let A be a bounded set such that ω(A) > 0. If

T(A) is relatively weakly compact, then
ω(T(A))
ω(A)

= 0, and so

sup
{ω(T(A))
ω(A)

, A ∈ MX and ω(A) > 0
}
= α(T) = 0.

Which concludes the proof.

Remark 3.2. In relation (1), we can deduce that ω(TS) ≥ β(TS) ≥ ω(T)β(S).

Now, let us introduce the following definition needed in the sequel.

Definition 3.3. Let X and Y be two Banach spaces and T ∈ L(X,Y). We say that T is weakly proper if for
every K ∈ Kw(Y), T−1(K) ∈ Kw(X).

The following lemma gives a characterization of weakly proper operator see also (Definition 28, [7]).

Lemma 3.4. Let X be a Banach space, T ∈ L(X). If β(T) > 0, then T is weakly proper on bounded sets.

Proof. Let K be weakly compact set of X and B a bounded subset of X. We prove that A = B ∩ T−1(K) is
weakly compact. Suppose the opposite, we have then ω(A) , 0. Observe that

T(A) = T(B ∩ T−1(K)) ⊂ T(B) ∩ T(T−1(K)) ⊂ T(B) ∩ K,

then

ω(T(A)) ≤ ω(T(B) ∩ K)
≤ ω(K)(= 0).

It follows that ω(T(A)) = 0. Now, since β(T)ω(A) ≤ ω(T(A)) and ω(A) , 0, then β(T) = 0, which is a
contradiction whence the result.

Theorem 3.5. Let X be a Banach space and T ∈ L(X). If for any bounded subset B of X and for any compact
K of X, the set {x ∈ B : Tx ∈ K} is weakly compact, then T ∈ Φ1+(X).

Proof. Let B := B(0, 1) denote the closed unit ball. Obviously, N(T) ∩ B = T−1
{0} ∩ B is weakly compact,

then N(T) is reflexive. Suppose that R(T) is not closed, then there exists a sequence (xn)n in X such that
(Txn)n converge to a point y ∈ X\R(T). Note we may suppose for all n ∈ N that xn < N(T). For each
n ∈ N, put dn = dist (xn,N(T)). Clearly, dn > 0. We claim that dn → ∞ as n → ∞. To see this, suppose
otherwise. Then there exist A > 0 and a subsequence (dφ(n))n of (dn)n such that dφ(n) < A for all n ∈N. Since
dφ(n) = inf

y∈N(T)
∥xφ(n) − y∥, there exists a sequence (yφ(n))n ⊂ N(T) such that for all n ∈ N, ∥xφ(n) − yφ(n)∥ < 2A.

Hence, (xφ(n) − yφ(n))n ⊂ B(0, 2A). Now, observe that

{T(xφ(n) − yφ(n)),n ∈N} ⊂ {Txφ(n),n ∈N} ∪ {y} := K.
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It follows that
(xφ(n) − yφ(n))n ⊂ T−1(K) ∩ B(0, 2A).

Since K is compact, then T−1(K) ∩ B(0, 2A) is weakly compact, then there exist a subsequence (xφ◦ψ(n) −

yφ◦ψ(n))n∈N of (xφ(n) − yφ(n))n and x ∈ X such that xφ◦ψ(n) − yφ◦ψ(n) ⇀ x. Thus,

T(xφ◦ψ(n) − yφ◦ψ(n)) ⇀ y.

It follows that y = Tx, which is a contradiction. Hence, dn →∞.
Now let us define the sequence (zn)n by:

zn =
(xφ(n) − yφ(n))
∥xφ(n) − yφ(n)∥

, n ∈N.

Clearly,

∥Tzn∥ =
1

∥xφ(n) − yφ(n)∥
∥Txφ(n)∥

≤
1

dφ(n)
∥Txφ(n)∥.

Thus,

∥Tzn∥ ≤
1

dφ(n)
∥T∥(∥xφ(n) − yφ(n)∥ + ∥yφ(n)∥). (2)

Since (yφ(n))n ⊂ B(xφ(n), 2A)∩N(T) is weakly compact, then there exist a subsequence (yφ◦γ(n))n∈N and M > 0
such that ∥yφ◦γ(n)∥ ≤M for all n ∈N. By Inequality (2), we obtain

∥Tzγ(n)∥ ≤
1

dφ◦γ(n)
∥T∥(2A +M).

Thus, Tzγ(n) → 0. Since ∥zγ(n)∥ = 1 and Tzγ(n) → 0, then (zγ(n))n∈N ⊂ B(0, 1) ∩ T−1(K′ ) where K′ is the compact
set defined by K′ := {Tzγ(n), n ∈N} ∪ {0}. Taking into account that B(0, 1) ∩ T−1(K′ ) is weakly compact, then
there exist a subsequence (zγ◦ξ(n))n of (zγ(n))n and z ∈ X such that zγ◦ξ(n) ⇀ z, then Tzγ◦ξ(n) ⇀ Tz. It follows
that z ∈ N(T).
But for all n ∈N,

∥zγ◦ξ(n) − z∥ = ∥
xφ◦γ◦ξ(n) − yφ◦γ◦ξ(n)

∥xφ◦γ◦ξ(n) − yφ◦γ◦ξ(n)∥
− z∥

=
1

∥xφ◦γ◦ξ(n) − yφ◦γ◦ξ(n)∥
∥xφ◦γ◦ξ(n) − yφ◦γ◦ξ(n) − z∥xφ◦γ◦ξ(n) − yφ◦γ◦ξ(n)∥∥

≥
1

2A
(dφ◦γ◦ξ(n) − ∥z∥dφ◦γ◦ξ(n))

≥
1

2A
(1 − ∥z∥)dφ◦γ◦ξ(n).

Since dφ◦γ◦ξ(n) →∞, it follows that ∥zφ◦γ(n) − z∥ → ∞, which is a contradiction.

Theorem 3.6. Let X be a non-reflexive Banach space and T ∈ L(X). The following statements hold.

(i) If β(T) > 0, then T ∈ Φ1+(X).
(ii) Assume that X satisfies the property (H1) and T ∈ Φ1+(X), then β(T) > 0.
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Proof. (i) By Lemma 3.4 and Theorem 3.5 we conclude the result.
(ii) Let X be a non-reflexive Banach space having the property (H1) and T ∈ L(X). Since T is an upper
generalized semi-Fredholm operator then it is left invertible modulo a weakly compact operator and so
there exist T0 ∈ L(X) and W ∈ W(X) such that T0T = I +W.
If β(T) = 0, then for all ε > 0, there exists a bounded subset Dε withω(Dε) > 0 and ω(T(Dε))

ω(Dε)
≤ ε. Take ε < 1

ω(T0) .
Then,

ω(T(Dε)) ≤ εω(Dε)
≤ εω((T0T −W)Dε)
≤ εω(T0TDε) + εω(WDε)
≤ εω(T0)ω(T(Dε)) + εω(W)ω(Dε)
≤ εω(T0)ω(T(Dε)).

It follows that
(1 − εω(T0))ω(T(Dε)) ≤ 0.

Since εω(T0) < 1, then ω(T(Dε)) = 0 i.e., T(Dε) is relatively weakly compact set. Since T is left invertible
modulo weakly compact operator, then T0TDε = ((I +W)Dε) is relatively weakly compact. Hence Dε is
relatively weakly compact i.e., ω(Dε) = 0, which is a contradiction.

Now, we present the following remark.

Remark 3.7. It easy to check that, T ∈ Φ1+(X) if and only if, T∗ ∈ Φ1−(X∗), where X is a Banach space.

Theorem 3.8. Let X be a non-reflexive Banach space and T ∈ L(X). The following statements hold.

(i) If β(T∗) > 0, then T ∈ Φ1−(X).
(ii) If β(T) > 0 and β(T∗) > 0, then T ∈ Φ1(X).

Proof. (i) β(T∗) > 0, then by Theorem 3.6 (i), we conclude that T∗ ∈ Φ1+(X∗). Hence, T ∈ Φ1−(X).
(ii) Combining assumption (i) and Theorem 3.6 (i), we obtain the result.

As proved in ([21], Theorems 5,6,9), we can extend these results to generalized Fredholm operators.

Theorem 3.9. Let X be a non-reflexive Banach space having the property (H1) and let T,S ∈ L(X). The
following statements hold.

(i) If ST ∈ Φ1+(X), then T ∈ Φ1+(X).
(ii) If ST ∈ Φ1−(X) and X∗ satisfies the property (H1), then S ∈ Φ1−(X).
(iii) If ST ∈ Φ1(X) and X∗ satisfies the property (H1), then S ∈ Φ1−(X) and T ∈ Φ1+(X).

Proof. (i) Let ST ∈ Φ1+(X). Since X satisfying the property (H1), then there exist A ∈ L(X) and W1 ∈ W(X)
such that AST = I −W1 which implies that β(T) > 0 and so by Theorem 3.6 (i) we infer that T ∈ Φ1+(X).
(ii) The proof of (ii) can be checked in a dual way as (i).
(iii) The proof of (iii) follows from (i) and (ii).

As a consequence result of Theorems 3.6 and 3.9 (i), we have the following remark.

Remark 3.10. Let X be a non-reflexive Banach space having the property (H1) and let T ∈ L(X). If T is left
and right invertible modulo the weakly compact operators, then T is a generalized Fredholm operator on
X.

We can get now, some perturbation results under properties (H1), (H2) and both of them.
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Theorem 3.11. Let X, Y and Z be three non-reflexive Banach spaces and let T ∈ L(X,Y), S ∈ L(Y,Z). The
following statements hold.
(i) Assume that X, Y and Z satisfy the properties (H1), (H) and (H2) respectively. If T ∈ Φ1(X,Y) and
S ∈ Φ1(Y,Z), then ST ∈ Φ1(X,Z).
(ii) Assume that X and Y satisfy the properties (H1) and (H2) respectively. If T ∈ Φ1(X,Y) and W ∈ W(X,Y),
then (T +W) ∈ Φ1(X,Y).
For X = Y = Z, we have the following assertions:
(iii) Assume that X has the property (H1). If T ∈ Φ1+(X) and W ∈ W(X), then (T +W) ∈ Φ1+(X).
(iv) Assume that X∗ satisfies the property (H1). If T ∈ Φ1−(X) and W ∈ W(X), then (T +W) ∈ Φ1−(X).
(v) Assume that X has the property (H1). If T ∈ Φ1+(X) and S ∈ Φ1+(X), then ST ∈ Φ1+(X).
(vi) Assume that X∗ has the property (H1). If T ∈ Φ1−(X) and S ∈ Φ1−(X), then ST ∈ Φ1−(X).

Proof. (i) Since X, Y and Z satisfy the properties (H1), (H) and (H2) respectively and T ∈ Φ1(X,Y) and
S ∈ Φ1(Y,Z), then by Theorem 2.4 there exist T0 ∈ L(Y,X), S0 ∈ L(Z,Y) and W1 ∈ W(X), W2,W3 ∈ W(Y)
and W4 ∈ W(Z) such that

T0T = IX +W1 on X, TT0 = IY +W2 on Y.
S0S = IY +W3 on Y, SS0 = IZ +W4 on Z.

Then,
T0S0ST = T0(IY +W3)T = IX +W1 + T0W3T = IX +W5, W5 ∈ W(X),

and
STT0S0 = S(IY +W2)S0 = IZ +W4 + SW2S0 = IZ +W6, W6 ∈ W(Z).

Now, by using Remark 3.10, we deduce that ST ∈ Φ1(X,Z).
(ii) The proof of (ii) is similar to (i).
(iii) Since X has the property (H1), T ∈ Φ1+(X) and W ∈ W(X), then by using assertions (iii) and (v) from
Proposition 3.1, we get β(T+W) = β(T) > 0. It follows from assertion (i) of Theorem 3.6 that (T+W) ∈ Φ1+(X).
(iv) Since X∗ has the property (H1) and T∗ ∈ Φ1+(X∗), then there exist T0 ∈ L(X∗) and W1 ∈ W(X∗) such that
T0T∗ = I +W1. Hence,

T0(T +W)∗ = I +W1 + T0W∗,

where W∗
∈ W(X∗). Implies that (T+W)T∗0 ∈ Φ1−(X). It follows from Theorem 3.9 (ii) that (T+W) ∈ Φ1−(X).

(v) Since X having the property (H1) and T,S ∈ Φ1+(X), then by assertion (ii) of Theorem 3.6, we conclude
that β(T) > 0 and β(S) > 0. Taking into account that β(ST) ≥ β(T)β(S) > 0, we deduce that ST ∈ Φ1+(X).
(vi) Assume that X∗ having the property (H1). Since T∗,S∗ ∈ Φ1+(X∗), then by the previous assertion (v), we
deduce that T∗S∗ ∈ Φ1+(X∗) and consequently, ST ∈ Φ1−(X).

Theorem 3.12. Let X and Y be two non-reflexive Banach spaces having the properties (H1) and (H2) respec-
tively. Assume that S ∈ Φ1(X,Y). Then there is an η > 0 such that for any T ∈ L(X,Y) satisfying ∥T∥ < η,
one has

(S + T) ∈ Φ1(X,Y).

Proof. Since S ∈ Φ1(X,Y), then by Theorem 2.4 there exist S0 ∈ L(Y,X), W1 ∈ W(X) and W2 ∈ W(Y) such
that S0S = I +W1 and SS0 = I +W2 and so,

S0(S + T) = I +W1 + S0T on X,

(S + T)S0 = I +W2 + TS0 on Y.

We have
∥S0T∥ ≤ ∥S0∥∥T∥ and ∥TS0∥ ≤ ∥T∥∥S0∥.

Take η = ∥S0∥
−1, hence ∥S0T∥ < 1 and ∥TS0∥ < 1. Thus the operators I + S0T and I + TS0 have bounded

inverses and so,
(I + S0T)−1S0(S + T) = I + (I + S0T)−1W1 on X,
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(S + T)S0(I + TS0)−1 = I +W2(I + TS0)−1 on Y.

Thus, by using Remark 3.10 we infer that (S + T) ∈ Φ1(X,Y).

Proposition 3.13. Let X and Y be two non-reflexive Banach spaces having the properties (H1) and (H2)
respectively and let T,S ∈ L(X,Y) where S is a nonzero operator. Then, Φ1,T,S is open.

Proof. Let λ0 ∈ Φ1,T,S, then by Theorem 3.12 there exists η > 0 such that for all α ∈ C with |α| < η
∥S∥ , the

operator (λ0S − αS − T) ∈ Φ1(X,Y). Consider |λ − λ0| <
η
∥S∥ , then (λS − T) ∈ Φ1(X,Y). So, Φ1,T,S is open.

The following result is an extension to weakly proper operator of the Lemma 4.2 in [11].

Lemma 3.14. Let X be a Banach space and let T ∈ L(X). Suppose that for some n ∈N\{0}, ω(Tn) < 1. Then
for any closed bounded B ⊂ X and for any weakly compact K ⊂ X, the set {x ∈ B : (I − T)x ∈ K} is weakly
compact, i.e., I − T is weakly proper on closed bounded sets.

Proof. Set M := {x ∈ B : (I − T)x ∈ K}, M is closed and bounded and K is weakly compact. It remains to
prove that ω(M) = 0. For this purpose let x ∈ M, then there exists y ∈ K such that x = Tx + y. Thus,
(I − T)(Tx + y) = Tx + y − T2x − Ty = y. Hence,

x = T2x + Ty + y.

When calculate (I − T)(T2x + Ty + y) = y, we get

x = T3x + T2y + Ty + y.

More generally, for any n ∈N, we obtain:

x = Tnx +
n−1∑
j=0

T jy. (3)

Let K1 :=
n−1∑
j=0

T j(K). Since T is continuous then K1 is weakly compact, and from Eq. (3), we deduce that

M ⊂ Tn(M) + K1,

then,
ω(M) ≤ ω(Tn(M)) ≤ ω(Tn)ω(M).

Thus, (1 − ω(Tn))ω(M) ≤ 0 and consequently, ω(M) = 0 .

We can now present a new generalization of Theorem 4.4 in [11]. Before that, let us present the following
useful lemma. The proof can be found in [16].

Lemma 3.15. Let X,Y be two Banach spaces and Z ⊂ X. For an operator T ∈ L(X,Y), the following
statements are equivalent.
(i) T is co-tauberian.
(ii) Every operator S ∈ L(Y,Z) is weakly compact whenever ST is weakly compact.

Theorem 3.16. Let X be a Banach space and let T ∈ L(X) such that ω(Tn) < 1 for some n ∈ N\{0}. Then,
(I − T) ∈ Φ1(X).
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Proof. By Theorem 3.5 and Lemma 3.14, we show that

(I − T) ∈ Φ1+(X). (4)

Let S ∈ L(X) such that S(I − T) is weakly compact. We have to prove that S is weakly compact. S(I − Tn) is
weakly compact thanks to S(I−Tn) = S(I−T)(I+T+ · · ·+Tn−1), where (I+T+ · · ·+Tn−1) is bounded. From
the expression S = S − STn + STn = S(I − Tn) + STn, we deduce that

ω(S) ≤ ω(STn) ≤ ω(S)ω(Tn)

and thus, (1 −ω(Tn))ω(S) ≤ 0, which implies that ω(S) = 0 and so S is weakly compact. Then, from Lemma
3.15, we infer that (I−T) is co-tauberian and according to Eq. (4) we conclude thatR(I−T) is closed. Hence,

(I − T) ∈ Φ1−(X). (5)

In view of Eqs. (4) and (5), we obtain the desired result.

Theorem 3.17. Let X be a non-reflexive Banach space and let T,S ∈ L(X). Ifα(T) < β(S), then (T+S) ∈ Φ1+(X).

Proof. By statement (iii) of Proposition 3.1, we prove that β(T + S) > 0, the result is then obtained from
statement (i) of Theorem 3.6.

Definition 3.18. Let X be a Banach space and let T,S ∈ L(X), we define the non-negative quantity:

Ψ(T) = sup{β(T + S) such that β(S) = 0}.

We denote byΨ0(T) the limit of the sequenceΨ(Tn)
1
n .

Theorem 3.19. Let X be a non-reflexive Banach space having the property (H1) and let T, S be two com-
muting bounded linear operators on X.

(i) If ψ(T) < β(S), then (T + S) ∈ Φ1+(X).
(ii) If ψ(Tn) < β(Sn), then (T + S) ∈ Φ1+(X).

Proof. (i) Suppose that (T + S) < Φ1+(X), so by assertion (i) of Theorem 3.6 we get β(T + S) = 0. Then,

β(S) = β(T − (T + S))

≤ sup{β(T − (T + S)) such that β(T + S) = 0}

= sup{β(T + (−(T + S))) such that β(−(T + S)) = 0}.

Put S′ := −(T + S), then

β(S) ≤ sup{β(T + S′) such that β(S′) = 0}.

= ψ(T).

Hence,
β(S) ≤ ψ(T).

(ii) Suppose β(T + S) = 0. By assertion (ii) of Theorem 3.6 and since X satisfies the property (H1), we infer
that (T + S) < Φ1+(X). We have

(Tn + Sn) = (Tn−1
− Tn−2S + Tn−3S2 + · · · + Sn−1)(T + S).
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Since (T + S) < Φ1+(X), then from Theorem 3.9 (i), we deduce that (Tn + Sn) < Φ1+(X) and so β(Tn + Sn) = 0.
Therefore,

β(Sn) = β(Tn
− (Tn + Sn))

≤ sup{β(Tn + (−(Tn + Sn))) such that β(Tn + Sn) = 0}

= sup{β(Tn + (−(Tn + Sn))) such that β(−(Tn + Sn)) = 0}.

Take A := −(Tn + Sn), then

β(Sn) ≤ sup{β(Tn + A) such that β(A) = 0}

= ψ(Tn).

Thus,
β(Sn) ≤ ψ(Tn).

The following result consists to a generalization of [[6], Proposition 3.1].

Proposition 3.20. Let X be a non-reflexive Banach space having the property (H) and let T ∈ L(X) and
S ∈ Φ1(X). If S0 ∈ L(X) is an inverse of S modulo weakly compact operators, then we have the following.
(i) If ω(TS0) < 1, then (T − S) ∈ Φ1(X).
(ii) If ω(S0T) < 1, then (T − S) ∈ Φ1(X).

Proof. (i) According to Theorem 3.16, we show that (I − TS0) ∈ Φ1(X). Since X has the property (H) and
S ∈ Φ1(X), then by Theorem 2.4, there exist S0 ∈ L(X) and W1 ∈ W(X) such that S0S = I +W1. Thus,
(I −TS0)S ∈ Φ1(X). This implies that (I −TS0)S = (S−TS0S) = (S−T −TW1) ∈ Φ1(X), hence (T − S) ∈ Φ1(X).
(ii) The proof of (ii) is similar to (i).

We are able now to give a singular perturbation result of generalized Fredholm operators which extends
the Theorem 4.63 in [1].

Theorem 3.21. Let X be a non-reflexive Banach space having the property (H1) and let T ∈ L(X) and
S ∈ L(X). If T is a generalized Fredholm and S is strictly singular, then T + S is a generalized Fredholm
operator.

Proof. S is strictly singular, then from Theorem 2.6, there exist closed subspaces X1 of X and X2 of X1 such
that S1 : X2 → X is compact. Consider S as a composite mapping as follow:

X
P1
−→ X1

P2
−→ X2

S1
−→ X,

in order to obtain S = S1 ◦ P2 ◦ P1. Then,

α(S) = α(S1P2P1) ≤ α(S1)α(P2P1). (6)

Since S1 ∈ K (X) ⊂ W(X), we get α(S1) = 0. This result, combined with the use of Eq. (6) allow us to
conclude that α(S) = 0. Using the fact that T ∈ Φ1+(X), then by Theorem 3.6 (ii), we deduce that β(T) > 0. To
prove that (T+S) ∈ Φ1+(X), it suffices to show that β(T+S) > 0. For this purpose, we have from Proposition
3.1 (iii) that

β(T + S) ≥ β(T) − α(S).

Since β(T) > 0 and α(S) = 0, then we infer that β(T + S) > 0. Therefore, by assertion (i) from Theorem 3.6 we
obtain that

(T + S) ∈ Φ1+(X). (7)
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Now, by using Lemma 3.15, it remains to prove that T + S is co-tauberian. For this purpose let A ∈ L(X)
such that A(T + S) is weakly compact. It is enough to show that A is weakly compact. We have,

ω(A(T + S)) ≥ ω(A)β(T + S).

Since β(T + S) > 0 and ω(A(T + S)) = 0, then ω(A) = 0. Hence (T + S) ∈ T d(X). From Eq. (7), it follows that
R(T + S) is closed. Consequently,

(T + S) ∈ Φ1−(X). (8)

According to Eqs. (7) and (8), we deduce the result.

Now, we shall present an example of tauberian and co-tauberian operator from [15] which is not a general-
ized Fredholm.

Example 3.22. Let X be a non-reflexive Banach space and let T an operator in X defined by

T : l2(X) −→ l2(X)
(xn) 7→ (xn/n).

is not a generalized Fredholm. Indeed,
firstly, we have that for any normed linear space X, the dual of l2(X) is l2(X∗). Hence, T∗ maps l2(X∗) into
itself and T∗∗ maps l2(X∗∗) into itself. Indeed, the isomorphism P from l2(X∗) to l2(X)∗ is defined by:

P : l2(X∗) −→ l2(X)∗

( fn)n 7→

∞∑
n=0

( fn(xn)),

for all (xn)n ∈ l2(X). It is not difficult to prove that P is linear and bijective.
Secondly, clearly T is bounded. Furthermore, we have

(T∗∗)−1(l2(X)) = {x∗∗n ∈ l2(X∗∗) such that (x∗∗n /n) ∈ l2(X)}.

Since (x∗∗n /n) ∈ l2(X), then x∗∗n ∈ X, for each n. Moreover,

x∗∗n ∈ l2(X∗∗) and x∗∗n ∈ X, for each n.

Thus, x∗∗n ∈ l2(X) and so T is tauberian. Now, using the fact that T is co-tauberian whenever T∗ is tauberian
and applying the same way as above, then we conclude that T is co-tauberian. However, the range of T is
not closed. Hence, we infer that T is not a generalized Fredholm operator.

4. Generalized S-essential spectra

In this section we investigate the generalized S-essential spectrum of a bounded linear operator acting
on a Banach space X and present some generalization of results obtained in [17]. We begin with the a
classical definition:

Definition 4.1. Let X be a Banach space and let T and S be two bounded linear operators on X. We
respectively define the generalized Wolf S-essential spectrum and the generalized Gustafson S-essential
spectrum of T by:

σSe4,1(T) :=
{
λ ∈ C such that (λS − T) < Φ1(X)

}
, and

σSe1,1(T) :=
{
λ ∈ C such that (λS − T) < Φ1+(X)

}
.

The generalized S-resolvent ρS,1(T) is C\σSe4,1(T). The generalized S-essential spectral radius of T is defined
by:

rSe,1(T) := sup{|λ| such thatλ ∈ σSe4,1(T)}.
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Note that for S = I, the two previous generalized essential spectra of T will be respectively denoted by
σe4,1(T) and σe1,1(T) and ρS,1(T) (resp. rSe,1(T)) will simply be denoted by ρ1(T) (resp. re,1(T)).

Now, let us start with the following classical result concerning the invariance of spectra.

Proposition 4.2. Let X be a non-reflexive Banach space and let T and S be two bounded linear operators on
X.

(i) If S is an invertible operator, then σSe4,1(T) = σe4,1(S−1T).
(ii) Assume that X having the property (H) and S ∈ Φ1(X). Then,

σe4,1(T) = σSe4,1(TS) = σSe4,1(ST).

Proof. (i) λ < σe4,1(S−1T) implies that (λI − S−1T) ∈ Φ1(X). Since S is invertible, it follows that S ∈ Φ(X) ⊂
Φ1(X), then S(λI − S−1T) = (λS − T) ∈ Φ1(X). We infer that λ < σSe4,1(T). Conversely, if λ < σSe4,1(T), then
(λS − T) ∈ Φ1(X). Since S is invertible, we obtain (λI − S−1T) ∈ Φ1(X), thus λ < σe4,1(S−1T).

(ii) Let us prove the first equality σe4,1(T) = σSe4,1(ST). If λ < σe4,1(T), then (λI − T) ∈ Φ1(X). Since S ∈ Φ1(X),
then by Theorem 3.11 (i) we deduce that S(λI−T) ∈ Φ1(X). Hence, λ < σSe4,1(ST).Conversely, ifλ < σSe4,1(ST),
then (λS − ST) ∈ Φ1(X). Since S ∈ Φ1(X), then by Theorem 2.4 there exist S0 ∈ L(X) and W1 ∈ W(X) such
that S0S = I +W1. Then, S0(λS − ST) = (λI − T + λW1 −W1T) ∈ Φ1(X), and so by statement (ii) of Theorem
3.11 we conclude that (λI − T) ∈ Φ1(X). Thus, λ < σe4,1(T). Similarly we prove that σe4,1(T) = σSe4,1(TS).

Now, we can give the second main result concerning the generalized S-essential spectrum of T.

Theorem 4.3. Let X be a non-reflexive Banach space having the property (H1) and T and S be two bounded
linear operators on X. Then,

σSe1,1(T) =
⋂

W∈W(X)

σSe4,1(T +W).

Proof. Let λ < σSe1,1(T), then (λS − T) ∈ Φ1+(X). Since X satisfies the property (H1) and (λS − T) ∈ Φ1+(X),
then by Theorem 3.11 (iii) we deduce that

(λS − T −W1) ∈ Φ1+(X), (9)

where, W1 ∈ W(X). It remains to show that (λS − T − W1) is co-tauberian. Let A ∈ L(X) such that
A(λS − T −W1) is weakly compact. By Lemma 3.15, it is enough to show that A is weakly compact.
We have

ω(A(λS − T −W1)) ≥ β(λS − T −W1)ω(A). (10)

Since (λS − T −W1) ∈ Φ1+(X), then by Theorem 3.6 (ii), we have

β(λS − T −W1) > 0.

Taking into account that ω(A(λS − T −W1)) = 0, then the use of Eq. (10) leads to ω(A) = 0. Hence, A is
weakly compact, and then (λS − T −W1) ∈ T d(X). From Eq. (9), we obtain that R(λS − T −W1) is closed.
Thus,

(λS − T −W1) ∈ Φ1−(X). (11)

From Eqs. (9) and (11), we conclude that (λS − T −W1) ∈ Φ1(X), which yields to λ <
⋂

W∈W(X)σSe4,1(T +W).
Conversely, let λ <

⋂
W∈W(X)σSe4,1(T +W), then there exists W ∈ W(X) such that λ ∈ ρS,1(T +W). Thus,

(λS−T−W) ∈ Φ1(X) and so (λS−T−W) ∈ Φ1+(X). Since X has the property (H1) and (λS−T−W) ∈ Φ1+(X),
then by Theorem 3.11 (iii) we deduce that (λS − T) ∈ Φ1+(X) and consequently, λ < σSe1,1(T).

Now, given a bounded linear operator S acting on a Banach space X, we introduce the following definitions.
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Definition 4.4. Let T ∈ L(X). The generalized Jeribi essential spectrum and the generalized Jeribi S-essential
spectrum of T are respectively defined by:

σ j,1(T) :=
⋂

W∈W∗(X)

σe4,1(T +W) and σSj,1(T) :=
⋂

W∈W∗(X)

σSe4,1(T +W).

Here, W∗(X) stands for each one of the sets W(X) or S(X), where S(X) is the class of strictly singular
operators [17].

Definition 4.5. Let X be a Banach space and T ∈ L(X). The generalized Jeribi S-essential spectral radius of
T is given by:

rSj,1(T) = sup{|λ| such thatλ ∈ σSj,1(T)}.

Note that when S = I, rSj,1(T) is simply denoted by r j,1(T).

As for the essential spectral radius defined in [6], we introduce the generalized essential spectral radius

Definition 4.6. [26] Let X be a Banach space. The generalized Calkin algebra of X (the quotient space
L(X)/W(X)) is denoted by Γ(X) and let Π the (canonical) quotient map of L(X) onto Γ(X).

Π : L(X) → Γ(X)
T → Π(T) = [T] = T +W(X).

For instance, We say that an operator T ∈ L(X) is generalized essentially invertible if Π(T) is invertible in
the generalized Calkin algebra. When X is non-reflexive has the property (H1), we see that the generalized
essentially invertible operators are precisely the generalized Fredholm operators. This is simply restatement
of Remark 3.10.

Remark 4.7. Let X be a non-reflexive Banach space having the property (H). An operator T ∈ L(X) is
generalized essentially invertible if and only if, is a generalized Fredholm. Then, the generalized Wolf
essential spectrum of T, σe4,1(T), is the spectrum of Π(T) in the algebra Γ(X). So, the generalized essential
spectral radius re,1(T) of T is equal to the spectral radius r(Π(T)) of Π(T) that is,

re,1(T) = r(Π(T)) = lim
n→∞

[
∥Tn
∥W

] 1
n , where

∥T∥W := inf
{
∥T +W∥,W ∈ W(X)

}
.

Now, we can give an extended notion of generalized S-essential spectral radius of a bounded operator:
Let X be a non-reflexive Banach space has the property (H). We consider the operators T ∈ L(X) and
S ∈ Φ1(X). Then, by Theorem 2.4, there exist S0 ∈ L(X) and W1,W2 ∈ W(X) such that SS0 = I +W1 and
S0S = I +W2. We start with the following proposition.

Proposition 4.8. Let the space X and the operators T and S defined as above. Then, according to the
notations mentioned in the definition above, the generalized S-essential spectral radius of T is given by the
formulas:

rSe,1(T) = lim
n→∞

[ω((TS0)n)]
1
n = lim

n→∞
[ω((S0T)n)]

1
n .

Proof. Let λ ∈ C. If |λ| > ω(TS0). In view of Proposition 3.20 (i), we see that (T−λS) ∈ Φ1(X) i.e., λ < σSe4,1(T).
Hence, rSe,1(T) ≤ ω(TS0).Now, set r := lim

n→∞
[ω((TS0)n)]

1
n . The limit of [ω((TS0)n)]

1
n exists for all T ∈ L(X) (see

[[11]: Lemma 2.16]). We have, according properties of ω : ω(TS0) ≤ ∥TS0∥W , and so
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lim
n→∞

[ω((TS0)n)]
1
n ≤ lim

n→∞
[∥(TS0)n

∥W]
1
n .

Since
r(Π(TS0)) = re,1(TS0) = rSe,1(TS0S)

and
rSe,1(TS0S) = rSe,1(T + TW1) = rSe,1(T), W1 ∈ W(X),

it follows that,

lim
n→∞

[ω((TS0)n)]
1
n ≤ rSe,1(T). (12)

In the other side, let λ ∈ C. If |λ| > r, then there exists n ∈ N∗ such that |λ|n > ω((TS0)n). By assertion (i) of
Proposition 3.20, we get (T − λS) ∈ Φ1(X) and thus λ < σSe4,1(T). This shows that

rSe,1(T) ≤ lim
n→∞

[ω((TS0)n)]
1
n . (13)

From Inequalities (12) and (13), we obtain the desired result. The other equality can be proved similarly.

Following notations of previous results, we give some strong arguments to locate the generalized S-essential
spectra.

Theorem 4.9. Let X be a non-reflexive Banach space having the property (H1) and let T,S ∈ L(X) such that
S is non vanishing nonzero and non weakly compact operator.

(i) If 0 < σe1,1(S), then σSe1,1(T) ⊂ D
(
0, ψ0(T)

β(S)

)
.

(ii) If 0 < σe1,1(S) ∪ σe1,1(T), then σSe1,1(T) ⊂ C
[
β0(T)

ψ(S)
,
ψ0(T)

β(S)

]
.

(iii) If 0 ∈ σe4,1(T), then σe4,1(T) ⊂ D(0, ψ0(T)).

Proof. (i) Let λ ∈ C, such that λ < D
(
0, ψ0(T)

β(S)

)
, means that |λ|β(S) > ψ0(T), then there exists n ∈N∗ such that

|λ|nβ(Sn) > ψ(Tn).

By using Theorem 3.19 (ii), we deduce that (T − λS) ∈ Φ1+(X), which implies that λ < σSe1,1(T).

(ii) Let λ ∈ C, such that λ < C
[
β0(T)

ψ(S)
,
ψ0(T)

β(S)

]
, i.e., |λ|ψ(S) < β0(T). Then, there exists n ∈N∗ such that

|λ|nψ(Sn) < β(Tn),

then using once more Theorem 3.19 (ii), we conclude that (T − λS) ∈ Φ1+(X) and thus, λ < σSe1,1(T).
(iii) Let n ∈ N∗ and suppose that |λ|n > ψ(Tn). Since β(I) = 1, then by assertion (ii) of Theorem 3.19, we
infer that (λI − T) ∈ Φ1+(X). This fact and by using Lemma 3.15 we obtain that (λI − T) ∈ T d(X). Hence,
(λI − T) ∈ Φ1(X) and consequently λ < σe4,1(T).

Theorem 4.10. Let X be a non-reflexive Banach space satisfying the property (H1) and let T and S be two
bounded linear operators on X such that S is a non weakly compact operator.

(i) If 0 < σe1,1(S) then σSj,1(T) ⊂ D
(
0, ψ0(T)

β(S)

)
.

(ii) If 0 < σe1,1(S) ∪ σe1,1(T) then σSj,1(T) ⊂ C
[
β0(T)

ψ(S)
,
ψ0(T)

β(S)

]
.
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Proof. AsW∗(X) containsW(X) and by applying Theorem 4.3, we get⋂
W∈W∗(X)

σSe4,1(T +W) ⊂
⋂

W∈W(X)

σSe4,1(T +W),

then we deduce that

σSj,1(T) ⊂ σSe1,1(T). (14)

(i) Combining relation (14) and Theorem 4.9 (i), we get that σSj,1(T) ⊂ D
(
0, ψ0(T)

β(S)

)
, if 0 < σe1,1(S) .

(ii) It suffices to use Eq. (14) together with assertion (ii) of Theorem 4.9 to obtain the desired result.

Theorem 4.11. Let X be a non-reflexive Banach space having the property (H1) and let T,S ∈ L(X). Then,

σSj,1(T) = σSe1,1(T).

Proof. Clearly, σSj,1(T) ⊂ σSe1,1(T). Now, we will show the following inclusion

σSe1,1(T) ⊂ σSj,1(T).

Let λ < σSj,1(T), then there exists W ∈ W∗(X) such that λ ∈ ρS,1(T +W). This implies that

(λS − T −W) ∈ Φ1(X). (15)

Taking into account thatW∗(X) is a two-sided ideal of L(X), we have in the two following cases:
1st case: If W ∈ W(X), then we can write

λS − T = λS − T −W +W. (16)

Since X satisfies the property (H1) and (λS − T −W) ∈ Φ1+(X), then by applying Theorem 3.11 (iii) to Eq.
(16), we deduce that (λS − T) ∈ Φ1+(X) and then λ < σSe1,1(T).
2nd case: If W ∈ S(X), then (λS−T−W)−1W ∈ S(X), it follows from Theorem 3.21 that (I+ (λS−T−W)−1W) ∈
Φ1(X). Implies that

(I + (λS − T −W)−1W) ∈ Φ1+(X). (17)

On the other hand, we have from Eq. (15) that

(λS − T −W) ∈ Φ1+(X). (18)

Furthermore, we have

(λS − T) = (λS − T −W)(I + (λS − T −W)−1W). (19)

Again, the use of Eqs. (17),(18),(19) and Theorem 3.11 (v), enables us to conclude that (λS − T) ∈ Φ1+(X),
and so λ < σSe1,1(T).

Remark 4.12. In Theorem 4.11, when S = I we get

σ j,1(T) = σe1,1(T).
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