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Abstract. In this paper, the nature of the singularity of a meromorphic functions of the form f (z) = 1
h(z) + a

for a ∈ C and h is an entire function having a Baker wandering domain, lying over the Baker omitted
value is discussed. Various dynamical issues relating to the singular values of f have been studied. Also
following are shown in this paper. If a be the Baker omitted value of f then f has a Quasi-nested wandering
domain U if and only if there exists {nk}k>0 such that each Unk surrounds a and Unk → a as k → ∞. If f is
a function having Quasi-nested wandering domain then all the Fatou components of f are bounded. In
particular, f has no Baker domain. Also existence of Quasi-nested wandering domain ensures that the Julia
component containing ∞ i.e., J∞ is a singleton buried component. At the end of the paper a result about
the non existence of Quasi-nested wandering domain is given.

1. Introduction.

Let f : C → Ĉ be a transcendental meromorphic function. For a given meromorphic function we are
interested in the convergence of the orbit: z, f (z), f 2(z), ..., f n(z) .... of a point z ∈ C. The nth iterates of
f , denoted by f n, generate a dynamical system. The set of points z ∈ C in a neighbourhood of which the
sequence of iterates { f n

}n>0 is defined and forms a normal family is called the Fatou set of f and is denoted
by F ( f ). The Julia set, denoted by J( f ), is the complement of F ( f ) in Ĉ. The Fatou set is open and the
Julia set is perfect. One can get some preliminary ideas of these sets from [2] and [9]. The dynamics of
transcendental functions can be seen in [8] and [10]. A Fatou component is a maximally connected subset
of the Fatou set. For a Fatou component U, Uk denotes the Fatou component containing f k(U). A Fatou
component U is called wandering if Un , Um for all n , m. A maximally connected subset of the Julia set is
called a Julia component. A component of the Julia set is called a Buried component if it is not contained in
the boundary of any Fatou component.

Let a ∈ Ĉ. If for every open neighborhood U containing a, there exists a component V of f−1(U) such
that f : V → U is not injective then a is called a singular value of f . The singular values of f are very
much essential in studying the dynamics of the function. Denote the set of singular values of f by S( f ).
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Corresponding author: Gorachand Chakraborty
The first author sincerely acknowledges the financial support of the Post Seed Grant received from Sidho-Kanho-Birsha University,

Purulia-723104, India [Ref No.: R/847/SKBU/2022; Date: 20.07.2022] and the second author sincerely acknowledges the financial
support rendered by DST-FIST running at the Department of Mathematics, University of Kalyani, Kalyani-741235, India.

Email addresses: gorachand11@gmail.com (Gorachand Chakraborty), sanjibdatta05@gmail.com (Sanjib Kumar Datta)



G. Chakraborty, S. K. Datta / Filomat 36:8 (2022), 2687–2694 2688

These are the closure of critical values and asymptotic values of f . The image of a critical point, that is,
f (z0) where f ′(z0) = 0 is called a critical value. A point a ∈ Ĉ is an asymptotic value of f if there exists
a curve γ : [0,∞) → C with limt→∞ |γ(t)| = ∞ such that a = limt→∞ f (γ(t)). A more general definition of
singular values is given below [3].

For a ∈ Ĉ and r > 0, let Br(a) be a disk (in the spherical metric) and choose a component Ur of f−1(Br(a))
in such a way that Ur1 ⊂ Ur2 for 0 < r1 < r2. There are two possibilities.

1.
⋂

r>0 Ur = {z} for z ∈ C. Then f (z) = a. The point z is called an ordinary point if (i) f ′(z) , 0 and a ∈ C,
or (ii) z is a simple pole. The point z is called a critical point if f ′(z) = 0 and a ∈ C, or z is a multiple
pole. In this case, a is called a critical value and we say that a critical point or an algebraic singularity
lies over a.

2.
⋂

r>0 Ur = ϕ. The choice r 7→ Ur defines a transcendental singularity of f−1. We say a transcendental
singularity lies over a. The singularity lying over a is called direct if there exists r > 0 such that f (z) , a
for all z ∈ Ur. The singularity lying over a is called logarithmic if f : U(r) → Br(a) \ {a} is a universal
covering for some r > 0. A singularity is called indirect if it is not direct.

A value a0 ∈ Ĉ is said to be an omitted value for a function f if a0 is never taken by f . It is easy to note
that each singularity lying over an omitted value is direct [3] .

Let M denote the class of meromorphic functions with at least two poles or one pole that is not an
omitted value. Let Mo and Mo

1 be the subset of M having at least one omitted value and exactly one omitted
value respectively. The dynamics of the functions in classes Mo and Mo

1 have been already studied in [12].
We know from [12] that if a function has only one omitted value and the Julia component containing it, is
non-empty and non-singleton then the iterated forward image of each multiply connected periodic Fatou
component must be a Herman ring. On the other hand, if the Julia component containing the omitted value
is singleton then every multiply connected Fatou component is either wandering or eventually becomes a
Herman ring or an infinitely connected Baker domain of period greater than 1. If all the omitted values are
in a Fatou component then any multiply connected Fatou component whenever it exists must ultimately
land on a Herman ring or on the Fatou component containing all the omitted values.

Let F denote the class consisting of meromorphic functions of the form f (z) = 1
h(z) + a for a ∈ C and

h is an entire function having a Baker wandering domain. The class F is a subclass of Mo
1 where the

singularity lying over the omitted value is of a particular type of non-logarithmic singularity. In [4], we call
an omitted value a ∈ Ĉ a Baker omitted value of f if for all r > 0, f−1(Br(a)) = C \

⋃
∞

i=1 Di where Di ∩ D j = ϕ
for i , j and each Di is a bounded simply connected domain. A Baker wandering domain is a wandering
component U of F ( f ) such that, for n large enough, Un is bounded, multiply connected and surrounds 0,
and Un → ∞ as n → ∞. A wandering domain U is said to be Quasi-nested if there exists a sequence {nk}

in N such that each Un is bounded, Unk surrounds 0 for all k > 0 and Unk → ∞ as k → ∞. Here Unk → ∞

as k→∞means in any neighbourhood of∞ contains infinitely many elements of the sequence {Unk }. Any
Baker wandering domain is a Quasi-nested wandering domain. But the converse is not true in general. A
Quasi-nested wandering domain is a Baker wandering domain when nk = k for all k. For transcendental
entire function both the concepts are same. Rippon and Stallard in [15] gave an example of a meromorphic
function having a Quasi-nested wandering domain.

The existence of Quasi-nested wandering domains and how such components control the dynamics of
a function is discussed in the current paper. In Section 2, we discuss the nature of the singularities of f ∈ F
lying over a where a is the Baker omitted value of f . Also we give some implications of Baker omitted
value on the singular values of f . In Section 3, it is mainly shown that for a given meromorphic function
with the Baker omitted value a, f has a Quasi-nested wandering domain U if and only if there exists {nk}k>0
such that each Unk surrounds a and Unk → a as k→∞. Finally, we have shown that if f has a Quasi-nested
wandering domain then all the Fatou components are bounded. Then Baker domain does not exist for f
as a particlar case. Also, it follows that the Julia component containing the point ∞ i.e., J∞ is a singleton
buried component. Also it is shown that when the omitted value is contained in a Fatou component, then
Quasi-nested wandering domains do not exist.
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2. The Baker omitted value.

In this section, the nature of singularity of f ∈ F lying over the Baker omitted value a has been described.
A result similar to below result was already proved in ([4], Lemma 2.1). Here we give the analysis with a
different approach.

Lemma 2.1. Let h be an entire function. Suppose that h has a Baker wandering domain. Let Dr = C \ Br(0). Then
for all r > 0, h−1(Dr) is connected and each of its boundary component is bounded. In particular, h−1(Dr) is infinitely
connected and is the complement of infinitely many simply connected domains.

Proof. First, we show that every component of h−1(Dr) is unbounded. If possible let Ur be a bounded
component of h−1(Dr). Then h(Ur) = Dr is bounded. This is a contradiction.

If Ur is any arbitrary component of h−1(Dr), we assert that Ur has no unbounded boundary component.
On the contrary, let γ be an unbounded boundary component of Ur. Then γ is a component of the pre-image
of {z : |z| = r}. If γ intersects {z : |z| = r}, then γ′ be the part of γ such that {z : |z| = r} ∩ γ′ = ϕ. Let W
be the Baker wandering domain of h and hk(W) is contained in the Fatou component Wk for some k ∈ N.
Then ∃ n0 ∈ N such that Wn ∩ γ′ , ϕ for all natural number n ≥ n0. Suppose that γ′n0

= γ′ ∩Wn0 . As
h(γ′) ⊂ {z : |z| = r}, h(γ′n0

) ⊂ {z : |z| = r}. Again as γ′n0
⊂ Wn0 and h(Wn0 ) ⊂ Wn0+1 we get that h(γ′n0

) ⊂ Wn0+1.
So dist(h(γ′n0

), 0) > r which is not true. This shows that Ur contains no unbounded boundary component.
Next to show that Ur is infinitely connected and this is the whole of h−1(Dr).

If c(Ur) = 1, since Ur is unbounded and has no unbounded boundary component then Ur = C. Since h
is entire, by Picard’s Theorem it can omit at most one point in C, but h(Ur) = Dr. Hence c(Ur) > 1. Suppose
that Ur is finitely connected. Since h−1(Dr) = Ur, h−1(Br(0)) is equal to the union of the finite number of
bounded complementary components of Ur. Then the points of Br(0) have only finite number of pre-images
which contradicts Picard’s Theorem. This shows that Ur is infinitely connected. Next to show that h−1(Dr)
is connected. If possible there is another component Us of h−1(Dr). Then Us is infinitely connected and has
no unbounded boundary component, which is not possible. So we conclude that Ur is equal to h−1(Dr) and
hence h−1(Dr) is connected.

Remark 2.2. Lemma 2.1 is true for all r > 0. If it does not hold for some r0 > 0, then h−1(Dr0 ) is finitely connected.
Then there are infinitely many points in Br0 (0) which are having finite number of pre-images. This is impossible
because of Picard’s Theorem. Hence it concludes that Lemma 2.1 is true for any neighborhood of∞.

The above result can be extended to the class F of meromorphic functions of the form f = 1
h + a where

a ∈ C and h is an entire function having a Baker wandering domain.

Lemma 2.3. Let f ∈ F . Then f−1(Br(a)) is unbounded and infinitely connected. In particular, there is only one
transcendental singularity lying over a and that is not logarithmic.

Proof. Since f−1(w) = h−1( 1
w−a ) for w ∈ Br(a), from Lemma 2.1, we have f−1(Br(a)) is an unbounded, connected

and infinitely connected subset of C and none of the boundary components is unbounded. Hence the
singularity lying over a is transcendental and not logarithmic.

Now the next remark is immediate from the definition of Baker omitted value.

Remark 2.4. If a ∈ C is a Baker omitted value of f then for all r > 0, f−1(Br(a)) = C −
⋃
∞

i=1 Di where each Di is a
simply connected bounded domain and Di ∩D j = ϕ for all i , j.

If f is a transcendental meromorphic function and a is a Baker omitted value of f then each Di contains
at least one pole. So when we increase the radius of the ball Br(a) then the diameter (the supremum of
distances of any pair of points of Di) of each Di decreases but they cannot vanish. If one Di is vanished
completely then a pole will be mapped to a finite number which is not possible.
If f is a transcendental entire function then∞ can be the only Baker omitted value for f . For this case, each
Di contains at least one zero. So when we increase the radius of the ball Br(a) then the diameter of each Di
decreases but they also cannot vanish. If one Di vanishes completely then each point of Di must be mapped
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to a nonzero finite number. This is a contradiction to the fact that, for all r > 0 and for the Baker omitted
value a of f , f−1(Br(a)) = C−

⋃
∞

i=1 Di where each Di is a simply connected bounded domain and Di ∩D j = ϕ
for all i , j.

Lemma 2.3 says that the omitted value a of f is actually a Baker omitted value. Let E denote the class of
transcendental entire functions. If f ∈ E ∪M has two asymptotic values in Ĉ, then f can not have a Baker
omitted value. To see it, let a and b be two asymptotic values of f . If possible let a be a Baker omitted
value. Then for some r > 0, f−1(Br(a)) = C \

⋃
∞

i=1 Di where Di ∩ D j = ϕ for i , j and each Di is a bounded
simply connected domain. Then for any neighborhood Nδ(b) (δ > 0) of b each component of f−1(Nδ(b)) will
be contained in some Di. Since each Di’s is bounded, each component of f−1(Nδ(b)) is also bounded. This
is a contradiction to b is an asymptotic value. Thus f can not have any Baker omitted value.

From above it follows that, if f ∈ M has a Baker omitted value then f ∈ M1
o . We now give certain

characterizations of functions in M1
o . Let E′ = {h ∈ E : h has no finite omitted value}. Let f ∈M1

o omit a then
h(z) = 1

f (z)−a is entire and does not omit any finite value. If h(z) omits some finite value b, then f omits a + 1
b

and then f omits two values a and a + 1
b which is a contradiction. So h(z) ∈ E′. For any 1 ∈ E′ the function

1
1

is meromorphic and omits 0. Two things are combined to say that functions in M1
o are in one-to-one

correspondence with functions in E′. That is M1
o � E′. If f ∈ E has a Baker omitted value then T f ∈ M1

o has
a Baker omitted value for a suitable Mobius transformation T.

In [1], Baker showed that if a transcendental entire function is bounded on a curve tending to infinity
then all of its Fatou components are necessarily simply connected. If an entire function h has a Baker
wandering domain, then it has multiply connected Fatou components. This implies that h can not be
bounded on a curve tending to ∞. This in turn shows that h has no finite asymptotic value. If h takes a
finite value only finitely often then that value is an asymptotic value for h. Hence we have the following.

Lemma 2.5. The function h takes every finite value infinitely often.

Lemma 2.5 tells that h has infinitely many zeros. Thus f is a transcendental meromorphic function
with infinite number of poles. The function f can be written as the composition of two functions, that is,
f (z) = 1(h(z)), where 1(z) = 1

z + a. Any asymptotic value of f is either an asymptotic value of 1 or an image
of some asymptotic value of h(z) under 1. Since there is no asymptotic value of h(z), and a is the asymptotic
value of 1(z) it shows that a is the only asymptotic value of f (z).

Lemma 2.6. If the critical values of h never accumulate at the origin, then S( f ) is bounded. Further, the function f
has a single asymptotic value a and infinitely many critical values converging to a.

Proof. The critical points of f are the same as that of h(z). As h is having a wandering domain it has infinite
number of singular values. But, since h has no finite asymptotic value, there are infinite number of critical
values and hence critical points. Let zn, n = 1, 2, ..., be the critical points of h.Now by our assumption,∞ is
not a limit point of the set { f (zn) : zn is a critical point of h, n = 1, 2, 3, ...}. So S( f ) is bounded. Again as a is
an omitted value of f , it is an asymptotic value.

By Bolzano-Weierstrass Theorem every infinite sequence will have a convergent subsequence. Let znk be
the convergent subsequence. But as k→∞, znk ↛ b for b in C because if znk → b as k→∞ then h′(z) = 0 on
a set that contains a limit point in it and hence by Uniqueness Theorem h′(z) ≡ 0 and h becomes a constant
function. This shows that znk → ∞ as k → ∞. By our assumption, since the singular values of h never
accumulate at the origin, therefore either h(znk )→∞ or h(znk ) tends to some finite number say b which may
not be an asymptotic value. If h(znk ) → ∞ then f (znk ) → a as k → ∞. If h(znk ) → b then f (znk ) → a + 1

b as
k→∞. Hence in both the cases, the set of all the singular values of f is bounded.

It has been proved in [12] that the functions in the class M0 do not have Baker wandering domains. So
this is true for functions in F . A periodic Fatou component U of period p is called a Baker domain if there
exists z0 ∈ ∂U such that f np(z) → z0 for z ∈ U as n → ∞, but f p(z0) is not defined. In [13], Rippon and
Stallard showed that transcendental meromorphic functions with S( f ) bounded have no Baker domain of
period 1. Hence the Fatou set of f has no Baker domain of period 1 for f ∈ F . Here we give a result about
the existence of multiply connected Fatou component of f ∈ F .
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Lemma 2.7. If Ja is singleton and buried for f ∈ F then there is a multiply connected Fatou component of f .

Proof. Given that Ja is singleton and buried of f . It is shown in [7] that if f is a transcendental meromorphic
function with at least one not omitted pole, if there exists a buried component of J( f ), then J( f ) is
disconnected. Since any f ∈ F has infinitely many poles and by Picard’s theorem for meromorphic functions
there exists at least one pole which is not omitted, we have J( f ) is disconnected, for any f ∈ F . Then the
disconnected Julia set implies that there exists at least one multiply connected Fatou component.

3. Existence of Quasi-nested wandering domains.

Let γ be any closed curve, and let B(γ) denote the union of all the bounded complementary components
of γ. We denote Unk−1 as the component of f−1(Unk ) such that f nk−1(U) ⊂ Unk−1.

Lemma 3.1. Let f be a meromorphic function with the Baker omitted value a. Let there exists {nk}k>0 and a Fatou
component U such that each Unk surrounds a. Then Ĉ \Unk−1 has a bounded component which surrounds a pole of f .

Proof. Take γ ⊂ Unk such that a ∈ B(γ). Then f−1(γ)∩Unk−1 is a disjoint union of closed curves. Let γ′ be any
such closed curve. Consider a component C of B(γ′). Let x ∈ ∂ f (C). If f (z) = x then z does not belong to the
interior of C by the Open Mapping Theorem. Take a sequence {xn}n>0 in f (C) such that xn → x as n → ∞.
Then there is zn ∈ C such that f (zn) = xn. Each limit point of {zn}n>0 is in C. Let z be one limit point such that
z ∈ ∂C then by the continuity of f at z, zn → z implies f (zn)→ f (z) as n→∞. i.e. as n→∞, xn → f (z). Since
limit of a sequence is unique, f (z) = x. Now take a sequence {an}n>0 in B(γ′) such that an → z as n → ∞.
Then by continuity of f at z, f (an) → f (z) as n → ∞. But f (an) ∈ f (B(γ′)) = A gives that f (z) ∈ ∂A ⊆ γ.
Thus f (z) = x ∈ γ. This proves that ∂ f (C) ⊆ γ. To ensure this, one can see [14]. If ∂ f (C) ⊊ γ then f (C) is
unbounded. Then a ∈ f (C) which is not possible. Therefore ∂ f (C) = γ. This implies that f (C) = B(γ) or
Ĉ \ B(γ). But f (C) = B(γ) implies that a ∈ f (C) which is not true. So f (C) = Ĉ \ B(γ) and thus the pole is in a
bounded component of Ĉ \Unk−1.

For a multiply connected Fatou component U, let B(U) denote the component of Ĉ \ U containing the
Baker omitted value a. Now we prove the following theorem.

Lemma 3.2. Let a be the Baker omitted value for f . Let there exists {nk}k>0 and a Fatou component U such that each
Unk → a as k → ∞ and a ∈ B(Unk ). Suppose that the Fatou components Unk and Unk′ surrounds a. Let Na be a
choosen neighborhood of a which does not intersect Unk and Unk′ . Then there exists a Fatou component Ul surrounding
a and is contained in Na such that it has a pre-image U∗∗ (which is not necessarily the U image under f n) surrounding
both Unk−1 and Unk′−1.

Proof. Firstly, by Lemma 3.1, the pre-images Unk−1 and Unk′−1 of Fatou components Unk and Unk′ respectively
are bounded. Since Unk → a as k → ∞, then any neighbourhood of a contains infinitely many Unk ’s
surrounding a. Then Na must contain at least one Fatou component which surrounds a. Let Ul be that Fatou
component. Since a is the Baker omitted value of f , pre-image component of B(Ul) under f is contained
in a smaller neighborhood of infinity (say) N that does not contain Unk−1 and Unk′−1. So there exists one
bounded component of Ĉ \N containing Unk−1 and Unk′−1 and hence the result.

Theorem 3.3. Let f be a meromorphic function with the Baker omitted value a. Then f has a Quasi-nested wandering
domain if and only if there exists {nk}k>0 and a Fatou component U such that each Unk surrounds a, Unk → a as
k→∞.

Proof. Let U be a Quasi-nested wandering domain of f . Then there is a subsequence {nk}k>0 ⊂ {n}n>0 such that Unk

surrounds poles of f and f (Unk ) = Unk+1 surrounds the omitted value a [12]. Since each limit function of { f n
}n>0

on a wandering domain is constant, f nk+1
|U → a or ∞ as k → ∞. Again since a is an asymptotic value there is an

asymptotic path γ such that f (γ(t)) → a when γ(t) → ∞ as (t → ∞). There exists R > 0 large enough, such that
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f (γ ∩ (BR(0))c) ⊂ Bδ(a) for δ > 0. Let for k ≥ k0, Unk ∩ (γ ∩ (BR(0))c) , ϕ and denote this set by γnk . For k > k0,
f (γnk ) ⊂ B(Unk0

). So f (Unk ) ⊂ B(Unk0
) ⊂ Bδ(a). As δ→ 0, f nk+1

|U → a as k→∞ and thus we have proved the first
part of the theorem.

Let U be any Fatou component and there exists {nk}k>0 such that Unk surrounds a with Unk → a as k→∞. Then,
to prove that U is a Quasi-nested wandering domain, we first show that Unk−1 is bounded, where Unk−1 is such that
f nk−1(U) ⊂ Unk−1 and f (Unk−1) = Unk . Since a is the Baker omitted value of f , f−1(B(Unk )) = Ĉ \

⋃
∞

i=1 Di, where
Di ∩ D j = ϕ for i , j and each Di is a simply connected bounded domain. Again, since Unk ⊂ Ĉ \ B(Unk ), any
component Unk−1 of f−1(Unk ) lie in some Di and hence is bounded.

We know by Lemma 3.1, that for each k > 0, Unk−1 surrounds a pole. Now suppose that there are infinitely many
k such that Unk−1 surrounds a single pole (say) w0. Then f nk−1

|U → w0 or∞ as k→ ∞. If f nk−1
|U → ∞ as k → ∞

then U satisfies all the conditions of Quasi-nested wandering domain and we are done. If f nk−1
|U → w0 as k → ∞

then f nk |U → f (w0) = ∞ as k → ∞ which is a contradiction to the fact that Unk → a as k → ∞. Now assuming
that there are only finitely many k for which Unk−1 surrounds a single pole. There exists Fatou components Unk−1 and
Unk′−1 surrounding wk and wk′ respectively where wk , wk′ and none of them surrounds the other. It is described in
Figure 1. By the definition of Baker omitted value a and mapping patern of f , we find another Fatou component U∗

surrounding Unk−1 which is the pre-image of some Fatou component Unk′′
surrounded by Unk′ . Then by Lemma 3.2,

we can choose Unk′′
with pre-images U∗ and U∗∗ such that U∗∗ (which may not be the image of U under f n) surrounds

both Unk−1 and Unk′−1. (see Figure 1)
Let A be the annulus bounded by γk−1 and γ∗∗ where γk−1 is the inner boundary of Unk−1 surrounding wk and γ∗∗

is the outer boundary of U∗∗ surrounding both wk and wk′ . Then f (A) is connected as A is connected, and f (A) is
unbounded as wk′ ∈ A. We can write

∂ f (A) ⊂ f (∂A) ⊂ ∂Unk ∪ ∂Unk′′ .

Now U∗ ⊂ A implies that f (U∗) ⊂ f (A), that is, Unk′′ ⊂ f (A). Thus

∂ f (A) ⊂ f (∂A) ⊂ ∂Unk .

This shows that f (A) contains everything in B(Unk ) and in particular the omitted value a, which is a contradiction.

Corollary 3.4. From the proof of the first part of the theorem it follows that, we have a sequence of shrinking Fatou
components Unk surrounding a. Again a is not in the boundary of any Fatou component, and hence there exists a
sequence znk ⊂ ∂Unk such that znk → a. Thus Ja is a singleton buried component.

Remark 3.5. The above theorem shows that if there is a Quasi-nested wandering domain then by ([12], Theorem 5)
all the multiply connected Fatou components not landing on any Herman ring are wandering and a is a limit point of
{ f n
}n>0 on each of these wandering domains. Further, in this case the forward orbit of a is an infinite set and singleton

buried components are dense in J( f ).

Example 3.6. Let f (z) = 1
ez+z + a for a ∈ C. Here a is the Baker omitted value for f (z). If a = −0.567 ∈ J( f ) and

|Ja| = 1, then we have the following cases. If Ja is not buried, then by ([12], Theorem 4) there exists an infinitely
connected Baker domain B with period at least 2 such that for any multiply connected Fatou component U, there is
a non-negative integer n depending on U with Un = B, and hence U is a Quasi-nested wandering domain. If Ja is
buried, then by Remark 3.5, all the multiply connected Fatou components are wandering.

4. Implications of Quasi-nested wandering domains.

Theorem 4.1. If f has a Quasi-nested wandering domain, then the following are true.

1. If f ∈Mo, then f has at most one asymptotic value and that is the omitted value of f .
2. All the Fatou components are bounded. In particular, f has no Baker domain.
3. J∞ is a singleton buried component.
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Figure 1: Here a is the Baker omitted value. The above figure describes the Theorem 3.1.

Proof. 1. On the contrary if f has two asymptotic values say a and b, then there are two different
asymptotic paths γa and γb corresponding to a and b respectively. Consider neighborhoods Nδ(a) and
Nδ(b) of a and b respectively for some δ > 0 such that Nδ(a) ∩Nδ(b) = ϕ. Let γ̃a be the part of γa such
that f (γ̃a) ⊂ Nδ(a). Also γ̃b be the part of γb such that f (γ̃b) ⊂ Nδ(b). By the definition of Quasi-nested
wandering domain, if it has such a component U, then there exists nk such that Unk → ∞ and take k0
large such that Unk0

∩ γ̃a as well as Unk0
∩ γ̃b are nonempty and denote them by γ′a and γ′b respectively.

Now f (γ′a) ⊂ Nδ(a) and f (γ′b) ⊂ Nδ(b). This is a contradiction.

2. If U is a Quasi-nested wandering domain, then there exists nk such that Unk →∞ as k→∞ where all
the Unk ’s are multiply connected, bounded and surrounds the origin. If V is a Fatou component of f
then it must be in the complement of

⋃
k≥0 Unk and as all the complementary components of

⋃
k≥0 Unk

are bounded, any such Fatou component is also bounded. So,∞ is not in the boundary of any Fatou
component.
Suppose that it has a Baker domain Bi of period p (say). Then f np

→ ∞ on Bi. This gives that Bi is
unbounded. This is a contradiction.
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3. Suppose U is a Quasi-nested wandering domain. Then from the definition, given any neighborhood
N(∞) of ∞, there exists nk0 for k0 > 0 such that Unk0

⊂ N(∞) and Unki
⊂ Ĉ \ B(Unk0

) for infinitely
many i. Each Unki

is a multiply connected domain and Unki
→ ∞ uniformly and hence |J∞| = 1. If

∞ is in the boundary of some Fatou component then that Fatou component is unbounded. Then by
(2) Quasi-nested wandering domain does not exist. Thus ∞ does not belong to the boundary of any
Fatou component. Hence J∞ is a singleton buried component.

Corollary 4.2. Let f ∈ M0 have Baker omitted value a and a ∈ F ( f ). Then f has no Quasi-nested wandering
domain.

Proof. If f ∈M0 having Baker omitted value a and a ∈ F ( f ) then there exist a unbounded Fatou component.
By Theorem 4.1(2), f has no quasi-nested wandering domain.

5. Future prospects.

The sigularity of f−1 lying over the Baker omitted value is non-logarithmic and this plays an important
role throughout this paper. This is in contrast with earlier works on dynamics of transcendental mero-
morphic functions with logarithmic singularities. The existence of Quasi nested wandering domain of a
meromorphic function f ensures that there exist no unbounded Fatou component of f . So for this case,
unbounded Herman ring does not exist for f . In [5, 6, 11], many results regarding the existence of Herman
ring of meromorphic functions are proved. So we incline to make the following conjecture. Meromorphic
functions with Quasi nested wandering domain have no Herman ring. In [4], we have seen that a function
with Baker omitted value has no asymptotic value other than the Baker omitted value. This restriction
seems to simplify the investigation of the dynamics of the function. Thus investigation of the dynamics of
meromorphic function with Quasi nested wandering domain is worth-doing.
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