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Abstract. We prove that every surjective isometry from the unit sphere of the space K(H), of all compact
operators on an arbitrary complex Hilbert space H, onto the unit sphere of an arbitrary real Banach space
Y can be extended to a surjective real linear isometry from K(H) onto Y. This is probably the first example
of an infinite dimensional non-commutative C∗-algebra containing no unitaries and satisfying the Mazur–
Ulam property. We also prove that all compact C∗-algebras and all weakly compact JB∗-triples satisfy the
Mazur–Ulam property.

1. Introduction

The problem of extending surjective isometries between the unit spheres of two Banach spaces has
experienced a substantial turn with the introduction, by M. Mori and N. Ozawa, of the so-called strong
Mankiewicz property. The celebrated Mazur–Ulam theorem has been a source of inspiration for many
subsequent research. A key piece among the different generalizations that appeared later is due to P.
Mankiewicz [33]. Let us recall that a convex subset K of a normed space X is called a convex body if it
has non-empty interior in X. P. Mankiewicz proved in [33] that every surjective isometry between convex
bodies in two arbitrary normed spaces can be uniquely extended to an affine function between the spaces.
M. Mori and N. Ozawa introduced the strong Mankiewicz property in [35]. According to the just quoted
paper, a convex subset K of a normed space X satisfies the strong Mankiewicz property if every surjective
isometry ∆ from K onto an arbitrary convex subset L in a normed space Y is affine. It is established by
Mori and Ozawa that for a Banach space X satisfying that the closed convex hull of the extreme points,
∂e(BX), of the closed unit ball, BX, of X has non-empty interior in X, every convex body K ⊂ X satisfies
the strong Mankiewicz property (see [35, Theorem 2]). By the Russo-Dye theorem every convex body of a
unital C∗-algebra satisfies the strong Mankiewicz property, and the same property holds for convex bodies
in real von Neumann algebras (see [35, Corollary 3]) and JBW∗-triples (cf. [4, Corollary 2.2]).

Based on the strong Mankiewicz property, M. Mori and N. Ozawa proved that unital C∗-algebras and real
von Neumann algebras are among the spaces satisfying the Mazur–Ulam property, that is, every surjective
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isometry from the unit sphere, S(A), of a unital C∗-algebra, or of a real von Neumann algebra A, onto the
unit sphere, S(Y), of an arbitrary real Banach space Y, admits a unique extension to a surjective real linear
isometry between the spaces (see [35]). J. Becerra Guerrero, M. Cueto-Avellaneda, F.J. Fernández-Polo and
the author of this note showed that every JBW∗-triple M which is not a Cartan factor of rank two always
satisfies the Mazur–Ulam property (cf. [4]). In a recent collaboration with O.F.K. Kalenda we prove that
every rank-2 Cartan factor satisfies the Mazur–Ulam property [29, Theorem 1.1], and consequently, every
JBW∗-triple enjoys the Mazur–Ulam property [29, Corollary 1.2]. These results simply are the most recent
advances of a long list of papers studying the extension of isometries between the unit spheres of two
Banach spaces (see, for example, [9, 11, 12, 19, 22–25, 28, 34, 35, 37, 38, 42, 43] and the surveys [36, 44]).

So the natural question is: what can we say in the case of Banach spaces or C∗-algebras whose closed
unit ball contains no extreme points? This is the case of the space K(H), of all compact operators on an
infinite dimensional complex Hilbert space H, where ∂e(BK(H)) = ∅. The lacking of extreme points of the
closed unit ball makes impossible a straight application of the arguments based on the strong Mankiewicz
property.

In [38], R. Tanaka and the author of this note proved that every surjective isometry between the unit
spheres of two compact C∗-algebras (in particular between the unit spheres of two spaces of compact linear
operators on a complex Hilbert space) extends (uniquely) to a surjective real linear isometry between the
two C∗-algebras. In collaboration with F.J. Fernández-Polo we showed that the same conclusion remains
valid for a surjective isometry between the unit spheres of two complex Banach spaces in the strictly wider
class of weakly compact JB∗-triples (cf. [25]). The reader can get access to the concrete definitions of
these objects in the subsequent section 2. In this paper we prove that weakly compact JB∗-triples satisfy a
much stronger property, namely, every weakly compact JB∗-triple E satisfies the Mazur–Ulam property, in
equivalent words, every surjective isometry from the unit sphere of E onto the unit sphere of an arbitrary
Banach space Y extends to a surjective real linear isometry from E onto Y (cf. Theorem 5.4).

Our strategy to solve the problem determines the structure of this note. In section 3 we gather some
new results derived from our knowledge on the facial structure of elementary JB∗-triples. New technical
properties of elementary JB∗-triples, established in Propositions 3.5 and 3.7, are applied to deduce that every
surjective isometry ∆ : S(K) → S(Y), where K is an elementary JB∗-triple and Y is a real Banach space, is
affine on every non-empty convex subset C ⊂ S(K) (cf. Corollary 3.8).

Section 4 is aimed to prove that every elementary JB∗-triple satisfies the Mazur–Ulam property (see
Theorem 4.1). In particular, for any complex Hilbert space H, the space K(H) satisfies the Mazur–Ulam
property (cf. Corollary 4.2). This closes a natural question which remained open until now. Let us observe
that in case that H is infinite dimensional the closed unit ball of K(H) lacks of extreme points. As shown
in [28], c0 satisfies the Mazur–Ulam property. Probably, the results in this note show the first example of a
non-commutative non-unital C∗-algebra satisfying this property.

As we know from many other mathematical problems, certain questions are easier to answer from a
more general point of view. This is the case of the Mazur–Ulam property for the space of compact operators;
the arguments in the wider class of elementary and weakly compact JB∗-triples are probably more abstract
but offer an accesible proof.

Our goal in the second part of the paper is to prove that every weakly compact JB∗-triple satisfies the
Mazur–Ulam property (see Theorem 5.4). For this purpose, we shall first show that the closed unit ball of
any weakly compact JB∗-triple enjoys the strong Mankiewicz property (cf. Corollary 5.2). A consequence
of this second main result, which is worth to be stated by its own importance, shows that every compact
C∗-algebra (that is, a C∗-algebra which coincides with a c0-sum of spaces of compact operators) also has the
Mazur–Ulam property (cf. Corollary 5.5).

2. Basic background and references

The Riemann mapping theorem is one of the best known results in the theory of holomorphic functions
of one variable. As it was already observed by H. Poincaré in 1907, ifC is replaced with a higher dimensional
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Banach space the conclusion of the Riemann mapping theorem is no longer valid, there are lots of simply
connected domains which are not biholomorphic to the open unit ball. Bounded symmetric domains in finite
dimensions were introduced and completely classified by E. Cartan. L. Harris proved in 1974 that the open
unit ball of every C∗-algebra is a bounded symmetric domain [27], a conclusion which remains true for
JB∗-algebras (see [5]). The most conclusive study was obtained by W. Kaup who proved that every bounded
symmetric domain in a complex Banach space is biholomorphically equivalent to the open unit ball of a
JB∗-triple (cf. [30]).

A complex Banach space E is called a JB∗-triple if it can be equipped with a continuous triple product
{., ., .} : E × E × E → E, which is conjugate linear in the middle variable and symmetric and bilinear in the
outer variables satisfying the following axioms:

(a) (Jordan Identity) L(a, b)L(x, y) − L(x, y)L(a, b) = L(L(a, b)x, y) − L(x,L(b, a)y), for all a, b, x, y, in E, where
L(x, y) is the linear operator defined by L(a, b)(z) = {a, b, z} (∀z ∈ E);

(b) The operator L(a, a) : E→ E is hermitian and has non-negative spectrum;
(c) ∥{a, a, a}∥ = ∥a∥3, for every a ∈ E.

It can be found in the previously mentioned references that every C∗-algebra A is a JB∗-triple with respect
to the triple product

(a, b, c) 7→ {a, b, c} = 1/2(ab∗c + cb∗a), (a, b, c ∈ A). (1)

This triple product also induces a structure of JB∗-triple for the space B(H1,H2) of all bounded linear
operators between two complex Hilbert spaces H1 and H2, and for every closed subspace of B(H1,H2)
which is closed for this triple product. In particular every complex Hilbert space and the space K(H1,H2),
of all compact linear operators from H1 to H2, are JB∗-triples. The class of JB∗-triples is also widen with all
JB∗-algebras when they are equipped with the triple product given by

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a − (a ◦ c) ◦ b∗. (2)

A subspace B of a JB∗-triple E is a JB∗-subtriple of E if {B,B,B} ⊆ B. A JB∗-subtriple I of E is called an inner
ideal of E if {I,E, I} ⊆ I. A subspace I of a C∗-algebra A is called an inner ideal if IAI ⊆ I. For example, if p and
q are projections in a C∗-algebra A, the subspace I = pAq is an inner ideal of A. Inner ideals of JB∗-triples are
studied and characterized in [15].

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. Every von Neumann algebra is a JBW∗-
triple. The theory of JB∗-triple runs in parallel to the theory of C∗-algebras. For example, the second dual of
a JB∗-triple E is a JBW∗-triple under a triple product extending the product of E [13]. It is also known that
every JBW∗-triple admits a unique isometric predual, and its triple product is separately weak∗ continuous
[2].

Let us recall that an element e in a C∗-algebra A is called a partial isometry if ee∗ (equivalently, e∗e) is a
projection. It is known that e is a partial isometry if and only if ee∗e = e. It is easy to see that, in terms
of the triple product given in (1), an element e ∈ A is a partial isometry if and only if {e, e, e} = e. In the
wider framework of JB∗-triples, elements satisfying {e, e, e} = e are called tripotents. For each tripotent e ∈ E
the eigenvalues of the operator L(e, e) are precisely 0, 1/2 and 1. For j ∈ {0, 1, 2}, by denoting by E j(e) the
j
2 -eigenspace of L(e, e), the JB∗-triple E decomposes as the direct sum

E = E2(e) ⊕ E1(e) ⊕ E0(e).

This decomposition is called the Peirce decomposition of E with respect to the tripotent e, and the projection of E
onto E j(e), which is denoted by P j(e), is called the Peirce j-projection (see [32]). It is further known that Peirce
projections are contractive (cf. [26]) and satisfy the following identities P2(e) = Q(e)2,P1(e) = 2(L(e, e)−Q(e)2),
and P0(e) = IdE − 2L(e, e) + Q(e)2, where for each a ∈ E, Q(a) : E → E is the conjugate linear map given
by Q(a)(x) = {a, x, a}. Consequently, in a JBW∗-triple Peirce projections are weak∗ continuous and Peirce
subspaces are weak∗ closed.
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Triple products among Peirce subspaces satisfy certain rules, known as Peirce rules or Peirce arithmetic,
asserting that, for k, j, l ∈ {0, 1, 2}we have {E0(e),E2(e),E} = {E2(e),E0(e),E} = {0},

{Ek(e),E j(e),El(e)} ⊆ Ek− j+l(e), if k − j + l ∈ {0, 1, 2}, and
{Ek(e),E j(e),El(e)} = {0} otherwise.

A tripotent e in E is called complete (respectively, unitary or minimal) if E0(E) = {0} (respectively, E2(e) = E or
E2(e) = Ce , {0}).

Orthogonality in JB∗-triples is another notion required in this note. Elements a, b in a JB∗-triple are said
to be orthogonal (written a ⊥ b) if L(a, b) = 0. It is known that a ⊥ b if, and only if, L(b, a) = 0 if, and
only if, {a, a, b} = 0 if, and only if, {b, b, a} = 0 (see [7, Lemma 1] for more equivalent reformulations). This
notion is consistent with the usual concept of orthogonality in C∗-algebras. Let a, b be elements in B(H)
(or in a general C∗-algebra). We say that a and b are orthogonal if ab∗ = b∗a = 0. It is well known that
∥a ± b∥ = max{∥a∥, ∥b∥} whenever a ⊥ b in (see [26, Lemma 1.3(a)]). For each non-zero finite rank partial
isometry e ∈ K(H) there exists a finite family of mutually orthogonal minimal partial isometries {e1, . . . , em}

in K(H) such that e = e1 + . . .+ em. We say that a tripotent e in a JB∗-triple E has finite rank if it can be written
as a sum of finitely many mutually orthogonal minimal tripotents.

To make easier our subsequent arguments we remark the following property: let u and e be two
orthogonal tripotents in a JB∗-triple E. Clearly e+ u is a tripotent in E and we can easily deduce from Peirce
arithmetic that

E2(e + u) = E2(e) ⊕ E2(u) ⊕ E1(e) ∩ E1(u). (3)

A subset S of a JB∗-triple E is called orthogonal if 0 < S and x ⊥ y for every x , y in S. The minimal
cardinal number r satisfying card(S) ≤ r for every orthogonal subset S ⊆ E is called the rank of E (cf. [31]
and [3] for basic results on the rank of a Cartan factor and a JB∗-triple).

Let B be a subset of a JB∗-triple E. We shall denote by B⊥ the (orthogonal) annihilator of B defined by
B⊥ = B⊥

E
:= {z ∈ E : z ⊥ x,∀x ∈ B}. Given a tripotent e in E the inclusions

E2(e) ⊕ E1(e) ⊇ {e}⊥⊥
E
= E0(e)⊥ ⊇ E2(e)

always hold (see [8, Proposition 3.3]). It is also known that the equality {e}⊥⊥
E
= E2(e) is not always

true. The following counterexample can be found in [8, Remark 3.4]: suppose H1 and H2 are two infinite
dimensional complex Hilbert spaces and p is a minimal projection in B(H1). If E denotes the orthogonal
sum pB(H1) ⊕∞ B(H2) and we consider e = p as an element in E, it can be checked that p is a non-complete
tripotent in E, {e}⊥

E
= B(H2) and {e}⊥⊥

E
= E2(e) ⊕ E1(e) = pB(H1) , Cp = E2(e).

Despite of the previous counterexample, if we assume that E is a Cartan factor and e is a non-complete
tripotent in E, then the equality {e}⊥⊥ = E0(e)⊥ = E2(e) is always true (see [31, Lemma 5.6]).

This seems an appropriate moment to refresh the definition of Cartan factors. A JB∗-triple is called a
Cartan factor of type 1 if it is a JB∗-triple of the form B(H1,H2), where H1 and H2 are two complex Hilbert
spaces. Let j be a conjugation on a complex Hilbert space H, and consider the linear involution x 7→ xt := jx∗ j
on B(H). A Cartan factor of type 2 (respectively, type 3) is a JB∗-triple which coincides with the subtriple
of B(H) formed by the t-skew-symmetric (respectively, t-symmetric) operators. All we need to know in
this note about types 4, 5 and 6 Cartan factors is that the first one is reflexive while the last two are finite
dimensional (see [31] for more details).

According to [6], given a Cartan factor of type j ∈ {1, . . . , 6}, the elementary JB∗-triple K j of type j is
defined in the following terms: K1 = K(H1,H2); Ki = C ∩ K(H) when C is of type i = 2, 3, and Ki = C if the
latter is of type 4, 5, or 6. Obviously, if K is an elementary JB∗-triple of type j, its bidual is precisely a Cartan
factor of j.

We establish next a version of [31, Lemma 5.6] for elementary JB∗-triples.
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Lemma 2.1. Let K be an elementary JB∗-triple. Suppose e is a non-complete tripotent in K. Then we have {e}⊥⊥ =
K0(e)⊥ = K2(e).

Proof. If K is an elementary JB∗-triple of type j ∈ {4, 5, 6}we know that K is a Cartan factor of the same type
and hence the conclusion follows from [31, Lemma 5.6].

Suppose K is an elementary JB∗-triple of type j ∈ {1, 2, 3}. The corresponding bidual K∗∗ = C is a Cartan
factor of type j. By Goldstine’s theorem K is weak∗ dense in C. Since e ∈ K, and P0(e) is weak∗ continuous
in C, we deduce that K0(e) = {e}⊥

K
and K2(e) are weak∗ dense in C0(e) = {e}⊥

C
and C2(e), respectively. Thus

the desired conclusion also follows from [31, Lemma 5.6]. Namely, we know that {e}⊥⊥
K
= K0(e)⊥ ⊇ K2(e)

[8, Proposition 3.3]. Let us take x ∈ {e}⊥⊥
K

. In this case, {x, x, z} = 0 for all z ∈ {e}⊥
K
= K0(e). It follows

from the weak∗ density of K0(e) in C0(E) and the separate weak∗ continuity of the triple product of C that
{x, x, a} = 0 for all a ∈ {e}⊥

C
= C0(e). By [31, Lemma 5.6] we have x ∈ {e}⊥⊥

C
= C0(e)⊥ = C2(e), and consequently

x ∈ K2(e) = C2(e) ∩ K.

According to [6], an element x in a JB∗-triple E is called weakly compact (respectively, compact) if the
operator Q(x) : E → E is weakly compact (respectively, compact). We say that E is weakly compact (respec-
tively, compact) if every element in E is weakly compact (respectively, compact). If we denote by K(E) the
Banach subspace of E generated by its minimal tripotents, then K(E) is a (norm closed) triple ideal of E
and it coincides with the set of weakly compact elements of E (see Proposition 4.7 in [6]). It follows from
[6, Lemma 3.3 and Theorem 3.4] that a JB∗ triple, E, is weakly compact if and only if one of the following
statement holds:

a) K(E∗∗) = K(E).
b) K(E) = E.
c) E is a c0-sum of elementary JB∗-triples.

Obviously each non-zero tripotent in a weakly compact JB∗-triple is of finite rank. It was observed in
[38, Corollary 2.5] that the results in [6] can be applied to deduce that a JB∗-triple E is weakly compact if
and only if it contains every tripotent of E∗∗ which is compact relative to E in the sense of [16, 21].

It should be remarked here that weakly compact JB∗-triples are the JB∗-triple analogue of compact C∗-
algebras in the sense employed in [1, 45], with the exception that a C∗-algebra is compact if, and only if, it
is weakly compact (see [45]).

Corollary 2.2. Let K be an elementary JB∗-triple. Suppose e is a non-complete tripotent in K. Let x be an element in
K satisfying x ⊥ v for every minimal tripotent v ∈ K with v ⊥ e. Then x ∈ K2(e).

Proof. Let us observe that from Peirce arithmetic the Peirce 0-subspace K0(e) , {0} is an inner ideal of K.
Corollary 3.5 in [6] together with the fact that K is a factor show that K0(e) must be a weakly compact
JB∗-triple. By Remark 4.6 in [6] every element in the weakly compact JB∗-triple K0(e) can be approximated
in norm by finite positive linear combinations of mutually orthogonal minimal tripotents in K0(e). Since
every minimal tripotent in K0(e) is a minimal tripotent in K which is orthogonal to e, it follows from the
hypothesis that x ⊥ K0(e)⊥ = {e}⊥⊥. Lemma 2.1 implies that x ∈ K2(e).

Let us observe that Corollary 2.2 can be also proved by a direct argument in the case in which K = K(H)
where H is a complex Hilbert space.

We are actually interested in finding conditions on a tripotent e in a weakly compact JB∗-triple E to
guarantee that the equality {e}⊥⊥ = K0(e)⊥ = K2(e) holds (compare Lemma 2.1 and the counterexample in
page 3078).

Lemma 2.3. Let E =
c0⊕
i∈I

Ki be a weakly compact JB∗-triple, where each Ki is an elementary JB∗-triple. For each i ∈ I,

let πi denote the projection of E onto Ki. Suppose e is a tripotent in E such that πi(e) is a non-complete tripotent in Ki
for every i ∈ I. Then the identity {e}⊥⊥

E
= E0(e)⊥ = E2(e) holds.
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Proof. For each x ∈ E, we shall write x = (xi)i∈I with xi = πi(x). Since e is a tripotent in E the set I1 := {i ∈ I :
πi(e) , 0}must be finite. We observe that

{e}⊥
E
=

{
x ∈ E : xi ∈ {ei}

⊥

Ki
for all i ∈ I1

}
,

and hence
{e}⊥⊥

E
=

{
x ∈ E : xi ∈ {ei}

⊥⊥

Ki
for all i ∈ I1, xi = 0 for all i ∈ I\I1

}
.

Since for i ∈ I1, ei is a non-complete tripotent in Ki it follows from Lemma 2.1 that {ei}
⊥⊥

Ki
= (Ki)2(ei), and

consequently {e}⊥⊥
E
= K2(e).

Let us observe that the conclusion in the previous Lemma 2.3 remains true when E is replaced with an
ℓ∞-sum of Cartan factors.

3. New properties derived from the facial structure of an elementary JB∗-triple

Along this paper, given a Banach space X, the symbols BX and S(X) will stand for the closed unit ball
and the unit sphere of X, respectively.

The main goal of this paper is to prove that every weakly compact JB∗-triple satisfies the Mazur-Ulam
property. In a first step we shall study this property in the case of an elementary JB∗-triple K. If K is reflexive
it follows that K = K∗∗ is a Cartan factor, and hence the desired property follows from [4, Theorem 4.14,
Proposition 4.15 and Remark 4.16] when K has rank one or rank bigger than or equal to three and from
[29, Theorem 1.1.] in the remaining cases. We shall therefore restrict our study to the case in which K is a
non-reflexive elementary JB∗-triple (equivalently, an infinite dimensional elementary JB∗-triple of type 1, 2
or 3).

As in many previous studies, the facial structure of the closed unit ball of a Banach space X is a key
tool to determine if X satisfies the Mazur–Ulam property. The main reason being the fact that a surjective
isometry ∆ between the unit spheres of two Banach spaces X and Y maps maximal proper faces of BX to
maximal proper faces of BY (cf. [10, Lemma 5.1], [39, Lemma 3.5] and [40, Lemma 3.3]).

We recall that a convex subset F of a convex set C is called a face of C if for every x ∈ F and every
y, z ∈ C such that x = ty + (1 − t)z for some t ∈ [0, 1], we have y, z ∈ F. Let us observe that every proper (i.e.,
non-empty and non-total) face of the closed unit ball of a Banach space X is contained in S(X). Following
the notation in [35], a closed face F ⊆ S(X) is called an intersection face if

F =
⋂{

E : E ⊆ S(X) a maximal face containing F
}
.

If X is a complex C∗-algebra or the the predual of a von Neumann algebra, or more generally, a JB∗-triple or
the predual of a JBW∗-triple, every proper norm closed face of BX is an intersection face (see [41, Corollary
3.4] and [18, Proof of Proposition 2.4 and comments after and before Corollary 2.5]). It should be remarked
that this conclusion can be also derived from the main results in [14]. These facts together with [35, Lemma
8] are employed in the next result which was already stated in [29, Lemma 2.2].

Lemma 3.1. ([29, Lemma 2.2], [35, Lemma 8], [18, Proposition 2.4], [14, Corollary 3.11]) Let ∆ : S(E)→ S(Y)
be a surjective isometry where E is a JB∗-triple and Y is a real Banach space. Then ∆maps proper norm closed faces of
BE to intersection faces in S(Y). Furthermore, if F is a proper norm closed face of BE then ∆(−F) = −∆(F).

The structure of all norm closed faces of the closed unit ball of a JB∗-triple E was completely determined
in [14], where it is shown that each norm closed face of BE is univocally given by a tripotent in E∗∗ which
is compact relative to E (see [14, Theorem 3.10 and Corollary 3.12] and the concrete definitions therein).
As we observed before, each weakly compact JB∗-triple E contains all tripotents in E∗∗ which are compact
relative to E (see [38, Corollary 2.5]). Therefore, the norm closed faces of the closed unit ball of a weakly
compact JB∗-triple E are completely determined by the tripotents in E, consequently Theorem 3.10 in [14]
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in this concrete setting assures that for each proper norm closed face F of BE there exists a non-zero finite
rank tripotent e ∈ E such that

F = Fe = e +BE0(e) = (e + E0(e)) ∩ BE. (4)

Let us comment some of the difficulties we can find when applying our current knowledge. Suppose
∆ : S(K(H)) → S(Y) is a surjective isometry, where H is an infinite dimensional complex Hilbert space and
Y is a real Banach space. For each non-zero partial isometry e ∈ K(H), Lemma 3.1 shows that ∆(Fe) is an
intersection face in S(Y) and the restriction ∆|Fe : Fe → ∆(Fe) is a surjective isometry too. Henceforth, given
an element x0 in a Banach space X, we shall write Tx0 : X → X for the translation mapping defined by
Tx0 (x) = x + x0 (x ∈ X). By considering the commutative diagram

Fe ∆(Fe)

(1 − ee∗)BK(H)(1 − e∗e)

∆|Fe

T−e

∆e

we realize that if we could prove that B(1−ee∗)K(H)(1−e∗e) satisfied the strong Mankiewicz property, we could
get some progress to determine the behavior of ∆ on Fe. However, (1 − ee∗)K(H)(1 − e∗e) is a JB∗-triple
whose closed unit ball contains no extreme points (let us observe that H is infinite dimensional with ee∗

and e∗e finite rank projections). So, our current technology is not enough to attack the problem from this
perspective. We shall develop a new facial argument not contained in the available literature.

The following result is implicit in [20, Remark 20] and a detailed explanation can be found in [38, Lemma
3.3] from where it has been taken.

Lemma 3.2. [38, Lemma 3.3] Let e be a tripotent in a JB∗-triple E. Suppose x is an element in BE satisfying
∥e ± x∥ = 1. Then x ⊥ e.

We shall need the next consequence.

Lemma 3.3. Let e be a tripotent in a JB∗-triple E. Suppose x is an element in S(E) satisfying ∥e±x∥ ≤ 1. Then x ⊥ e.

Proof. Since S(E) ∋ x = 1
2 (x + e) + 1

2 (x − e), we deduce from ∥e ± x∥ ≤ 1 that ∥e ± x∥ = 1. Lemma 3.2 implies
that x ⊥ e as desired.

The next result has been borrowed from [29].

Lemma 3.4. [29, Corollary 2.4] Let ∆ : S(E)→ S(Y) be a surjective isometry where E is a JB∗-triple and Y is a real
Banach space. Suppose e is a non-zero tripotent in E, then ∆(−e) = −∆(e).

We are now in position to establish a new geometric result, based on the facial structure of BK(H), which
provides a new tool to prove the Mazur–Ulam property in the case of elementary JB∗-triples.

Proposition 3.5. Let ∆ : S(K) → S(Y) be a surjective isometry, where K is an elementary JB∗-triple and Y is a real
Banach space. Then for each tripotent e ∈ K and each minimal tripotent u ∈ K with e ⊥ u the set ∆(u + BK2(e)) is
convex and the restriction ∆|u+BK2(e) : u + BK2(e) → ∆(u + BK2(e)) is an affine mapping. Consequently, there exists a
real linear isometry Tu

e from K2(e) onto a norm closed subspace of Y satisfying ∆(Tu(x)) = ∆(u + x) = Tu
e (x) + ∆(u)

for all x ∈ BK2(e).

Proof. As we commented in page 3080, by [4, Theorem 4.14, Proposition 4.15 and Remark 4.16] and [29,
Theorem 1.1.], we can assume that K is non-reflexive (i.e. an infinite dimensional elementary JB∗-triple of
type 1, 2 or 3), and hence every tripotent in K is non-complete and of finite rank and K has infinite rank.

Let e and u be non-zero tripotents in K such that u is minimal and u ⊥ e. The conclusion clearly holds
for e = 0, we can therefore assume that e is a non-zero finite rank tripotent. Set w = e + u. Keeping the
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notation in (4) for each non-zero tripotent v ∈ K we write Fv = v +BK0(v) for the proper norm closed face of
BK associated with v.

LetD0 = ∆(Fu). Lemma 3.1 implies thatD0 is an intersection face in S(Y). Let us fix an arbitrary minimal
tripotent v ∈ K such that v ⊥ w. We set

D
v
1 :=

{
y ∈ D0 : ∥y ± ∆(v)∥ ≤ 1

}
.

We claim thatDv
1 is norm closed and convex. Namely, given y1, y2 ∈ D

v
1 and t ∈ [0, 1] the convex combination

ty1 + (1 − t)y2 ∈ D0 becauseD0 is convex. Furthermore

∥ty1 + (1 − t)y2 ± ∆(v)∥ ≤ t ∥y1 ± ∆(v)∥ + (1 − t) ∥y2 ± ∆(v)∥ ≤ 1,

witnessing that ty1 + (1 − t)y2 ∈ D
v
1. ClearlyDv

1 is norm closed.

Let us consider the inner ideal K2(e). Clearly K2(e) is a finite dimensional JBW∗-triple. We shall next
prove that

∆
(
BK2(e) + u

)
=
⋂{
D

v
1 : v a minimal tripotent in K with v ⊥ w

}
. (5)

(⊆) Let v ∈ K be a minimal tripotent with v ⊥ w. We take an element u + z ∈ u + BK2(e). Since u + z ⊥ v,
∆(−v) = −∆(v) (see Lemma 3.4), and ∆ is an isometry we have

∥∆(u + z) ± ∆(v)∥ = ∥z + u ± v∥ = max{∥z + u∥ , ∥v∥} = 1.

(⊇) Suppose next that y ∈ Dv
1 for every minimal tripotent v in K with v ⊥ w. It follows from the

definition that y ∈ D0 = ∆(Fu), and hence there exists x ∈ Fu satisfying ∆(x) = y. Thus, by Lemma 3.4 and
the assumptions, we have 1 ≥ ∥y ± ∆(v)∥ = ∥x ± v∥, for every v as above. Lemma 3.3 implies that x ⊥ v
for every minimal tripotent v ∈ K with v ⊥ w. It follows from Corollary 2.2 that x ∈ K2(w), and since
x ∈ Fu = u +BK0(u) we can easily see, for example from (3), that x ∈ u +BK2(e), as desired.

We consider next the following commutative diagram

u +BK2(e) ∆
(
u +BK2(e)

)

BK2(e) ∆
(
u +BK2(e)

)
− ∆(u)

τ−u

∆

∆u
e

τ∆(u) (6)

It follows from (5) that ∆
(
u +BK2(e)

)
, and hence ∆

(
u +BK2(e)

)
−∆(u), is a norm closed convex subset of S(Y).

Since K2(e) is a finite dimensional JBW∗-triple, it follows from [4, Corollary 2.2] thatBK2(e) satisfies the strong
Mankiewicz property. Therefore, by the strong Mankiewicz property there exists a surjective real linear
isometry Tu

e from K2(e) onto a norm closed subspace of Y whose restriction to BK2(e) is ∆u
e , that is

∆(u + x) = ∆(u) + ∆u
e (x) = ∆(u) + Tu

e (x),

for all x ∈ BK2(e).

Let us remark a consequence of the previous Lemma 3.3 and Corollary 2.2. The statement has been
actually outlined in the proof of the previous proposition.

Lemma 3.6. Let e be a non-complete tripotent in an elementary JB∗-triple K. Let {e}⊥min = {v minimal tripotent in K with v ⊥
e}. Then

BK2(e) = {x ∈ BK : ∥x − v∥ ≤ 1 for all v ∈ {e}⊥min}.
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Proof. (⊆) Take x ∈ BK2(e). It follows from Peirce arithmetic that x ⊥ v for all v ∈ {e}⊥min, and thus ∥x − v∥ =
max{∥x∥, ∥v∥} ≤ 1.

(⊇) Assume now that x ∈ BK with ∥x−v∥ ≤ 1 for all v ∈ {e}⊥min. We observe that−v ∈ {e}⊥min for all v ∈ {e}⊥min.
Therefore ∥x ± v∥ ≤ 1 for all v ∈ {e}⊥min. Lemma 3.3 implies that x ⊥ v for all v ∈ {e}⊥min. Corollary 2.2 proves
that x ∈ K2(e) as desired.

In the following proposition we explore the properties of the real linear isometries Tu
e given by Propo-

sition 3.5.

Proposition 3.7. Let ∆ : S(K) → S(Y) be a surjective isometry, where K is an elementary JB∗-triple and Y is a real
Banach space. Suppose e and v are tripotents in K with v minimal and v ⊥ e. Let Tv

e : K2(e) → Y be the real linear
isometry given by Proposition 3.5. Then the following statements hold:

(a) Tv
e = T−v

−e = T−v
e = Tv

−e;
(b) Suppose u is a minimal tripotent with u ⊥ v. Then ∆(u) = Tv

u(u);
(c) Suppose u is a minimal tripotent in K2(e). Then ∆(u) = Tv

e (u);
(d) For each x ∈ S(K2(e)) we have Tv

e (x) = ∆(x);
(e) If w is another minimal tripotent with w ⊥ e, the real linear isometries Tv

e and Tw
e coincide;

Proof. If K is reflexive, the desired conclusion is an easy consequence of [4, Theorem 4.14, Proposition 4.15
and Remark 4.16] and [29, Theorem 1.1.] because the latter results show that ∆ admits an extension to a
surjective real linear isometry. We shall therefore assume that K is non-reflexive. As we commented before,
under our hypotheses, K2(e) is a (weakly compact) finite dimensional JBW∗-triple, and thus every element
in K2(e) can be written as a finite positive combination of mutually orthogonal minimal projections in K.

(a) It follows from the arguments in the previous paragraph that it suffices to show that Tv
e (u) = T−v

−e (u) =
T−u

e (u) = Tu
−e(u) for every minimal tripotent u in K2(e) = K2(−e). Fix a minimal tripotent u ∈ K2(e). By

Lemma 3.4 and Proposition 3.5 we have

∆(v + u) = ∆(v) + Tv
e (u) = −∆(−v − u) = ∆(v) − T−v

e (−u) = ∆(v) + T−v
e (u),

∆(v − u) = ∆(v) − Tv
e (u) = −∆(−v + u) = −∆(−v) − T−v

−e (u) = ∆(v) − T−v
−e (u),

witnessing the desired equalities.

(b) The elements u ± v belong to the convex set u + BK2(v). By Proposition 3.5 ∆ is affine on u + BK2(v).
Therefore ∆(u) = 1

2∆(u+v)+ 1
2∆(u−v). Let us observe that ±v+u ∈ ±v+BK2(u). By applying Proposition 3.5,

Lemma 3.4 and (a) we deduce that

∆(u) =
1
2
∆(u + v) +

1
2
∆(u − v) =

1
2
(
∆(v) + Tv

u(u) + ∆(−v) + T−v
u (u)

)
= Tv

u(u).

(c) By Proposition 3.5 and statement (b) we get

∆(v) + Tv
e (u) = ∆(v + u) = ∆(v) + Tv

u(u) = ∆(v) + ∆(u),

which proves the desired identity.

(d) Let us take x ∈ S(K2(e)). Having in mind the arguments at the beginning of this proof, we can find

mutually orthogonal minimal tripotents e1, . . . , em such that x = e1 +

m∑
k=2

tkek, where t2, . . . , tm ∈ (0, 1]. Set

w = e2 + . . . + em. Proposition 3.5 applied to w and e1 guarantees that

∆(x) = ∆(e1) +
m∑

k=2

tkTe1
w (ek) = ∆(e1) +

m∑
k=2

tk∆(ek)
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= Tv
e (e1) +

m∑
k=2

tkTv
e (ek) = Tv

e

e1 +

m∑
k=2

tkek

 = Tv
e (x),

where in the second and third equalities we applied (c).
(e) This is a trivial consequence of (d) because by this statement the real linear isometries Tv

e and Tw
e

coincide with ∆ on S(K2(e)).

We can establish next a version of [29, Corollary 2.7] within the framework of elementary JB∗-triples.

Corollary 3.8. Let ∆ : S(K) → S(Y) be a surjective isometry, where K is an elementary JB∗-triple and Y is a real
Banach space. Let C ⊂ S(K) be a non-empty convex subset. Then ∆|C is an affine mapping.

Proof. If K is reflexive, then the conclusion follows from [29, Corollary 2.7]. Let us assume that K is non-
reflexive. Let C ⊂ S(K) be a non-empty convex subset, x, y ∈ C and t ∈ [0, 1]. By the structure of elementary
JB∗-triples, for each 0 < ε < 1

2 , there exists a (finite rank) tripotent e in K and elements x1, y1 ∈ S(K2(e))
satisfying ∥x − x1∥, ∥y − y1∥ < ε (cf. [6, Remark 4.6]). A standard argument shows that∥∥∥tx + (1 − t)y − (tx1 + (1 − t)y1)

∥∥∥ < ε.
Since C ⊂ S(K) is a convex subset we have ∥tx + (1 − t)y∥ = 1,∣∣∣1 − ∥∥∥(tx1 + (1 − t)y1)

∥∥∥∣∣∣ ≤ ∥∥∥tx + (1 − t)y − (tx1 + (1 − t)y1)
∥∥∥ < ε,

and ∥∥∥∥∥ tx1 + (1 − t)y1

∥tx1 + (1 − t)y1∥
− (tx1 + (1 − t)y1)

∥∥∥∥∥ = ∣∣∣1 − ∥∥∥(tx1 + (1 − t)y1)
∥∥∥∣∣∣ < ε.

Consequently, ∥∥∥∥∥ tx1 + (1 − t)y1

∥tx1 + (1 − t)y1∥
− (tx + (1 − t)y)

∥∥∥∥∥ < 2ε.

Since K has infinite rank, we can find a minimal tripotent v in K which is orthogonal to e. Let Tv
e : K2(e)→

Y be the real linear isometry given by Proposition 3.5. Having in mind that x1, y1 ∈ K2(e), it follows from
the just quoted proposition, the hypothesis on ∆ and Proposition 3.7(d) that∥∥∥t∆(x) + (1 − t)∆(y) − ∆(tx + (1 − t)y)

∥∥∥
≤

∥∥∥t∆(x) + (1 − t)∆(y) − t∆(x1) − (1 − t)∆(y1)
∥∥∥

+
∥∥∥tTv

e (x1) + (1 − t)Tv
e (y1) − Tv

e (tx1 + (1 − t)y1)
∥∥∥

+

∥∥∥∥∥∥Tv
e (tx1 + (1 − t)y1) − Tv

e

(
tx1 + (1 − t)y1

∥tx1 + (1 − t)y1∥

)∥∥∥∥∥∥
+

∥∥∥∥∥∥∆
(

tx1 + (1 − t)y1

∥tx1 + (1 − t)y1∥

)
− ∆(tx + (1 − t)y)

∥∥∥∥∥∥ < 3ε.

The arbitrariness of 0 < ε < 1
2 implies that t∆(x) + (1 − t)∆(y) = ∆(tx + (1 − t)y) as desired.

4. Elementary JB∗-triples satisfy the Mazur–Ulam property

Our goal in this section is to prove that every weakly compact JB∗-triple satisfies the Mazur–Ulam
property. By this result we shall exhibit an example of a non-unital and non-commutative C∗-algebra
containing no unitaries but satisfying the Mazur–Ulam property. The new geometric properties related to
the facial structure of elementary JB∗-triples developed in the previous section will be the germ to prove
our result. Compared with the techniques in [4, 12, 35] and [29], we shall not base our proof on [35, Lemma
6] nor on [17, Lemma 2.1].
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Theorem 4.1. Every elementary JB∗-triple K satisfies the Mazur–Ulam property, that is, for every real Banach space
Y, every surjective isometry ∆ : S(K)→ S(Y) admits a (unique) extension to a surjective real linear isometry from K
onto Y.

Proof. As we already commented in previous sections, if K is reflexive the conclusion follows from [4,
Theorem 4.14, Proposition 4.15 and Remark 4.16] and [29, Theorem 1.1 and Corollary 1.2]. As in the proof
of Proposition 3.5 we shall assume that K is non-reflexive (i.e. an infinite dimensional elementary JB∗-triple
of type 1, 2 or 3), and hence every tripotent in K is non-complete and of finite rank and K has infinite rank.

Let F = F (K) denote the linear subspace of K generated by all minimal tripotents in K. In our case F
is a normed subspace of K which is norm dense but non-closed. We shall define a mapping T : F → Y.
By definition every element x in F can be written as a finite positive combination of mutually orthogonal
minimal tripotents in K. We can therefore find a tripotent e in K such that x ∈ K2(e). Since K has infinite
rank we can always find a minimal tripotent v ∈ K with v ⊥ e. We set T(x) := Tv

e (x). Clearly T(0) = 0.
We claim that T is well defined. Pick 0 , x ∈ F . Suppose e1, e2 are tripotents in K with x ∈ K2(e j) for

j = 1, 2 and v1, v2 are two minimal tripotents in K with v j ⊥ e j for j = 1, 2. Proposition 3.7(d) implies that

Tv1
e1

( x
∥x∥

)
= ∆

( x
∥x∥

)
= Tv2

e2

( x
∥x∥

)
,

and hence T is well defined.
We shall next show that T is linear. For each x ∈ F , each pair of tripotents e, v in K with v minimal, v ⊥ e

and x ∈ K2(e), and each real number α, we have αx ∈ K2(e) and T(αx) = Tv
e (αx) = αTv

e (x) = αT(x). Let us now
take x, y ∈ F . We can find a tripotent e ∈ K such that x, y, x + y ∈ K2(e). Let v ∈ K be a minimal tripotent
with v ⊥ e. By definition

T(x + y) = Tv
e (x + y) = Tv

e (x) + Tv
e (y) = T(x) + T(y).

Since T : F → Y is a real linear isometry and F is norm dense in K, we can find a unique extension of T
to a surjective real linear isometry from K to Y which will be denoted by the same symbol T.

We shall finally show that T coincides with ∆ on S(K). By continuity and norm density of F , it suffices
to prove that T coincides with ∆ on S(F ). By definition, given x ∈ S(F ), tripotents e, v in K with v ⊥ e and
x ∈ K2(e), Proposition 3.7(d) assures that T(x) = Tv

e (x) = ∆(x), which concludes the proof.

The main results in [25] prove that every surjective isometry between the unit spheres of two elementary
JB∗-triples K1 and K2 can be extended to a surjective real linear isometry between K1 and K2 (see [25, Theorems
4.4-4.7 and 4.9] and some precedents in [38]). Our previous Theorem 4.1 offers an strengthened conclusion
by showing that every surjective isometry from the unit sphere of an elementary JB∗-triple onto the unit
sphere of any real Banach space extends to a surjective real linear isometry.

The following straightforward consequence is interesting by itself.

Corollary 4.2. For each complex Hilbert space H, the space K(H) of all compact linear operators on H satisfies the
Mazur–Ulam property.

5. More on the strong Mankiewicz property

In this section we pursue a result showing that every weakly compact JB∗-triple satisfies the strong
Mankiewicz property. We begin by establishing a technical result which is valid for an abstract class of
Banach spaces including all weakly compact JB∗-triples.

Proposition 5.1. Let (Xi)i∈I be a family of Banach spaces, and let X =
c0⊕
i∈I

Xi. Suppose that the following hypotheses

hold: for each x, y ∈ X and each ε > 0 there exist a finite subset F ⊆ I (depending on x, y and ε > 0), closed subspaces
Zi ⊆ Xi and elements ai, bi ∈ Zi (i ∈ F) such that
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(1) For each i ∈ F there exists a subset Mi ⊆ BXi satisfying

BZi =
{
xi ∈ BXi : ∥xi −mi∥ ≤ 1 for all mi ∈Mi

}
;

(2) ∥x − (ai)i∈F∥, ∥y − (bi)i∈F∥ < ε
(
we obviously regard

ℓ∞⊕
i∈F

Zi as a closed subspace of X
)
;

(3) The closed unit ball of the space
ℓ∞⊕
i∈F

Zi satisfies the strong Mankiewicz property.

Then every convex body K ⊂ X satisfies the strong Mankiewicz property.

Proof. By [35, Lemma 4] it suffices to prove that the closed unit ball of X satisfies the strong Mankiewicz
property. To this end let ∆ : BX → L be a surjective isometry, where L is a convex subset in a normed space
Y. We shall show that ∆ is affine.

Let us take x, y ∈ BX and t ∈ (0, 1). Fix an arbitrary ε > 0. It follows from our hypotheses that there exist
a finite set F ⊆ I, closed subspaces Zi ⊆ Xi and elements ai, bi ∈ BZi (i ∈ F) such that the closed unit ball of

the space Z =
ℓ∞⊕
i∈F

Zi satisfies the strong Mankiewicz property, ∥x − (ai)i∈F∥ < ε and ∥y − (bi)i∈F∥ < ε.

We also know the existence of subsets Mi ⊆ BXi (i ∈ I) satisfying (1). Let M ⊆ X denote the set given by

M :=
{
x = (xi)i ∈ BX : xi ∈Mi for all i ∈ F, x j ∈ BX j for j ∈ I\F

}
.

We also set
L1 :=

{
y ∈ L : ∥y − ∆(m)∥ ≤ 1 for all m ∈M

}
.

Having in mind that L is convex, it is easy to see that L1 also is convex.
We claim that

∆(BZ) = L1. (7)

Indeed, by the assumptions each z ∈ BZ satisfies that ∥z−m∥ ≤ 1 for all m ∈M, and hence ∥∆(z)−∆(m)∥ ≤ 1
for all m ∈M. This proves that ∆(BZ) ⊆ L1.

Take now, y ∈ L1. Since ∆ is surjective there exists (a unique) z = (zi)i ∈ BX with ∆(z) = y. Since ∆ is an
isometry and y ∈ L1 we deduce that

∥z −m∥ = ∥∆(z) − ∆(m)∥ ≤ 1, for all m ∈M,

in particular,
∥zi −mi∥ ≤ 1, for all mi ∈Mi and for all i ∈ F

and
∥zi − wi∥ ≤ 1, for all wi ∈ BXi and all i ∈ I\F.

It follows from the hypothesis (1) that zi ∈ BZi for all i ∈ F, and clearly zi = 0 for all i ∈ I\F. Therefore z ∈ BZ
which finishes the proof of (7).

We deduce from (7) and the preceding comments that ∆|BZ : BZ → L1 is a surjective isometry and L1 is
a convex subset of Y. We apply now that the closed unit ball of the space Z satisfies the strong Mankiewicz
property to deduce that ∆|BZ is affine, and thus

∆ (t(ai)i∈F + (1 − t)(bi)i∈F) = t∆ ((ai)i∈F) + (1 − t)∆ ((bi)i∈F) ,

and consequently
∥∆(tx + (1 − t)y) − (t∆(x) + (1 − t)∆(y))∥
≤ ∥∆(tx + (1 − t)y) − ∆ (t(ai)i∈F + (1 − t)(bi)i∈F) ∥
+ t∥∆ ((ai)i∈F) − ∆(x)∥ + (1 − t)∥∆ ((bi)i∈F) − ∆(y)∥ < 2ε.

The arbitrariness of ε > 0 implies that ∆(tx+ (1− t)y) = t∆(x)+ (1− t)∆(y), which concludes the proof.



A. M. Peralta / Filomat 36:9 (2022), 3075–3090 3087

An appropriate framework to apply the previous proposition is provided by weakly compact JB∗-triples.

Corollary 5.2. Every weakly compact JB∗-triple E satisfies the hypotheses of the previous Proposition 5.1. Conse-
quently every convex body K ⊂ E satisfies the strong Mankiewicz property.

Proof. As we commented in subsection 2 every weakly compact JB∗-triple coincides with a c0-sum of a
family {Ki : i ∈ I} of elementary JB∗-triples (cf. [6]). Given x, y ∈ E and ε > 0 there exist a finite subset F ⊆ I
satisfying ∥x − (xi)i∈F∥, ∥y − (yi)i∈F∥ < ε2 .

Fix an arbitrary i ∈ F. If Ki is reflexive (i.e. it is finite dimensional or an elementary JB∗-triple of type 4),
we know that Ki is a JBW∗-triple. In this case we take Zi = Ki, ai = xi, bi = yi, and Mi = {0}. Clearly,

BKi = {xi ∈ Ki : ∥xi − 0∥ ≤ 1}.

Suppose next that Ki is not reflexive (i.e. an infinite dimensional elementary JB∗-triple of type 1, 2 or 3). By
[6, Remark 4.6] and/or basic theory of compact operators we can find a finite rank (and hence non-complete)
tripotent ei (i.e. a tripotent which is a finite sum of mutually orthogonal minimal tripotents in Ki) such that
∥xi − P2(ei)(xi)∥, ∥yi − P2(ei)(yi)∥ < ε2 . The subtriple Zi = (Ki)2(ei) is finite dimensional and thus a JBW∗-triple.
Take ai = P2(ei)(xi), bi = P2(ei)(yi) ∈ Zi. Set Mi := {ei}

⊥

min ∩ Ki = {v minimal tripotent in Ki : v ⊥ ei} ⊆ BKi .
Lemma 3.6 assures that

BZi = B(Ki)2(ei) =
{
xi ∈ BKi : ∥xi −mi∥ ≤ 1 for all mi ∈Mi = {ei}

⊥

min ∩ Ki

}
.

By construction,
∥x − (ai)i∈F∥ ≤ ∥x − (xi)i∈F∥ + ∥(xi)i∈F − (ai)i∈F∥ < ε.

Finally, for each i ∈ F, Zi is finite dimensional or reflexive, therefore
ℓ∞⊕
i∈F

Zi is a JBW∗-triple, and thus its

closed unit ball satisfies the strong Mankiewicz property by [29, Corollary 1.2].

Remark 5.3. It is worth to note that every compact C∗-algebra of the form A =
c0⊕
i∈I

K(Hi),where the Hi’s are complex

Hilbert spaces (cf. [1, Theorem 8.2]). Obviously, A is a weakly compact JB∗-triple, and hence every convex body
K ⊂ A satisfies the strong Mankiewicz property.

We have already developed enough tools to address the question whether every weakly compact JB∗-
triple satisfies the Mazur–Ulam property.

Theorem 5.4. Every weakly compact JB∗-triple E satisfies the Mazur–Ulam property, that is, for every real Banach
space Y, every surjective isometry from S(E) onto S(Y) admits a (unique) extension to a surjective real linear isometry
from E onto Y.

Proof. We begin with an observation. For each non-zero tripotent u ∈ E, we consider the proper face
Fu = u + BE0(u). Lemma 3.1 assures that ∆(Fu) is an intersection face of S(Y), in particular a convex subset.
Let us observe that E0(u) is a weakly compact JB∗-triple. Corollary 5.2 implies that BE0(u) satisfies the strong
Mankiewicz property. We consider the next commutative diagram

Fu = u +BE0(u) ∆
(
u +BE0(u)

)

BE0(u) ∆
(
u +BE0(u)

)
− ∆(u)

τ−u

∆

∆u

τ∆(u)
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Since E0(u) satisfies the strong Mankiewicz property and ∆u is a surjective isometry from BE0(u) onto a
convex set, we can guarantee the existence of a linear isometry Tu : E0(u)→ Y satisfying

∆(u + x) = Tu(x) + ∆(u), for all x ∈ BE0(u), (8)

(cf. [35]). In particular ∆|Fu is affine.
We claim that

∆(w) = Tu(w), for every non-zero tripotents u,w ∈ E with w ∈ E0(u). (9)

Namely, for each non-zero tripotent w ∈ E0(u) (u ⊥ w) the element u ± w is a tripotent in Fu. Therefore

∆(u) = ∆
(1

2
(u + w) +

1
2

(u − w)
)
=

1
2
∆ (u + w) +

1
2
∆ (u − w) .

By Lemma 3.4 (see also [29, Corollary 2.4]) we have −∆ (u − w) = ∆ (−u + w), and by similar arguments to
those given above, but now with respect to the face Fw, we have

∆(w) = ∆
(1

2
(u + w) +

1
2

(−u + w)
)
=

1
2
∆ (u + w) +

1
2
∆ (−u + w)

=
1
2
∆ (u + w) −

1
2
∆ (u − w) .

It then follows that

∆(u) + ∆(w) = ∆(u + w). (10)

The claim in (9) is a straight consequence of (10) and (8).
We continue with our argument. If E is an elementary JB∗-triple the result follows from Theorem 4.1. We

can therefore assume that E decomposes as the orthogonal sum of two non-zero weakly compact JB∗-triples
A and B. Let us pick two non-zero tripotents u1 ∈ A and u2 ∈ B and the corresponding linear isometries
Tu j : E0(u j)→ Y given by (8).

Let us observe that A ⊆ E0(u2), B ⊆ E0(u1) and E = A ⊕ℓ∞ B. Therefore the mapping T : E → Y,
T(a + b) = Tu2 (a) + Tu1 (b) is a well-defined linear operator. We shall next show that

T(x) = ∆(x), for all x ∈ S(E). (11)

Let us fix x ∈ S(E). By Remark 4.6 in [6] there exists a possible finite at most countable family {en} of
mutually orthogonal minimal tripotents in E and (λn) ⊆ R+ such that λ1 = 1 and x =

∑
n≥1

λnen. Each en lies

in A or in B, and hence it follows from the definition of T that T(en) = Tu2 (en) if en ∈ A and T(en) = Tu1 (en)
if en ∈ B.We deduce from (9) that in any case we have ∆(en) = T(en) for all n ≥ 1. Now we regard x as an
element in the face Fe1 and we apply the properties of Te1 and (9) to deduce that

∆(x) = ∆

e1 +
∑
n≥2

λnen

 = ∆(e1) +
∑
n≥2

λnTe1 (en) = ∆(e1) +
∑
n≥2

λn∆(en)

= T(e1) +
∑
n≥2

λnT(en) = T

e1 +
∑
n≥2

λnen

 = T(x),

witnessing the validity of (11).
Finally, since T is linear we derive from (11) and the hypothesis on ∆ that T is a surjective real linear

isometry.
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We have previously mentioned that compact C∗-algebras are examples of weakly compact JB∗-triples.
The next corollary perhaps deserves its own place.

Corollary 5.5. Suppose A =
c0⊕
i∈I

K(Hi) is a compact C∗-algebra, where each Hi is a complex Hilbert space. Then

every surjective isometry from the unit sphere of A onto the unit sphere of any other real Banach space Y admits a
(unique) extension to a surjective real linear isometry from A onto Y.
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