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Abstract. It is known that we can always 3-triangulate (i.e. divide into tetrahedra with the original
vertices) convex polyhedra but not always non-convex ones. Polyhedra topologically equivalent to ball
with p handles, shortly p-toroids, cannot be convex. So, it is interesting to investigate possibilities and
properties of their 3-triangulations. Here we study the minimal number of necessary tetrahedra for the
triangulation of a 3-triangulable p-toroid. For that purpose, we developed the concept of piecewise convex
polyhedron and that of its connection graph.

1. Introduction

We can start with a visual elementary picture of polygon, then polyhedron and d-dimensional polytope,
by induction hypothesis on d, simply by defining usual triangle disk, then d-simplex. Afterwards we
continue with ”ordinary” 3-polyhedron, d-polytope, as connected union of finitely many d-simplices in a
simple way.

Dividing a polygon by diagonals into triangles is called triangulation. It is known that we can triangulate
each polygon with n vertices by n − 3 diagonals into n − 2 triangles.

Generalization of this process to higher d ≥ 3 dimensions is also called triangulation. It consists of
dividing polyhedron (polytope) into tetrahedra (simplices) using only the original vertices. There are two
kinds of problems with triangulation in higher dimensions. It is proved that there is no possibility to
triangulate certain non-convex polyhedra [8], [9] in three-dimensional space, and it is also proved that
different triangulations of the same polyhedron may have different numbers of tetrahedra [5], [10], [11],
[12]. Considering the smallest and the largest number of tetrahedra in triangulation (the minimal and the
maximal triangulation), the authors obtained values, which linearly, resp. squarely, depend on the number
of vertices. Interesting triangulations are described in papers of Edelsbrunner, Preparata, West [5] and
Sleator, Tarjan, Thurston [10].

By the term ”polyhedron” we usually mean a simple polyhedron solid, topologically equivalent to a
ball. Though there are classes of polyhedra topologically equivalent to torus or p-torus (ball with p handles).

By Szilassi [18], torus-like polyhedra are called toroids. Generalizing that intuitive definition, we shall
use the term p-toroid (p ∈ N is a given natural number) for p-torus-like polyhedron, and term toroid as a
common name for any p-toroid (the Szilassi’s toroid would be called 1-toroid). Since a toroid is not convex,
it is questionable whether it is possible to 3-triangulate them. The 1-toroid with the smallest number of
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vertices is the Császár polyhedron [1], [2], [4], [17], [18]. It has 7 vertices and it is triangulable with 7
tetrahedra. Also, it is a polyhedron without diagonals as it was discussed in [4], [15], [16]. Some other
examples of 1-toroids are given in [17], [18], while in [13], [14] 3-triangulations of 1-toroids and 2-toroids
are discussed. In [3], [6] some combinatorial properties of p-toroids are given.

In Section 2 there are described some characteristic polyhedra, while in Section 3 we give some necessary
definitions and properties of 3-triangulation of 1-toroids and 2-toroids. Later on, convex d-polytope and
especially convex 3-polyhedron will be our standard and we introduce piecewise convex polyhedron as our
main object (Definition 3.3). So we concretize the definition of p-toroid as well, restricted for our purposes
in this paper. In Section 4, we prove in Theorem 4.1 that if a p-toroid with n vertices can be triangulated,
then the minimal number of necessary tetrahedra is Tmin ≥ n + 3(p − 1), and in Theorem 4.2 that for each
n ≥ 4p + 3 exists 3-triangulable p-toroid with Tmin = n + 3(p − 1). In Section 5 we discuss whether the
statement of the Theorem 4.2 holds for p-toroids with smaller number n of vertices and mention some open
questions.

2. Some characteristic examples of polyhedra and their 3-triangulation

2.1 Though we can triangulate all convex polyhedra, but this is not the case with non-convex ones.
Lennes [7] was the first who presented a polyhedron whose interior cannot be triangulated without new ver-
tices. The more famous example, however, was given by Schönhardt [9] and referred to in [8]. Schönhardt’s
polyhedron is obtained in the following way: triangulate the lateral faces of a trigonal prism A1B1C1A2B2C2
by the diagonals A1B2, B1C2 and C1A2. Then ”twist” the top face A2B2C2 by a small amount in the positive
direction. In such a polyhedron, none of tetrahedra with vertices in the set {A1,B1,C1,A2,B2,C2} is inner, so
the triangulation is not possible.

2.2 It is proved that the smallest possible number of tetrahedra in the triangulation of a polyhedron with
n vertices is n − 3. An example of polyhedron triangulable with n − 3 tetrahedra is a pyramid with n − 1
vertices in the basis (i.e., a total of n vertices). We can triangulate it in the following way: we have to do any
2-triangulation of the basis into (n − 1) − 2 = n − 3 triangles. Each of these triangles makes with the apex
one of tetrahedra in 3-triangulation.

But, it is not possible to triangulate each polyhedron into n − 3 tetrahedra. We shall see later that every
triangulation of an octahedron (6 vertices) yields 4 tetrahedra.

2.3 Let us now consider triangulations of a bipyramid with n− 2 vertices in the basis. The first method is to
divide bipyramid into two pyramids and triangulate each of them, taking care of a common 2-triangulation
of the basis, then we obtain 2(n−4) tetrahedra. In the second method, each of n−2 tetrahedra has a common
edge joining the apices of the bipyramid, and moreover, each of them contains a pair of the neighbouring
vertices of the basis (i.e., one of the edges of the basis).

If n = 5, such a bipyramid has a triangular basis. Then, the first method is ”better”, i.e. it gives smaller
number of tetrahedra. For n = 6 (the octahedron), both methods give 4 tetrahedra, and for n ≥ 7, the second
method is ”better”. In Figure 1, triangulations of a bipyramid with a pentagonal basis (i.e. n = 7) are given.
Dividing a bipyramid into two pyramids leads to triangulation with 6 tetrahedra, and dividing it around
the axis V1V2 gives triangulation with 5 tetrahedra.

2.4 In [18], Szilassi intuitively introduced the term toroid. Here we shall use 1-toroid for that. He speaks
on ”ordinary” polyhedron, if for each vertex the edges and faces, incident to it afterwards each other, form
a cycle. Dually, it is always assumed that each face is a simple polygon, i.e. its incident edges and vertices
form a cycle.

Definition 2.1. (Szilassi) An ordinary polyhedron is called 1-toroid if it is topologically torus-like, i.e. as a solid, it
can be converted to a solid torus by continuous deformation.

A 1-toroid with the smallest number of vertices is the Császár polyhedron (Figure 2). It has 7 vertices
and no diagonals, i.e. each vertex is connected to six others by edges. In [1] Bokowski and Eggert proved
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Figure 1: Triangulations of pentagonal bipyramid

that Császár polyhedron has four essentially different versions. It is to be noted that in topological terms
various versions of Császár polyhedron are isomorphic – there is only one way to draw the full graph with
seven vertices on the torus. In Wolfram Demonstrations Project [19] Szilassi shows that Császár polyhedron
is 3-triangulable with 7 tetrahedra.

Figure 2: Császár polyhedron

3. Preliminaries

According to definition 2.1, we intuitively introduce the term p-toroid (p ∈N)

Definition 3.1. A polyhedron as a solid is called p-toroid, p ∈ N, if it is topologically equivalent to a ball with p
handles (p-torus).

There is an obvious formulation for polyhedral surfaces, but it needs additional assumptions for dimen-
sions d > 2, where the naive concept of connected sum is not clear yet.

Let toroid be a common name for all p-toroids.

Remark 3.2. Here we want to remind that in the surface theory p-torus is a cyclic polygon with paired sides. Any
side s and its pair S are oppositely directed (then glued together), related to the fixed orientation of the polygon.
Then - by a standard combinatorial procedure - the polygon can be divided and glued to a cyclic normal form
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a1b1A1B1a2b2A2B2...apbpApBp, as a p-torus. This combinatorial procedure is independent of the future spatial
placement of the surface. So from any spatial knot (as a topological circle in the space) we can form a torus. Its
surface can be triangulated, of course, to be a polyhedron. But this indicates that ”knot polyhedra” would be our topic,
implicitly, that we want to exclude later, see Definition 3.7.

In our consideration we shall also use the following

Definition 3.3. A polyhedron is piecewise convex if it can be divided into finitely many convex polyhedra Pi,
i = 1, . . . ,m, with disjoint interiors. A pair of above polyhedra Pi, P j is said to be neighbouring if they have a
common face called contact face.

If the above polyhedra Pi and P j are not neighbouring, they may have a common edge e or a common
vertex v. That is possible iff there is a sequence of neighbouring polyhedra Pi,Pi+1, . . . ,Pi+k ≡ P j such that the
edge e, or the vertex v belongs to each contact face fl common to Pl and Pl+1, l ∈ {i, . . . , i+ k − 1}. Otherwise,
polyhedra Pi and P j do not have common points.

Remark 3.4. Since a convex polyhedron can be 3-triangulated, the same holds for piecewise convex one, especially
for a piecewise convex toroid.

Remark 3.5. Each 3-triangulable polyhedron is a collection of connected tetrahedra, so that is piecewise convex.

In Figure 3, we give an example of 1-toroid P1
9 with n = 9 vertices. It is composed of three pieces of

convex polyhedra A which are topologically equivalent to triangular prisms. Polyhedron P1
9 is an example

of cyclically piecewise convex 1-toroid defined below.

Figure 3: Cyclically piecewise convex polyhedron (1-toroid) P1
9

Definition 3.6. An 1-toroid is cyclically piecewise convex if it is possible to divide it into a cycle of convex
polyhedra Pi, i = 1, . . . ,n, such that Pi and Pi+1, i = 1, . . . ,n − 1 and Pn and P1 are neighbours.

If a polyhedron P is piecewise convex, let us form its graph of connection (or its connection graph), in such
a way that nodes represent convex polyhedra Pi, i = 1, . . . ,m, the pieces of P, while edges represent contact
faces between them.

It is obvious that if a 1-toroid is cyclically piecewise convex, then its graph of connection is a single
cycle. Other piecewise convex 1-toroids have graphs with a cycle and additional branches. It may also
happen that the graph of connection for some piecewise convex 1-toroid have more cycles in situations
when the convex pieces are cyclically connected to each other, but ”glued” in such a way that there is no
handle between them. In such cases, we can assume that the cycle, we shall call it ”false”, corresponds to a
degenerate handle.

Similarly, a piecewise convex p-toroid has a graph of connection with p basic cycles, and eventually
additional branches, but it can also has false cycles without solid handle. The 2-toroid P2

14 given in Figure
4 have two cycles in both of its graphs in Figure 5. This 2-toroid has n = 14 vertices and it is composed of
six pieces of A or of two 1-toroids P1

9. It has two graphs of connection because the union of two A parts in
the middle form convex polyhedron marked with 2 · A in the second of graphs.

This example shows us that division of polyhedron to convex pieces is not necessarily unique.
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Figure 4: Piecewise convex 2-toroid P2
14

Figure 5: Two graphs of connection for the 2-toroid P2
14

Two different cycles in a graph of 2-toroid can have a common node, or to be connected by an edge
or by a branch. The first two cases we observe on the graphs of connection of P2

14 in Figure 5. As in this
example, if two cycles of graph for toroid P have a common node, then corresponding cyclically piecewise
convex pieces of P share common convex piece, and if they are connected by an edge, they have a contact
face. In the third case, two cyclically piecewise convex pieces of P are connected by contact faces with
a simple piecewise convex polyhedron inducing branch in the graph of connection. An example of such
graph is given in Figure 7 describing 2-toroid P2

20 (Figure 6). P2
20 has n = 20 vertices and it is composed of

two 1-toroids with n = 10 vertices connected by polyhedron A. In both of the figures convex polyhedron
with n = 7 vertices is marked with B.

Figure 6: Piecewise convex 2-toroid P2
20

In this paper we consider the minimal number of necessary simplices in 3-triangulation of a toroid P.
So, it would be useful to deal with divisions and graphs of toroids in which the minimal 3-triangulation
of P is in accordance with the minimal 3-triangulation of their pieces, namely, not to take care about this
accordance. It must not happen that the sum of tetrahedra in minimal 3-triangulations of pieces would be
greater than the number of tetrahedra in 3-triangulation of the whole toroid. Really, if contact face of two
pieces is with t ≥ 5 vertices, it may happen that we have around it the bipyramid R with t vertices in the
basis. Then, each of two considered pieces would contain one of pyramids as a piece of the bipyramid R.
As we have observed in 2.3, minimal 3-triangulation of R gives smaller number of tetrahedra then the sum
of separate 3-triangulations of pyramids belonging to the pieces. So, let us define:
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Figure 7: Graph of connection for the 2-toroid P2
20

Definition 3.7. An m-division of a polyhedron is a division in which the tetrahedra participating in the minimal
3-triangulations of the pieces are at the same time participating in the minimal 3-triangulation of the whole polyhedron.
A graph of connection of a given polyhedron is m-graph if it represents m-division of that polyhedron.

Remark 3.8. We see that m-division and thus m-graph of a polyhedron is not unique. Note that convex pieces of
division (m-division) can be either separated tetrahedra or their different collections. Besides that, more possibilities
can occur for minimal 3-triangulation of the same polyhedron.

On the other hand, it is obvious that there exists at least one m-division of a given 3-triangulable polyhedron. That
is its partition into tetrahedra participating in the minimal 3-triangulation.

In [13] we have proved the next theorems for 1-toroids:

Theorem 3.9. If a 1-toroid with n ≥ 7 vertices can be 3-triangulated, then the minimal number of tetrahedra in that
triangulation is Tmin ≥ n.

Theorem 3.10. For each n ≥ 7, there is a 1-toroid, with n vertices, that can be 3-triangulated.

Corresponding theorems for 2-toroids have been given in [14].

Theorem 3.11. If it is possible to 3-triangulate 2-toroid with n ≥ 10 vertices, then the minimal number of tetrahedra
for that triangulation is Tmin ≥ n + 3.

Theorem 3.12. For 10 ≤ n ∈N, there is a 2-toroid, with n vertices, which can be 3-triangulated.

4. 3-triangulations of p-toroids

In this section we shall discuss what is the minimal number of tetrahedra necessary for 3-triangulation
of p-toroid with n vertices. First, we shall prove the next statement.

Theorem 4.1. If a p-toroid with n vertices can be 3-triangulated, then the minimal number of tetrahedra necessary
for its 3-triangulation is Tmin ≥ n + 3(p − 1).

There are more possibilities to connect pieces in m-graph of p-toroid, but in the proof of this theorem it
is not necessary to consider them. Here, we shall prove Theorem 4.1 using the mathematical induction by
the number of handles p.

Since false cycles can interfere us in proving the theorem, we shall introduce optimized graph of connection.
Consider a toroid P and its graph of connection G that have one or more false cycles. For each of the false
cycles, notice all the nodes that belong to it and the corresponding convex pieces of P. The union of such
convex pieces for each false cycle builds a new node of optimized graph Ĝ. The other nodes of the graph
G remain in Ĝ and we shall call them the old ones. The edges between the old nodes remain in Ĝ. The
edges of G between some old node and some node belonging to a false cycle are converted to the edge of
Ĝ between that old node and the new one.
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The optimized graph Ĝ has the same number of basic cycles as it is the number of handles of the starting
toroid P. Note that it is not necessary for the new nodes of the optimized graph to correspond to convex
polyhedra, they only correspond to simple piecewise convex polyhedra. Also, if the graph G is an m-graph,
the same property holds for graph Ĝ.

Figure 8 shows a 6-toroid P6
32 with n = 32 vertices, which was created by gluing six 1-toroids P1

9. It has
six real handles and one degenerate. The two possible graphs of connection for P6

32 are given in Figure 9.
On the left is given a graph G1 whose nodes represent convex pieces A while a graph G2 given on the right
has six nodes representing 2 · A, and six representing A. Both graphs G1 and G2 have the same optimized
graph Ĝ, given in Figure 10. As in this example, we can see that in optimized graph it can appear cycle
with only two nodes and two edges. That can happen if one of the nodes is old and the other is new, i.e.
one piece of P is convex and the other is piecewise convex, so they can have two different common contact
faces.

Figure 8: 6-toroid P6
32

Figure 9: Two graphs of connection for P6
32

Figure 10: Optimized graph of connection for P6
32
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The proof of the Theorem 4.1 follows.

Proof. Note that Theorems 3.9 and 3.11 guarantee that statement is true for p = 1, 2. Let us suppose that
statement is true for p = k, (k ∈N) i.e.

If a k-toroid (k ∈ N) with n vertices can be 3-triangulated, then the minimal number
of tetrahedra necessary for its 3-triangulation is Tmin ≥ n + 3(k − 1).

Observe in m-graph G of (k + 1)-toroid P, optimized if it is necessary, an edge e which belongs to one or
more cycles. Let us form a new graph Ḡ by excluding e from G. From Definition 3.7 of m-graph, it holds
that graph Ḡ is also m-graph.

Denote by P̄ the corresponding polyhedron of Ḡ and by n̄ its number of vertices. P̄ is obtained from P by
”separating” convex pieces and by ”duplicating” contact face with t vertices (t ≥ 3) appropriate to the edge
e in graph G. Thinking about definition of (k + 1)-torus, excluding edge e from G is equivalent to cutting it
by ak+1bk+1Ak+1Bk+1 and after that deforming it little bit.

If the edge e belongs to only one cycle of G, then that cycle in Ḡ would be missing. If e belong to more
basic cycles of G, then in Ḡ earlier cycles would be merged and form one basic cycle less. So P̄ is k-toroid,
graph Ḡ have k basic cycles and for the number of the vertices of P̄ is true

n̄ = n + t.

Since P̄ has k handles, for its minimal triangulation by induction hypothesis holds

Tmin(P̄) ≥ n̄ + 3(k − 1) = n + t + 3(k − 1).

Observe that Tmin(P) = Tmin(P̄). That means

Tmin(P) ≥ n + t + 3(k − 1) ≥ n + 3 ((k + 1) − 1) ,

thus the statement is true for p = k + 1.

Considering the smallest number n of vertices in a 3-triangulable p-toroid, it will be necessary to take
care about possible connecting the pieces of its m-graph. Note that some polyhedron might be topologically
(combinatorially) realizable but not also geometrically. That is the reason to create more examples of
topologically realizable p-toroids. Some checks whether their geometric realizations exist, will be left for a
future paper. For the series of p-toroids, described in the proof of the following theorem, the realization is
obvious.

Theorem 4.2. For each n ≥ 4p + 3 there is 3-triangulable p-toroid with Tmin = n + 3(p − 1).

Proof. First we shall form the main series of p-toroids P̄p
4p+3 by gluing p Császár’s toroids into chain. Each

pair of neighbour 1-toroids have a common contact face. The m-graphs of these p-toroids are formed of p
heptagons connected by p − 1 edges, as it is shown in the Figure 11.

Figure 11: Graph of connection for p-toroid P̄p
4p+3
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In p-toroids P̄p
4p+3 neighbour 1-toroids have 3 common vertices, so the total number of vertices of P̄p

4p+3

is n = 4p + 3. On the other hand, the number of tetrahedra in the 3-triangulation of P̄p
4p+3 is equal to 7p, i.e.

Tmin(P̄p
4p+3) = 7p. Since for n = 4p + 3 holds

n + 3(p − 1) = (4p + 3) + 3(p − 1) = 7p = Tmin(P̄p
4p+3),

our claim is true whenever n = 4p + 3.
If n > 4p+ 3 we can take any simple polyhedron Sk with k = n− (4p+ 3)+ 3 = n− 4p vertices, which has

triangular faces and Tmin(S) = k− 3, e.g. a pyramid with space (k− 1)-gon in the basis. Then p-toroid P̄p
n can

be formed by gluing p-toroid P̄p
4p+3 and Sk so that they have a common triangular face. Then, the number

of vertices of P̄p
n is

(4p + 3) + (n − 4p) − 3 = n,

and

Tmin(P̄p
n) = Tmin(P̄p

4p+3) + Tmin(Sk)

= 7p + k − 3
= 7p + n − 4p − 3
= n + 3p − 3
= n + 3(p − 1).

5. Closing remarks

A smaller number of vertices in p-toroid appears if in the main series of p Császár’s toroids, neighbour
ones have a common tetrahedron instead of a common face (Figure 12). Then number n of vertices in such
P̂p

3p+4 is n = 3p + 4, while Tmin(P̂p
3p+4) = 6p + 1. Since 6p + 1 = (3p + 4) + (3p − 3) = n + 3(p − 1), holds

Tmin(P̂p
3p+4) = n + 3(p − 1).

Figure 12: Graph of connection for p-toroid P̂p
3p+4

But, for P̂p
3p+4 it is questionable if it has geometric realization. In [14] double-Császár 2-toroid, which

is P̂2
10 from this series was introduced. It was proved that it is 3-triangulable 2-toroid with the smallest

number of vertices, n = 10. It seems likely that this 2-toroid has geometric realization. Next toroid in this
series is P̂3

13 is composed of three Császár’s 1-toroids. Since all three Császár’s 1-toroids which build P̂3
13

have at least one common vertex, geometric realization of P̂3
13 is not so obvious.
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On the other hand, if this chain is geometrically realizable, we can think if it is possible for some enough
great p to close new circle to form P̃p+1

3p (Figure 13). Then this ‘cycle of cycles’ would be (p + 1)th cycle, the
number of vertices would be n = 3p, and again

Tmin(P̃p+1
3p ) = Tmin(P̂p

3p+4) − 1 =

= 6p
= n + 3

(
(p + 1) − 1

)
.

Figure 13: Graph of connection for (p + 1)-toroid P̃p+1
3p

Of course, it is also possible to think of closing cycle of Császár’s 1-toroids in the chain of type P̄p
4p+3.

Such (p + 1)-toroid would have n = 4p vertices and Tmin would be equal to 7p. Again it would be
7p = n + 3

(
(p + 1) − 1

)
.

Note that the smallest possible number of vertices for p-toroid is considered in [6], in a combinatorial
way. It is proved for example, that the minimal number of vertices for 2-toroids and 3-toroids is n = 10.
Geometric realization is not considered in that paper. Also, it is not known if those toroids are 3-triangulable.
In [3] is proved that 3-toroid with n = 10 vertices have geometric realization, but its 3-triangulability remains
open.

In this paper, the graph of connection is introduced for an arbitrary p-toroid. Consideration in the
opposite direction, from the graph to the toroid, promises to explore new properties of 3-triangulations of
the toroids and to open new problems.
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M. Stojanović / Filomat 37:1 (2023), 115–125 125

[10] D. D. Sleator, R. E. Tarjan, W. P. Thurston, Rotation distance, triangulations, and hyperbolic geometry, J. Amer. Math. Soc. 1 (3) (1988),
647–681.
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[14] M. Stojanović, 2-toroids and their 3-triangulation, Kragujevac J. Math. 41 (2) (2017), 203–217.
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