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Abstract. As the real common generalisations of both orthodox transversals and adequate transversals in
abundant semigroups, the concept of refined generalised quasi-adequate transversals, briefly, RGQA transversals
was introduced by Kong and Wang. In this paper, for the RGQA transversal, the necessary and sufficient
condition for the sets I and Λ to be bands is investigated. It is demonstrated that the sets I and Λ are
both bands if and only if the RGQA transversal is weakly simplistic. Moreover, the RGQA transversal So

being weakly simplistic is different from So being a quasi-ideal nor the abundant semigroup S satisfying the
regularity condition. Finally, by means of a quasi-adequate semigroup and a band, the structure theorem
for an abundant semigroup with a weakly simplistic RGQA transversal is established.

1. Introduction and preliminaries

Let So be a subsemigroup of the regular semigroup S. Then So is called an inverse transversal of S if So is an
inverse subsemigroup of S and contains exactly one inverse of each element of S, that is, |VSo (a)| = 1, where
VSo (a) denotes the intersection of V(a) and So. This concept was first introduced by Blyth and McFadden
[1] in 1982. Afterwards, this class of regular semigroups attracted many semigroup researchers’ attention
and a deal of important results were obtained (see [1-4] and their references). Let I = {aao : a ∈ S, ao

∈ VSo (a)}
and Λ = {aoa : a ∈ S, ao

∈ VSo (a)}. In 1997, Tang [4] showed that if S is a regular semigroup with an inverse
transversal So, then both I and Λ are bands with I a left regular band and Λ a right regular band. These
two bands play a key role in the study of regular semigroups with inverse transversals. Other important
subsets of S are R = {x ∈ S : xox = xoxoo

} and L = {x ∈ S : xxo = xooxo
}. Both R and L are subsemigroups

with R left inverse and L right inverse. The concept of orthodox transversals was introduced by Chen [5] as a
generalisation of inverse transversals, and an excellent structure theorem for regular semigroups with quasi-
ideal orthodox transversals was established. Chen and Guo [6] considered the general case of orthodox
transversals and investigated some properties associated with the sets I and Λ. In [7,8], Kong and Zhao
introduced two interesting sets R and L and established the structure theorems for regular semigroups
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with quasi-ideal orthodox transversals. In 2014, Kong [9] introduced the concept of generalised orthodox
transversals and Kong and Meng [10] acquired the characterization for a generalised orthodox transversal
to be an orthodox transversal. In [11], Kong introduced the weakly simplistic orthodox transversal and
obtained the result that I andΛ are both bands if and only if the orthodox transversal So is weakly simplistic.

The concept of adequate transversals, was introduced by El-Qallali [12] in the class of abundant semi-
groups. Chen, Guo and Shum [13,14] obtained some important results about quasi-ideal adequate transver-
sals. Afterwards, Kong [15] explored some properties concerned with adequate transversals. Kong and
Wang [16] considered the product of quasi-ideal adequate transversals and proposed the open problem
of the isomorphism of adequate transversals. The concept of quasi-adequate transversals was introduced
by Ni [17] and followed by Luo, Kong and Wang [18,19], their work mainly focused on the structure and
the properties of multiplicative quasi-adequate transversals. Unfortunately, quasi-adequate transversals
are neither the generalisation of orthodox transversals nor adequate transversals. Inspired by the charac-
terization of orthodox transversals [10], the concept of refined generalised quasi-adequate transversal, briefly,
RGQA transversal was introduced by Kong and Wang [20]. It was demonstrated that RGQA transversals
are the real common generalisations of both orthodox transversals and adequate transversals in the abun-
dant semigroups. The product of quasi-ideal RGQA transversals was explored [21] and generalised to
quasi-Ehresmann transversals [22].

In this article, we continue along the line of [3, 11, 20] by studying the equivalent condition of the sets I
andΛ to be bands as for abundant semigroups with RGQA transversals. It is shown that the sets I andΛ are
both bands if and only if the RGQA transversal is weakly simplistic. A structure theorem for an abundant
semigroup with a weakly simplistic RGQA transversal is also established. The related results concerning
orthodox transversals and adequate transversals are generalised and enriched.

It is worth remarking that the RGQA transversal being weakly simplistic is different from a quasi-ideal
nor the abundant semigroup S satisfying the regularity condition. As for an abundant semigroup S with
adequate transversals So, even if the adequate transversal So is a quasi-ideal of S, I and Λ need not be
subsemigroups, see Example 2.7 in [13]. If S is a regular semigroup with an orthodox transversal So, then
S is certainly an abundant semigroup satisfying the regularity condition and So is an RGQA transversal
of S, but in general, I and Λ are not necessary bands. Let S be an abundant semigroup with an RGQA
transversal So. If S satisfies the regularity condition and So is a quasi-ideal of S, it is easy to check that both
I and Λ are bands. But these conditions are a little stronger. As for orthodox transversals, it is shown that
in [11], I and Λ are both bands if and only if the orthodox transversal So is weakly simplistic. The second
author gave Example 2.4 in [11] illustrating that weakly simplistic orthodox transversal So is not necessarily
a quasi-ideal of S. As for adequate transversals, it happens that both I and Λ are bands, but the abundant
semigroup S does not satisfy the regular condition, see Example 1 in [15].

The so called Miller-Clifford theorem will be used frequently.
Lemma 1.1 [23] (1) Let e and f beD-equivalent idempotents of the semigroup S. Then each element a in Re ∩ L f has
a unique inverse a′ in R f ∩ Le with aa′ = e and a′a = f ;
(2) Let a, b be elements of the semigroup S. Then ab ∈ Ra ∩ Lb if and only if La ∩ Rb has an idempotent.

Definition 1.1 [5] Let So be an orthodox subsemigroup of be the regular semigroup S. Then So is called an
orthodox transversal of S, if the following two conditions are satisfied:
(1) For all a ∈ S, VSo (a) , ∅;
(2) For any a, b ∈ S, if {a, b} ∩ So , ∅, then VSo (a)VSo (b) ⊆ VSo (ba).

Lemma 1.2 [10] Let So be an orthodox subsemigroup of the regular semigroup S. If VSo (a) , ∅ for any a ∈ S, then
So is an orthodox transversal of S if and only if

(∀a, b ∈ S) [VSo (a) ∩ VSo (b) , ∅ ⇒ VSo (a) = VSo (b)].

A subsemigroup T of S is called a quasi-ideal of S, if TST ⊆ T.
In this article, for semigroups S and So, we denote the set of idempotents of S and So by E and Eo

respectively if no confusion. If the product of any two regular elements in S is also regular, then S is said
to satisfy the regularity condition.
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On a semigroup S the relation L∗ is defined by a L∗ b if and only if {∀x, y ∈ S1, ax = ay ⇔ bx = by}
and the relation R∗ is defined dually. Obviously, L∗ is a right congruence and R∗ a left congruence with
L⊆L

∗,R⊆R∗. It is easy to see if a, b are regular elements of S, then a L∗ b (a R∗ b) if and only if a L b (a R b).
A semigroup is called abundant [24] if eachL∗-class and eachR∗-class contains an idempotent. An abundant
semigroup S is called quasi-adequate [25] (adequate) if its idempotents form a band (semilattice). Let S be an
abundant semigroup and U an abundant subsemigroup of S. Then U is a ∗-subsemigroup of S if and only
if L∗ (U) =L∗ (S) ∩ (U ×U) and R∗ (U) =R∗ (S) ∩ (U ×U).

Lemma 1.3 [24] Let e be an idempotent of a semigroup S. Then for a ∈ S, the following conditions are equivalent:
(1) a L∗ e (a R∗ e);
(2) a = ae (ea = a) and for all x, y ∈ S1, ax = ay (xa = ya) implies ex = ey (xe = ye).

Lemma 1.4 [17] Let S be an abundant semigroup and x, y ∈ S. If there exist e, f ∈ E such that x = ey f and
e L y+, f R y∗ for some y+, y∗ ∈ E, then e R∗ x and f L∗ x.

Definition 1.2 [12] Let So be a ∗-adequate subsemigroup of an abundant semigroup S. Then So is called an
adequate transversal of S, if for any x ∈ S there exist idempotents e, f ∈ S and a unique element x ∈ So such
that x = ex f , where e L x+ and f R x∗. It can be shown that e and f are uniquely determined by x and So

(see [12] for detail).
Let S be an abundant semigroup and So a quasi-adequate ∗−subsemigroup of S. Then So is called a gen-

eralised quasi-adequate transversal of S if CSo (x) = {x ∈ So
| x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈

Eo
} , ∅. Let

Ix = {ix ∈ E | (∃x ∈ CSo (x)) x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo
},

Λx = {λx ∈ E | (∃x ∈ CSo (x)) x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo
},

I =
⋃
x∈S

Ix, Λ =
⋃
x∈S

Λx.

In [17], Ni called the generalised quasi-adequate transversal So a quasi-adequate transversal of S if it satisfies
(∀e ∈ E) (∀1 ∈ Eo), CSo (e)CSo (1) ⊆ CSo (1e) and CSo (1)CSo (e) ⊆ CSo (e1).

Lemma 1.5 [20] If S is an abundant semigroup with a generalised quasi-adequate transversal So, then I = {e ∈ E :
(∃e∗ ∈ Eo) e L e∗} and Λ = { f ∈ E : (∃ f+ ∈ Eo) f R f+}with I ∩Λ = Eo.
Let R = {x ∈ S : (∃λx ∈ Λx) λx ∈ Eo

} and L = {a ∈ S : (∃ia ∈ Ia) ia ∈ Eo
}. Then R = {x ∈ S : (∃l ∈ Eo) x L∗ l} and

L = {a ∈ S : (∃h ∈ Eo) a R∗ h}with R ∩ L = So,E(R) = I and E(L) = Λ.

Definition 1.3 [20] Let So be a generalised quasi-adequate transversal of the abundant semigroup S. If
for all a, b ∈ Re1S, VSo (a) ∩ VSo (b) , ∅ implies that VSo (a) = VSo (b), then So is called a refined generalised
quasi-adequate transversal, briefly, RGQA transversal of S.

Lemma 1.6 [20] Let So be a generalised quasi-adequate transversal of the abundant semigroup S. Then So is refined
if and only if IEo,EoΛ ⊆ E and for all i ∈ I, λ ∈ Λ, eo

∈ Eo, if eoi, λeo are regular, then they are idempotent.

Lemma 1.7 [20] Let S be an abundant semigroup with an RGQA transversal So.
(1) If CSo (a) ∩ Eo , ∅ or VSo (a) ∩ Eo , ∅, then CSo (a) = VSo (a) ⊆ Eo.
(2) If CSo (a) ∩ CSo (b) , ∅ and a L∗ b, a R∗ b, then a = b.

2. Weakly simplistic RGQA transversals

In this section, the concept of left simplistic, simplistic, left weakly simplistic, weakly simplistic and left
quasi-ideal RGQA transversals are introduced and some interesting equivalence conditions for an RGQA
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transversal to be left simplistic, simplistic, left weakly simplistic, weakly simplistic and left quasi-ideal are
obtained.

Definition 2.1 Let So be an RGQA transversal of the abundant semigroup S. Then So is called left simplistic
(resp. right simplistic ) if SoISo

⊆ So (resp. SoΛSo
⊆ So); and simplistic if it is both left simplistic and right

simplistic.

Theorem 2.1 Let So be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:

(1) So is left simplistic;
(2) EoI ⊆ So;
(3) SoI ⊆ So;
(4) So is a right ideal of R;
(5) R is a subsemigroup and SoS ⊆ L;
(6) R is a subsemigroup and L is a right ideal of S;
(7) R is a subsemigroup and ΛI ⊆ L.

Proof. (1)=⇒ (2). For any i ∈ I, there exists i∗ ∈ Eo such that i∗ L i. Thus for any eo
∈ Eo, eoi = eoii∗ ∈ SoISo

⊆ So.
(2) =⇒ (3). For any so

∈ So, there exists so∗
∈ Eo such that so∗

L
∗ so. Then for any i ∈ I we have

soi = so
· so∗i ∈ so

· EoI ⊆ soSo
⊆ So.

(3) =⇒ (4). For any so
∈ So, x ∈ R, it is easy to see sox = soixxλx ∈ SoI · SoEo

⊆ So
· So
⊆ So.

(4) =⇒ (5). For any x, y ∈ R, there exists eo
∈ Eo such that x L∗ eo and so xy L∗ eoy ∈ SoR ⊆ So. Thus

xy ∈ R and R is a subsemigroup.
For any x ∈ S, so

∈ So, we have sox R∗ soix ∈ SoI ⊆ SoR ⊆ So and so sox ∈ L. Consequently, SoS ⊆ L.
(5) =⇒ (6). It only need to show that L is a right ideal of S. For any x ∈ S and a ∈ L, ax = iaaλax ∈

EoSoλax ⊆ SoS ⊆ L and so LS ⊆ L.
(6) =⇒ (7). It follows from (6) that ΛI ⊆ LI ⊆ L.
(7) =⇒ (1). For any ao, bo

∈ So and i ∈ I, there exists ao∗
∈ Eo such that ao∗

L
∗ ao, we have

ao∗i ∈ EoI ⊆ ΛI ⊆ L, ao∗i ∈ EoI ⊆ RR ⊆ R.

Thus ao∗i ∈ L ∩ R = So and so aoibo = ao(ao∗i)bo
∈ aoSobo

⊆ So, that is, So is left simplistic.

Combining Theorem 2.1 with its dual, it is easy to see the following result.

Theorem 2.2 Let So be an RGQA transversal of the abundant semigroup S. Then the following statements are
equivalent:

(1) SoI ⊆ So, ΛSo
⊆ So;

(2) So is simplistic, that is, SoISo
⊆ So and SoΛSo

⊆ So;
(3) So is a quasi-ideal of S, that is, SoSSo

⊆ So;
(4) ΛI ⊆ So;
(5) SoR ⊆ So, LSo

⊆ So;
(6) EoI ⊆ So, ΛEo

⊆ So;
(7) SSo

⊆ R, SoS ⊆ L;
(8) R is a left ideal and L is a right ideal of S;
(9) LR ⊆ So.

Theorem 2.3 Let S be an abundant semigroup with an RGQA transversal So. Then the following statements are
equivalent:

(1) So is left simplistic and weakly multiplicative (i.e. ΛI is a regular subset and VSo (ΛI) ⊆ Eo);
(2) ΛI ⊆ Λ and R is a subsemigroup of S.
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Proof. (1) =⇒ (2). If (1) holds, then ΛI ⊆ L and R is a subsemigroup by Theorem 2.2. For any l ∈ Λ, i ∈ I,
since li ∈ L and regular, there exist (li)o

∈ VSo (li), (li)oo
∈ VSo ((li)o) such that li = (li)oo(li)oli. It follows from So

is weakly multiplicative that (li)o
∈ Eo and so (li)oo

∈ Eo. Thus, by Lemma 1.7 li = (li)oo(li)oli ∈ EoΛ ⊆ E. It is
easy to see in this case, EoΛ ⊆ Λ and so ΛI ⊆ Λ.

(2) =⇒ (1). Suppose that ΛI ⊆ Λ, then VSo (ΛI) ⊆ VSo (Λ) ⊆ Eo and so So is weakly multiplicative. Since
Λ ⊆ L, we have ΛI ⊆ L. It follows from R is a subsemigroup and Theorem 2.1 that So is left simplistic.

Theorem 2.4 Let S be an abundant monoid with an RGQA transversal So. Then the following statements are
equivalent:

(1) So is left simplistic;
(2) L = S.

Proof. (1) =⇒ (2). From S is a monoid we deduce that 1 ∈ So. Thus by So is left simplistic, for each i ∈ I,
i = 1 · i · 1 ∈ SoISo

⊆ So, and so I ⊆ I ∩ So = Eo. Consequently, for every x ∈ S, x R∗ ex ∈ I = Eo and so x ∈ L.
Therefore S = L.

(2) =⇒ (1). For any i ∈ I, there exists i∗ ∈ Eo such that i∗ L i. It follows from S = L that for i ∈ I, there
exists h ∈ Eo such that h R∗ i. Thus h R∗ i L i∗ and so by Proposition 2.2 in [20] i ∈ So. Therefore I ⊆ So and
SoISo

⊆ SoSoSo
⊆ So, thus So is left simplistic.

As a consequence of Theorem 2.4 and its dual, we have

Corollary 2.1 Let S be an abundant monoid with an RGQA transversal So. Then So is a quasi-ideal of S if and only
if S = So.

Theorem 2.5 Let S be an abundant monoid with an RGQA transversal So with EoI ⊆ Re1S. Then the following
statements are true:

(1) i∗ki∗k−1 · · · i
∗

1 ∈ VSo (i1i2 · · · ik), where i∗l ∈ Eo and i∗l L il, l = 1, 2, · · · k;
(2) the semiband ⟨I⟩ generated by I is a subband of S.

Dually, if So is an RGQA transversal of an abundant semigroup S withΛEo
⊆ Re1S, then the semiband ⟨Λ⟩ generated

by Λ is a subband of S.

Proof. (1). Certainly, this is true for k = 1. Now, if it is true for k = s − 1 and we will show that it is also
true for k = s. Let i1, i2, · · · , ik ∈ I. Then we have i∗s · · · i∗2 ∈ VSo (i2 · · · is) by the hypothesis. It follows from
EoI ⊆ Re1S and Lemma 1.7 that

i∗1 · (i2 · · · is)(i
∗

s · · · i
∗

2) ∈ EoI ⊆ E, (i2 · · · is)(i∗s · · · i
∗

2) · i∗1 ∈ IEo
⊆ E.

Thus

(i∗s · · · i
∗

2)i∗1 · i
∗

1(i2 · · · is) · (i∗s · · · i
∗

2)i∗1
= (i∗s · · · i

∗

2)((i2 · · · is)(i∗s · · · i
∗

2)i∗1)((i2 · · · is)(i∗s · · · i
∗

2)i∗1)i∗1
= (i∗s · · · i

∗

2)((i2 · · · is)(i∗s · · · i
∗

2)i∗1)i∗1
= (i∗s · · · i

∗

2)(i2 · · · is)(i∗s · · · i
∗

2)i∗1i∗1
= (i∗s · · · i

∗

2)i∗1
and

i∗1(i2 · · · is) · (i∗s · · · i
∗

2)i∗1 · i
∗

1(i2 · · · is) ·
= i∗1(i∗1(i2 · · · is)(i∗s · · · i

∗

2))(i∗1(i2 · · · is)(i∗s · · · i
∗

2))(i2 · · · is)
= i∗1(i∗1(i2 · · · is)(i∗s · · · i

∗

2))(i2 · · · is)
= i∗1(i2 · · · is),
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and so i∗s · · · i∗2i∗1 ∈ VSo (i∗1i2 · · · is). Therefore

(i∗s · · · i
∗

2i∗1)(i1i2 · · · is)(i∗s · · · i
∗

2i∗1) = (i∗s · · · i
∗

2)(i∗1i1)((i2 · · · is)(i∗s · · · i
∗

2)i∗1)
= (i∗s · · · i

∗

2i∗1)(i∗1i2 · · · is)(i∗s · · · i
∗

2i∗1) = i∗s · · · i
∗

2i∗1
and

(i1i2 · · · is)(i∗s · · · i
∗

2i∗1)(i1i2 · · · is) = i1(i∗1i2 · · · is)(i∗s · · · i
∗

2i∗1)(i∗1i2 · · · is)
= i1(i∗1i2 · · · is) = i1i2 · · · is.

(2) To show that ⟨I⟩ is a band, we first notice that VEo (a) , ∅ for every a ∈ ⟨I⟩ by (1). Let a = i1i2 · · · is ∈ ⟨I⟩
and b = is+1 · · · it ∈ ⟨I⟩. It follows from (1) and Lemma 1.8 that VSo (x) = VEo (x) for every x ∈ ⟨I⟩. Denoting
e = i∗s · · · i∗1 and f = i∗t · · · i

∗

s+1. For each h ∈ VSo (a), notice that e ∈ VSo (a), we have ah R ae L e ∈ Eo, and so by
Lemma 1.1, ah L eah R e. Similarly ha L ea R e ∈ Eo and h R hae L e. It follows from hohae ∈ EoI ⊆ E that

hae · ho
· hae = h · hohae · hohae = h · hohae = hae.

Thus hae is regular and so hae = (ha)e ∈ ΛEo
⊆ E by Lemma 1.7. That eah = e(ah) ∈ EoI ⊆ E is obvious.

Consequently,
ehe = e · haeah · e = e · hae · ahe = eah · e = e

and
heh = h · ahe · e · eha · h = h · ae · e · ea · h = h · aea · h = hah = h,

that is, e ∈ VSo (h). Certainly e ∈ VSo (e) and so VSo (h) = VSo (e) since the regular elements of So form an
orthodox semigroup. Hence h DEo e and therefore VEo (a) ⊆ Eo(e) with Eo(e) denoting the D-class of the
band Eo containing e. It is a routine matter to show that Eo(e) ⊆ VEo (a) and so VEo (a) = Eo(e). Similarly,
VEo (b) = Eo( f ), VEo (ba) = Eo( f e). Therefore VEo (a)VEo (b) ⊆ VEo (ba) and so ⟨I⟩ is indeed an orthodox semigroup.
Thus E(⟨I⟩) is a band and it follows from ⟨I⟩ ⊇ E(⟨I⟩) ⊇ I and ⟨I⟩ is the smallest subsemigroup containing I
that ⟨I⟩ = E(⟨I⟩) is a band.

Definition 2.2 Let So be an RGQA transversal of the abundant semigroup S. Then we define So to be left
weakly simplistic if SoISo

⊆ R and EoI ⊆ Re1S; right weakly simplistic if SoΛSo
⊆ L and ΛEo

⊆ Re1S; and weakly
simplistic if So is left weakly simplistic and right weakly simplistic together.

Theorem 2.6 Let So be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:

(1) So is left weakly simplistic;
(2) EoI ⊆ I;
(3) EoI ⊆ Re1R;
(4) SoI ⊆ R and EoI ⊆ Re1S;
(5) SoR ⊆ R and EoI ⊆ Re1S;
(6) SoRSo

⊆ R and EoI ⊆ Re1S;
(7) R is a subsemigroup of S and EoI ⊆ Re1S;
(8) I is a subband of S.

Proof. (1) =⇒ (2). For any i ∈ I, there exists i∗ ∈ Eo such that i∗ L i. Hence for any eo
∈ Eo, eoi = eoii∗ ∈

SoISo
⊆ R. It follows from EoI ⊆ Re1S and Lemma 1.7 that eoi ∈ E and thus eoi ∈ R ∩ E = I.

(2) =⇒ (3). This is clear.
(3) =⇒ (4). For any i ∈ I, so

∈ So, it is that soi L∗ so∗i ∈ EoI ⊆ R. Hence so∗i L∗ l for some l ∈ Eo and
consequently soi L∗ l. Therefore, soi ∈ R by Lemma 1.5.

(4) =⇒ (5). For any so
∈ So, x ∈ R, clearly sox = soexxλx ∈ SoI · SoEo

⊆ RSoEo
⊆ R.

(5) =⇒ (6). This is obvious.
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(6) =⇒ (7). For any x, y ∈ R, l ∈ Eo with x L∗ l, we have xy L∗ ly = liyyλy ∈ SoRSoEo
⊆ REo

⊆ R. Hence
ly L∗ eo for some eo

∈ Eo and so xy L∗ lyL∗eo. Thus xy ∈ R by Lemma 1.5.
(7) =⇒ (8). Let e, f ∈ I. Then e, f ∈ R and so e f ∈ R by the assumption that R is a subsemigroup. It

follows from Theorem 2.5 that e f ∈ E and so e f ∈ R ∩ E = I, that is, I is a band.
(8) =⇒ (1). Clearly, if I is a band, EoI ⊆ Re1S. For any so, to

∈ So, i ∈ I, there exists so∗
∈ Eo such that

so
L
∗ so∗ and so∗i ∈ EoI ⊆ II ⊆ I. Thus there exists (so∗i)∗ ∈ Eo such that (so∗i)∗ L∗ so∗i. Consequently,

soito
L
∗ so∗ito

L
∗ (so∗i)∗to

L
∗ ((so∗i)∗to)∗ ∈ Eo.

Thus soito
∈ R and so SoISo

⊆ R. By Definition 2.2, So is left weakly simplistic.

Combining Theorem 2.6 with its dual, we have the following result.

Theorem 2.7 Let So be an RGQA transversal of the abundant semigroup S. Then the following statements are
equivalent:

(1) So is weakly simplistic, that is, SoISo
⊆ R, SoΛSo

⊆ L and EoI,ΛEo
⊆ Re1S;

(2) EoI ⊆ I and ΛEo
⊆ Λ;

(3) EoI ⊆ R, ΛEo
⊆ L and EoI,ΛEo

⊆ Re1S;
(4) SoI ⊆ R, ΛSo

⊆ L and EoI,ΛEo
⊆ Re1S;

(5) SoR ⊆ R, LSo
⊆ L and EoI,ΛEo

⊆ Re1S;
(6) SoRSo

⊆ R, SoLSo
⊆ L and EoI,ΛEo

⊆ Re1S;
(7) R and L are both subsemigroups of S and EoI,ΛEo

⊆ Re1S;
(8) I and Λ are both subbands of S.

Theorem 2.8 Let So be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:

(1) SoSSo
⊆ R;

(2) ΛI ⊆ R;
(3) SSo

⊆ R;
(4) SR ⊆ R;
(5) LR ⊆ R;
(6) LI ⊆ R;
(7) LISo

⊆ R;
(8) LRSo

⊆ R;
(9) R is a subsemigroup of S and LSo

⊆ R.

Proof. (1) =⇒ (2). For any e ∈ i, f ∈ Λ, there exists e∗, f+ ∈ Eo such that e L e∗, f R f+ and so f e = e∗e f f+ ∈
SoSSo

⊆ R.
(2) =⇒ (3). For any a ∈ S and so

∈ So, it follows from L∗ is a right congruence that

aso
L
∗ λaso = λaso+

· so
∈ ΛEoso

⊆ ΛIso
⊆ Rso

⊆ R.

(3) =⇒ (4). For any a ∈ S and x ∈ R, it is clear that ax = axl ∈ SSo
⊆ R, where l ∈ Eo with xL∗l.y

(4) =⇒ (5). This is clear.
(5) =⇒ (6). This is clear.
(6) =⇒ (7). It follows from L∗ is a right congruence that RSo

⊆ R and so (7) valids.
(7) =⇒ (8). This is clear.
(8) =⇒ (9).For any x, y ∈ R, l ∈ Eo with x L∗ l, we have xy L∗ ly = liyyλy ∈ SoRSoEo

⊆ REo
⊆ R.

Hence ly L∗ eo for some eo
∈ Eo and so xy L∗ lyL∗eo. Thus xy ∈ R by Lemma 1.5. It is obvious that

LSo = LSoSo
⊆ LRSo

⊆ R.
(9) =⇒ (1). For any so, to

∈ So and x ∈ R, it follows from R is a subsemigroup that

soxto = so
· ixxλx · to

∈ so
· I · x · LSo

⊆ soR x R ⊆ R,

and so SoSSo
⊆ R.
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Definition 2.3 We say that So is a
• left quasi-ideal of S if any one of the equivalent properties of Theorem 2.8 holds;
• right quasi-ideal of S if any one of the dual properties of Theorem 2.8 holds.

It is easy to see that So is both a left quasi-ideal and a right quasi-ideal if and only if So is a quasi-ideal.

Theorem 2.9 The following statements are equivalent:
(1) So is left simplistic;
(2) SoISo

⊆ R and So is a right quasi-ideal;
(3) SoISo

⊆ R, SoΛSo
⊆ L and SoR ⊆ L.

Proof. (1) =⇒ (2). For any ao, bo
∈ So and c ∈ S, aocbo = ao(cbo) ∈ SoS ⊆ L by Theorem 2.6 and So is a right

quasi-ideal. That SoISo
⊆ So

⊆ R is obvious.
(2) =⇒ (3). We only need notice that SoR ⊆ SoREo

⊆ SoSSo
⊆ L.

(3)=⇒ (1). For any ao, bo
∈ So and i ∈ I, there exists ao∗

∈ Eo such that ao∗
L
∗ ao, we have ao∗i ∈ EoI ⊆ SoR ⊆ L,

and so ao∗i ∈ E(L) = Λ. Thus aoibo = ao(ao∗i)bo
∈ aoΛbo

⊆ L and therefore aoibo
∈ SoISo

∩ L ⊆ R∩ L ⊆ So, that is,
So is left simplistic.

Theorem 2.10 Let S be an abundant semigroup with an RGQA transversal So. Then the following statements are
equivalent:

(1) So is a left quasi-ideal and weakly multiplicative;
(2) ΛI ⊆ I.

Proof. (1) =⇒ (2). If So is a left quasi-ideal, it follows from Theorem 2.8 that, ΛI ⊆ R. Thus for any
λ ∈ Λ, i ∈ I, λi = λi(λi)o(λi)oo for some (λi)o

∈ VSo (λi), (λi)oo
∈ VSo ((λi)o) by λi is regular. It follows from So is

weakly multiplicative that (λi)o
∈ Eo. Thus (li)oo

∈ Eo and λi = λi(λi)o(λi)oo
∈ IEo

⊆ E. Therefore λi ∈ I.
(2) =⇒ (1). If ΛI ⊆ I, then VSo (ΛI) ⊆ VSo (I) ⊆ Eo. Thus So is weakly multiplicative. Clearly ΛI ⊆ I ⊆ R

and so So is a left quasi-ideal by Theorem 2.8.

Let S be an abundant semigroup and So a weakly simplistic RGQA transversal of S. Then by Theorem
2.7, R is an abundant semigroup with an RGQA transversal So with E(R) = I is a band. Consequently, R
is quasi-adequate and for every x ∈ R and λx ∈ Λx, there exists x∗ ∈ Eo such that λx = x∗. For a ∈ R, the
R
∗-class of R containing a will be denoted by R∗a and we define K(a) = K(b) if R∗a = R∗b and CSo (a) = CSo (b) for

a, b ∈ R. The relation K , defined on R by (a, b) ∈ K if and only if K(a) = K(b), is an equivalence relation on
R. By Theorem 2.7, Λ is a band with an RGQA transversal Eo = E(So) and each element in Λ is R-related
to some element in Eo. For each e ∈ Λ, let ϕe : R → R be a mapping defined by ϕex = exex∗ for a given ex∗,
where ex ∈ CSo (ex). For each y ∈ R, let ψy : Λ→ Λ be a mapping defined by fψy = λ f y for a given λ f y ∈ Λ f y.
For e ∈ Λ and x ∈ R, let LP(Eo) = {(e, x) ∈ Λ × R : e R e+ L∗ x for some e+ ∈ Eo

}. Then we have the following
properties associated with ϕ and ψ.

Proposition 2.1 Let S be an abundant semigroup with a weakly simplistic RGQA transversal So and R,Λ, ϕ and ψ
be defined as above. Then for any e, f ∈ Λ and x, y ∈ R:

(1) CSo (ϕey) = CSo (ey);
(2) x(ϕey) R∗ xey and (eψy) f L∗ ey f ;
(3) there exists λ(ϕex) ∈ Eo such that eψx R λ(ϕex);
(4) (ϕex)(ϕ(eψx) f y) K ϕe(x(ϕ f y)) and (eψx(ϕ f y))( fψy) L∗ ((eψx) f )ψy;
(5) e+(ϕex) = ϕex and ( fψy)λy = fψy for any e+ ∈ Eo with e+ R e and λy ∈ Λy;
(6) if e′ ∈ Λ, y′ ∈ R with e′ L e R e+ ∈ Eo and y K y′, then CSo (ϕey) = CSo (ϕe′ y′);
(7) if e′, f ′ ∈ Λ and x′, y′ ∈ R with f ′ L f , x L e+ and x K x′ such that (e′, x′), ( f , y), ( f ′, y′) ∈ LP(Eo), then

x(ϕey) R x′(ϕe′ y′) and (eψy) f L (e′ψy′ ) f ′;
(8) for ϕ1x = 1x1x

∗, if 1 ∈ Eo or x L∗ 1+ R 1 for some 1+ ∈ Eo with x(ϕ1x) K x, then (ϕ1x)λx = ϕ1x;
(9) if hψx L rψx and y(ϕhx) = z(ϕrx), then hψix L rψix and y(ϕhix) = z(ϕrix).
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Proof. (1). Since ϕey = eyey∗ = ieyeyλeyey∗ = ieyey ey∗, we have ey ∈ CSo (ϕey). Consequently, CSo (ϕey) ∩
CSo (ey) , ∅ and CSo (ϕey) = CSo (ey).

(2). It follows from xeyey∗λey = xeyλey = xey that xeyey∗ R∗ xey and so x(ϕey) = xeyey∗ R∗ xey. Similarly,
(eψy) f L∗ ey f since ey L∗ λey = eψy and L∗ is a right congruence.

(3). Since ϕex = exex∗ = iexex ex∗ and ex∗ R∗ λex ∈ Λex, take eψx = λex and λ(ϕex) = ex∗ ∈ Eo, then
eψx = λex R

∗ ex∗ = λ(ϕex).
(4). It follows from (2) that

(ϕex)(ϕ(eψx) f y) R∗ (ϕex)((eψx) f y) = exex∗λex f y = exλex f y = ex f y

and ϕe(x(ϕ f y)) R∗ ex(ϕ f y) R∗ ex f y. Thus (ϕex)(ϕ(eψx) f y) R∗ ϕe(x(ϕ f y)).
By the definition of ϕ and ψ, we have

(ϕex)(ϕ(eψx) f y) = exex∗(ϕ(λex) f y)

= exex∗ · λex f y · λex f y
∗

= exex∗λex · f y · λex f y
∗

= ex f y · λex f y
∗

= iex f yex f yλex f y · λex f y
∗

.

It follows from Λ is a band that λex f y · λex f y
∗

∈ ΛEo
⊆ Λ. Since L∗ is a right congruence, we have

λex f y L
∗ ex f y L∗ λex f y L∗ λ(λex f y). Thus ex f y

∗

R
∗ λex f y L

∗ λ(λex f y) R
∗ λex f y

∗

and by Lemma 1.1, λex f y R
∗

λex f yλex f y
∗

L
∗ λex f y

∗

. Consequently, λex f yλex f y
∗

R
∗ ex f y

∗

and so ex f y ∈ CSo ((ϕex)(ϕ(eψx) f y)). For a similar
proof, we have ex f y ∈ CSo (ϕe(x(ϕ f y))). Therefore (ϕex)(ϕ(eψx) f y) K ϕe(x(ϕ f y)). Similarly,

(eψx(ϕ f y))( fψy) L∗ (ex(ϕ f y))λ f y = ex f y f y
∗

λ f y = ex f y L∗ (eψx) f y L∗ ((eψx) f )ψy.

(5). For any e+ ∈ Eo with e+ R e and λy ∈ Λy, we have e+(ϕex) = e+exex∗ = exex∗ = ϕex and ( fψy)λy =
λ f yλy = λ f y = ( fψy).

(6). Since y K y′, we have y = y′(y∗′λy), where y∗′λy ∈ EoEo
⊆ Eo. It follows from e′ L e R e+ ∈ Eo and

Lemma 1.1 that e′ R e′e+ L e+ with e′e+ ∈ ΛEo
⊆ Λ and so e = e+e′. Thus for any s ∈ CSo (e′y′) = CSo (ϕe′ y′),

we have
ey = e+e′ · y′y∗′λy = e+(ie′y′sλe′y′ )(y∗′λy) = (e+ie′y′ )s(λe′y′ y

∗′λy).

Since (e′y′ · y∗′λy)λy′ = e′y′(y∗′λyλy′ ) = e′y′λy′ = e′y′, it follows from e′y′ L∗ λe′y′ that λe′y′ (y∗′λy)λy′ = λe′y′ .
Thus λe′y′ R λe′y′ (y∗′λy) and λe′y′ (y∗′λy) R λe′y′ R s∗ L s. Similarly, e′ · e+ie′y′ = ie′y′ and e+ie′y′ L ie′y′ L s+ R s.
Therefore s ∈ CSo (ey) = CSo (ϕey) and CSo (ϕey) = CSo (ϕe′y′).

(7). Since x K x′, we have x = ixxλx, x′ = ix′xλx′ with ix L x+, λx R x∗, ix′ L x+′, λx′ R x∗′ and
ix R∗ x R x′ R∗ ix′ , x+ R∗ x R∗ x+′. It follows from ix′ R ix L x+ R x+′ L ix′ and Lemma 1.1 that ixx+′ = ix′ .
Thus

x = ixxλx = ix(x+′x′x∗′λx) = (ixx+′)x′(x∗′λx) = ix′x′(x
∗′λx) = x′(x∗′λx).

It follows from x L∗ e+ R e L e′ R e′+ L∗ x′ and Lemma 1.1 that x L∗ e′e+ R e′. Thus x′e′, xe′ = x′x∗′λxe′ ∈
R∗x′ ∩ Le′ . It is easy to see

x′e′ = ix′ · xλx′e′ with λx′e′ ∈ EoΛ ⊆ Λ and λx′e′ R λx′ R x∗′

xe′ = ix · xλxe′ with λxe′ ∈ EoΛ ⊆ Λ and λxe′ R λx R x∗.

Thus x ∈ CSo (x′e′) ∩ CSo (xe′) and so xe′ = x′x∗′λxe′ = x′λx′e′ = x′e′.
From (2) and the proof of (6) we deduce that x(ϕey) R∗ xey R∗ x · e+ie′y′ = (xe+)ie′y′ = xie′y′ R∗ x(e′y′) =

(xe′)y′ = (x′e′)y′ R∗ x′(ϕe′ y′). Similarly, (eψy) f L (e′ψy′ ) f ′.
(8). If 1 ∈ Eo, then 1x ∈ EoR ⊆ SoR ⊆ R and so 1x L∗ 1x L∗ 1x∗ for some 1x ∈ CSo (1x). Thus

ϕ1x = 1x1x
∗
= 1x and (ϕ1x)λx = 1xλx = 1x = ϕ1x.

If x(ϕ1x) K x then x(ϕ1x) = x(x∗λ∆), where λ∆ ∈ Λx(ϕ1x). Since x ∈ R, we may assume x L∗ x and
so x(ϕ1x) L∗ λ∆ R x∗′ L∗ x∗ L∗ x L∗ x L∗ 1+. It follows from Lemma 1.1 that λ∆ L x∗λ∆ R x∗ and
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λ∆ L 1+x∗λ∆ R 1+ with 1+x∗λ∆ ∈ EoEoEo
⊆ Eo since x(ϕ1x) ∈ RR ⊆ R. From x L∗ 1+ we deduce that ϕ1x =

1+(ϕ1x) = 1+x∗λ∆ ∈ Eo and so 1x R∗ 1x1x∗ = ϕ1x = 1+x∗λ∆ R 1+. Since 1x = (1x1x∗)λ1x = ϕ1xλ1x ∈ EoΛ ⊆ Λ,
then 1+ is an inverse of 1x ∈ Λ in Eo. Thus we may take 1x = 1x∗ = 1+. Consequently

(ϕ1x)λx = (1x1x∗)λx = (1x1+)λx = (1x)λx = 1(xλx) = 1x = 1x1+ = 1x1x∗ = ϕ1x.

(9). If hψx L rψx, that is λhx L λrx, it follows from L∗ is a right congruence that λhx · x
∗
L λrx · x

∗.
Consequently, hxx∗ L∗ rxx∗ and so λ(hxx∗) L λ(rxx∗). That is λ(hixx) L λ(rixx) since xx∗ = ixxλxx∗ = ixx. Thus
λ(hix)x L∗ λ(rix)x and so λ(hix)x

+
L
∗ λ(rix)x

+. Hence hixx+ L∗ rixx+, that is hix L∗ rix. Therefore λ(hix) L λ(rix) and
hψix L rψix.

Since λhx L λrx, we have hx L∗ rx. It follows from x L∗ y ⇔ Λx = Λy that Λhx = Λrx and so for any
λhx ∈ Λhx, we haveλhx ∈ Λrx. Letϕhx = hxhx

∗

, λhx R hx
∗

andϕrx = rxrx∗with rx∗ R λhx. Since y(ϕhx) = z(ϕrx),
that is yhxhx

∗

= zrxrx∗, postmultiplying by λhx, we acquire

yhx = yhxhx
∗

λhx = zrxrx∗λhx = zrx.

Thus yhix = zrix since x R∗ ix. Since hix L∗ rix, similar to the above proof, we can choose an element hix
∗

= rix
∗

satisfying yhixhix
∗

= zrixrix
∗

. Therefore y(ϕhix) = z(ϕrix).

3. A Structure Theorem

In this section we will establish a structure theorem for abundant semigroups with weakly simplistic RGQA
transversals.

In what follows Λ denotes a band with an RGQA (in fact, a band) transversal B and each element in Λ
is R-related to some element in B and R denotes a quasi-adequate semigroup with an RGQA transversal
So. Suppose that the band of idempotents of So is isomorphic to B. For the sake of simplicity, we coincide
E(So) with B, and denote it by Eo.

For each e ∈ Λ, let ϕe : R → R be a mapping given by x → ϕex and for each y ∈ R, let ψy : Λ → Λ be a
mapping given by f → fψy. Then the pair of mappings (ϕ,ψ) is said to be normal if for any e, f ∈ Λ and
x, y ∈ R, the following conditions are satisfied:

(1) there exists λϕex ∈ Eo such that eψx R λϕex;
(2) (ϕex)(ϕ(eψx) f y) K ϕe(x(ϕ f y)) and (eψx(ϕ f y))( fψy) L ((eψx) f )ψy;
(3) e+(ϕex) = ϕex and ( fψy)λy = fψy for some e+ ∈ Eo with e+ R e and yo

∈ VSo (y);
(4) if e′ ∈ Λ, y′ ∈ R with e′ L e R e+ ∈ Eo and y K y′, then CSo (ϕey) = CSo (ϕe′y′);
(5) if e′, f ′ ∈ Λ and x′, y′ ∈ R with f ′ L f , x L e+ and x K x′ such that (e′, x′), ( f , y), ( f ′, y′) ∈ LP(Eo), then

x(ϕey) R x′(ϕe′y′) and (eψy) f L (e′ψy′ ) f ′;
(6) for ϕ1x = 1x1x

∗, if 1 ∈ Eo or x L∗ 1+ R 1 for some 1+ ∈ Eo with x(ϕ1x) K x, then (ϕ1x)λx = ϕ1x;
(7) if hψx L rψx and y(ϕhx) = z(ϕrx), then hψix L rψix and y(ϕhix) = z(ϕrix).
The quadruple (R,Λ;ϕ,ψ) is said to be permissible if the pair of mappings (ϕ,ψ) is normal.

Theorem 3.1 Let (R,Λ;ϕ,ψ) be a permissible quadruple. Define a multiplication on the set

Γ = R/ K | × |Λ/ L= {(K(x),Le) ∈ R/ K ×Λ/ L: (∃e+ ∈ Eo) e R e+ L∗ x}

by
(K(x),Le)(K(y),L f ) = (K(x(ϕey)),L(eψy) f ).

Then Γ is an abundant semigroup with a weakly simplistic RGQA transversal isomorphic to So.
Conversely, every abundant semigroup with a weakly simplistic RGQA transversal can be constructed in this way.

We first notice a simple but useful result that, if x ∈ R, then x L∗ x′ for some x′ ∈ CSo (x). For x ∈ R, we
have x = ixxλx, ix L x+, λx R x∗ for some x+, x∗ ∈ Eo with λx ∈ Eo. Then ix · x

+x = ixx+ · x = ixx = x and
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x+x L∗ x. Clearly, x+x = x+ixxλx = xλx and xλx · x
∗
= x · λxx∗ = xx∗ = x. Thus x L∗ x+x = xλx R

∗ x R∗ x+

and xλx ∈ SoEo
⊆ So. It follows from x = ixxλx = ix(xλx)λx and ix L x+ R∗ xλx, λx ∈ Eo that xλx ∈ CSo (x) and

x L∗ xλx. In the following, we identity x′ = xλx with x for x ∈ R and in fact, we assume x L∗ x.
Obviously the definition of Γ is not dependent on the choice of x and e. In fact, if e1 L e and x1 ∈ K(x), then

by Remark 1 in [20], x1 = xh for some h ∈ Eo and x∗ R h L∗ x1. It follows from e1e+ L e+ L∗ x L∗ x L∗ x∗ R h
and Lemma 1.1 that e1e+ R e1e+h L h with e1e+h ∈ ΛEoEo

⊆ Λ since Λ is a band. Furthermore e1e+h L h ∈ Eo

implies that e1e+h ∈ I and so e1e+h ∈ I ∩ Λ = Eo. Notice that e1 R e1e+h L∗ x1 and so (K(x1),Le1 ) ∈ Γ with
(K(x),Le) = (K(x1),Le1 ).

Lemma 3.1 Γ is a semigroup.

Proof. Let (K(x),Le), (K(y),Lh) ∈ Γ. Then there exist e+, h+ ∈ Eo such that e R e+ L∗ x and h R h+ L∗ y. We
first prove that (K(x(ϕey)),L(eψy) f ) ∈ Γ. By conditions (1) and (3), there exists λ(ϕex) ∈ Eo and so

x(ϕey) L∗ e+(ϕey) = ϕey L∗ λ(ϕex) ∈ Eo

and
(eψy)h R∗ (eψy)h+ = (eψy) R∗ λ(ϕex) ∈ Eo.

Hence (K(x(ϕey)),L(eψy) f ) ∈ Γ.
Now we prove that the multiplication on Γ is not dependent on the choice of x, e, y and h. If

(K(x),Le) = (K(x′),Le′ ) and (K(y),Lh) = (K(y′),Lh′ ),

then
(K(x),Le) (K(y),Lh) = (K(x(ϕey)),L(eψy)h)

and
(K(x′),Le′ ) (K(y′),Lh′ ) = (K(x′(ϕe′y′)),L(e′ψy′ )h′ ).

We shall prove that CSo (x(ϕey)) = CSo (x′(ϕe′ y′)). Since (K(x),Le) = (K(x′),Le′ ), x K x′ and e R e+ L∗

x R∗ x′ L∗ e′+ R e′ L e. Then e′e+ ∈ Le+ ∩ Re′ and e+e′ = e. It is easy to see that x = x′e′e+ and
e′e+e = e′. Similarly, y = y′h′h+. Thus x(ϕey) = (x′e′e+)(ϕe(y′h′h+)) = x′(ϕ(e′e+e)y′)(h′h+) = x′(ϕe′ y′)(h′h+) and
so CSo (x(ϕey)) ∩ CSo (x′(ϕe′ y′)) , ∅. Consequently, CSo (x(ϕey)) = CSo (x′(ϕe′ y′)). It follows from (4),(5) that
x(ϕey) R x′(ϕe′ y′) and (eψy) f L (e′ψy′ ) f ′. Hence

(K(x(ϕey)),L(eψy)h) = (K(x′(ϕe′ y′)),L(e′ψy′ )h′ )

and the multiplication on Γ is well-defined.
For any a = (K(x),Le), b = (K(x1),Le1 ), c = (K(x2),Le2 ) ∈ Γ, then by (2)

(ab)c = (K(x(ϕex1)),L(eψx1 )e1 )(K(x2),Le2 )
= (K(x(ϕex1)(ϕ(eψx1 )e1 x2)),L(((eψx1 )e1)ψx2 )e2 )
= (K(xϕe(x1(ϕe1 x2))),L(((eψx1 )e1)ψx2 )e2 )

and

a(bc) = (K(x),Le)(K(x1(ϕe1 x2)),L(e1ψx2 )e2 )
= (K(xϕe(x1(ϕe1 x2))),L(eψx1(ϕe1 x2))((e1ψx2 )e2))

= (K(xϕe(x1(ϕe1 x2))),L(((eψx1 )e1)ψx2 )e2 ).

Therefore (ab)c = a(bc) and Γ is a semigroup.

Lemma 3.2 Γ is an abundant semigroup.
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Proof. Let (K(x),Le) ∈ Γ. We first show that (K(x),Le) ∈ E(Γ) if and only if ϕex = e+ L eψx, where e+ ∈ Eo and
e R e+ L∗ x. If (K(x),Le) ∈ E(Γ), then

(K(x),Le)(K(x),Le) = (K(x(ϕex)),L(eψx)e) = (K(x),Le).

Hence K(x(ϕex)) = K(x),L(eψx)e = Le and so x(ϕex) K x. Consequently, x(ϕex) = x(x∗λ∆), where λ∆ ∈ Λx(ϕex).
Thus x = x(ϕex)λx = x(x∗λ∆)λx and x L∗ e+ implies that e+(ϕex) = ϕex = e+(x∗λ∆) ∈ EoEoEo

⊆ Eo. Therefore
by (6), e+ = e+(ϕex)λx = e+(ϕex) = ϕex. Since L∗ is a right congruence, (eψx)e L e implies that (eψx)ee+ L ee+,
that is (eψx)e+ L e+. It follows from x L∗ e+ and e+ ∈ Eo that (eψx)e+ = eψx. Therefore eψx L e+.

Conversely, for (K(x),Le) ∈ Γ, if ϕex = e+ L eψx, then

(K(x),Le)(K(x),Le) = (K(x(ϕex)),L(eψx)e)
= (K(xe+),Le+e) = (K(x),Le).

Denoting u = (K(ix),Lx+ ), v = (K(λx),Le), where x = ixxλx, ix L x+ and λx R x∗. Then certainly u, v ∈ E(Γ)
and we shall show that u R∗ (K(x),Le) L∗ v. Computing

(K(ix),Lx+ )(K(x),Le) = (K(ixx+x),L(x+ψx)e)
= (K(x),Lx+xe)
= (K(x),Lxλxe)
= (K(x),Lλxe) (since x∗λxe = λxe and x L∗ x∗)
= (K(x),Le). (since λx L e+ R e)

Suppose that (K(y),Lh), (K(z),Lr) ∈ Γ1 are such that

(K(y),Lh)(K(x),Le) = (K(z),Lr)(K(x),Le).

This implies that
(K(y(ϕhx)),L(hψx)e) = (K(z(ϕrx)),L(rψx)e),

that is, y(ϕhx) K z(ϕrx) and (hψx)e L (rψx)e. From (hψx)e L (rψx)e, we have (hψx)ee+ L (rψx)ee+, where
e+ ∈ Eo and e R e+ L∗ x, this implies that (hψx)e+ L (rψx)e+. It follows that (hx)e+ L∗ (rx)e+ and thus hx L∗ rx
since x L∗ e+. By ϕhx = h+(ϕhx), ϕrx = r+(ϕrx) and y L∗ h+, z L∗ r+, we have y(ϕhx) L∗ z(ϕrx). Hence by
Lemma 1.9

(y(ϕhx), z(ϕrx)) ∈K ∩ L∗= l.

That is y(ϕhx) = z(ϕrx). From (hψx) L (rψx) and (7) we deduce that y(ϕhix) = z(ϕrix) and (hψix ) L (rψix ).
Therefore

(K(y),Lh)(K(ix),Lx+ ) = (K(y(ϕhix)),L(hψix )) (since ix L x+)
= (K(z(ϕrix)),L(rψix ))

= (K(z),Lr)(K(ix),Lx+ ). (since ix L x+)

By Lemma 1.3, u R∗ (K(x),Le).
On the other hand, we have

(K(x),Le)v = (K(x),Le)(K(λx),Le)
= (K(x(eλx)),L(eλx)e) (λx ∈ Eo since x ∈ R)
= (K(xe+),Le+e) (since eλx = e+ ∈ Eo)
= (K(x),Le). (since x L∗ e+ R e)

If (K(x),Le)(K(y),Lh) = (K(x),Le)(K(z),Lr) for any (K(y),Lh), (K(z),Lr) ∈ Γ1 , then

(K(x(ϕey)),L(eψy)h) = (K(x(ϕez)),L(eψz)r).



P. Wang, X. Kong / Filomat 37:1 (2023), 155–171 167

That is
x(ϕey) K x(ϕez) and (eψy)h L (eψz)r.

By x(ϕey) K x(ϕez), there exists l ∈ Eo with x(ϕez)
∗

R l L∗ x(ϕey) such that x(ϕey) = x(ϕez)l. From x L∗ λx

and Lemma 1.1 we deduce that λx(ϕey) = λx(ϕez)l. Moreover l isR related to some λx(ϕez)
∗

and l L∗ λx(ϕey)
since x L∗ λx ∈ Eo, whence CSo (λx(ϕey)) ∩ CSo (λx(ϕez)) , ∅. Similarly we have λx(ϕey)h = λx(ϕez) for some
h ∈ Eo. Thus λx(ϕey) R∗ λx(ϕez) and therefore K(λx(ϕey)) = K(λx(ϕez)). Consequently,

(K(λx),Le)(K(y),Lh) = (K(λx(ϕey)),L(eψy)h)
= (K(λx(ϕez)),L(eψz)r)
= (K(λx),Le), (K(z),Lr).

By Lemma 1.3, v L∗ (K(x),Le) and Γ is an abundant semigroup.

Lemma 3.3 Let
W = {(K(x),Lx∗ ) : x ∈ So, (x∗ ∈ Eo) x∗ L∗ x}.

Then W is isomorphic to So and is a quasi-adequate ∗-subsemigroup of Γ, moreover, E(W) = {(K(x),Lx) : x ∈ Eo
}.

Proof. Obviously W ⊆ Γ. Define σ : So
−→ W by sσ = (K(s),Ls∗ ), where s ∈ So, s∗ ∈ Eo and s∗ L∗ s, then σ is

well-defined. For any s, t ∈ So, we have

sσ · tσ = (K(s),Ls∗ )(K(t),Lt∗ ) = (K(s(ϕs∗ t)),L(s∗ψt)t∗ ) = (K(ss∗t),Lλs∗ tt∗ ).

It follows from L∗ is a right congruence that λs∗tt∗ L∗ s∗tt∗ = s∗t L∗ st L∗ (st)∗ and so (K(ss∗t),Lλs∗ tt∗ ) =
(K(st),L(st)∗ ). Thus sσ · tσ = (st)σ and σ is a homomorphism.

If sσ = tσ, then CSo (s) ∩ CSo (t) , ∅,R∗s = R∗t and Ls∗ = Lt∗ . Thus s = t and so σ is injective. Obviously σ is
surjective. Therefore σ is an isomorphism.

To prove that W is a ∗−subsemigroup, let (K(x),Lx∗ ) ∈ W. By the proof of Lemma 3.2, u = (K(x+),Lx+ ) ∈
E(W) and v = (K(x∗),Lx∗ ) ∈ E(W). In the following we will prove that

v L∗(Γ) (K(x),Lx∗ ) R∗(Γ) u.

It is readily that
(K(x),Lx∗ )v = K(xx∗x∗,Lλ(x∗x∗ )x∗ ) = (K(x),Lx∗ )

and
u(K(x),Lx∗ ) = (K(x+x+x),Lλ(x+x)∗x∗

) = (K(x),Lx∗ ).

For all (K(y1),Lh1 ), (K(y2),Lh2 ) ∈ Γ1, if

(K(x),Lx∗ )(K(y1),Lh1 ) = (K(x),Lx∗ )(K(y2),Lh2 ),

then
(K(xx∗y1),L(x∗ψy1 )h1 ) = (K(xx∗y2),L(x∗ψy2 )h2 ).

Thus xx∗y1 K xx∗y2 and (x∗y1)h1 L (x∗y2)h2. Similar to the proof of Lemma 3.2, we can show that x∗x∗y1 K

x∗x∗y2. Therefore
(K(x∗),Lx∗ )(K(y1),Lh1 ) = (K(x∗),Lx∗ )(K(y2),Lh2 ).

By Lemma 1.3, v L∗(Γ) (K(x),Lx∗ ). Similarly, u R∗(Γ) (K(x),Lx∗ ).
By Lemma 3.2, it is easy to see that E(W) = {(K(x),Lx) : x ∈ Eo

}.

Lemma 3.4 W is a generalised quasi-adequate transversal of Γ.
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Proof. Let (K(x1),Le1 ), (K(x2),Le2 ) ∈ Γ. We first show that (K(x1),Le1 ) R∗ (K(x2),Le2 ) if and only if x1 R
∗ x2. By

Lemma 3.3, it is equivalent to show that

(K(ix1 ),Lx+1
) R∗ (K(ix2 ),Lx+2

) if and only if x1 R
∗ x2.

Now u1 = (K(ix1 ),Lx+1
) R∗ (K(ix2 ),Lx+2

) = u2

⇐⇒ u1u2 = u2 and u2u1 = u1, that is (K(ix1 x+1 ix2 ),Lλ(x+1 ix2 )x
+
2
) = (K(ix2 ),Lx+2

) and (K(ix2 x+2 ix1 ),Lλ(x+2 ix1 )x
+
1
) =

(K(ix1 ),Lx+1
)

⇐⇒ (K(ix1 ix2 ),Lx+1 ix2
) = (K(ix2 ),Lx+2

) and (K(ix2 ix1 ),Lx+2 ix1
) = (K(ix1 ),Lx+1

) since ix1 L x+1 , ix2 L x+2 .

⇐⇒ ix1 ix2 K ix2 , x
+
2 L λx+1 ix2

L x+1 ix2 and ix2 ix1 K ix1 , x
+
1 L λx+2 ix1

L x+2 ix1 . It follows from ix1 L x+1 that

ix1 ix2 L x+1 ix2 L x+2 L ix2 and dually, ix2 ix1 L ix1 . Thus it is equivalent to
⇐⇒ ix1 ix2 = ix2 , ix2 ix1 = ix1

⇐⇒ x1 R
∗ x2 since x1 R

∗ ix1 , x2 R
∗ ix2 .

Similarly we may show that (K(x1),Le1 ) L∗ (K(x2),Le2 ) if and only if e1 L e2.
Let a = (K(x),Le) ∈ Γ, V = {(K(y),Ly∗ ) ∈ W : y ∈ CSo (x)} and (K(y),Ly∗ ) ∈ V. Since y ∈ CSo (x), there exist

i, λ ∈ E(R) such that x = iyλ, where i L∗ y+, λ R∗ y∗ for some y+, y∗ ∈ Eo. It follows that

(K(x),Le) = (K(i),Ly+ )(K(y),Ly∗ )(K(λ),Le).

Furthermore, we have
(K(i),Ly+ ) L (K(y+),Ly+ ) R∗ (K(y),Ly∗ )

and
(K(λ),Le) R (K(y∗),Ly∗ ) L∗ (K(y),Ly∗ ).

Hence (K(y),Ly∗ ) ∈ CW(a) and V ⊆ CW(a).
Conversely, let (K(y),Ly∗ ) ∈ CW(a). Then there exist (K(y1),Lh1 ), (K(y2),Lh2 ) ∈ E(Γ) such that

(K(x),Le) = (K(y1),Lh1 )(K(y),Ly∗ )(K(y2),Lh2 ),

and
(K(y1),Lh1 ) L (K(y),Ly∗ )+ for some (K(y),Ly∗ )+ ∈ E(W),

(K(y2),Lh2 ) R (K(y),Ly∗ )∗ for some (K(y),Ly∗ )∗ ∈ E(W).

By Lemma 1.3, (K(y1),Lh1 ) R∗ a L∗ (K(y2),Lh2 ). Hence, y1 R
∗ x and e L h2.

On the other hand, by Lemma 3.3 there exist x′, x′′ ∈ Eo such that

(K(y),Ly∗ )+ = (K(x′),Lx′ ) with x′ R∗ y,

and
(K(y),Ly∗ )∗ = (K(x′′),Lx′′ ) with x′′ L y∗.

It follows that
(K(x′),Lx′ )(K(x),Le)(K(x′′),Lx′′ ) = (K(y),Ly∗ ),

and so that x′x′xex′′ K y and (x′xex′′)ψx′′ L y∗. Thus x′xex′′ L∗ y and so y = x′xex′′ sinceK ∩ L∗= l.
Since (K(y1),Lh1 ) L (K(y),Ly∗ )+ = (K(x′),Lx′ ), we have h1 L x′. Hence (K(y1),Lx′ ) = (K(y1),Lh1 ) ∈ E(Γ) and

there exists x′+ ∈ Eo such that y1 L
∗ x′+ R x′. And from (K(y1),Lx′ ) ∈ E(Γ) by Lemma 3.3, ϕx′y1 = x′y1 = x′+,

and so y1x′y1 = y1x′+ = y1 since y1 L
∗ x′+. Thus y1 is regular. Since x′y1 = x′+ and y1, x′+, x′ are all

regular, from y1 L x′+ R x′, we deduce that there exists an idempotent e in Ry1 ∩ Lx′ . Consequently
y1 = ex′+ ∈ E(R)Eo = IEo

⊆ I = E(R) and x′ L e R y1 R
∗ x.

Since (K(y2),Lh2 ) R (K(y),Ly∗ )∗ = (K(x′′),Lx′′ ), we have y2 R
∗ x′′. Also

(K(y2),Lh2 )(K(x′′),Lx′′ ) = (K(x′′),Lx′′ ),
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and
(K(x′′),Lx′′ )(K(y2),Lh2 ) = (K(y2),Lh2 ).

That is
(K(y2ϕh2 x′′),L(h2x′′)x′′ ) = (K(x′′),Lx′′ ),

and
(K(x′′y2),L(x′′ψy2 )h2 ) = (K(y2),Lh2 ).

From y2 R
∗ x′′ we have y2 ∈ L and so y2 ∈ L ∩ R = So. Thus h+2 = ϕh2 y2 = h2y2 since (K(y2),Lh2 ) ∈ E(Γ). This

implies that y2h2y2 = y2h+2 = y2 and so y2 is regular. It follows from y2 R
∗ x′′, y2 L

∗ h+2 R h2 with x′′, h+2 ∈ Eo

that y2 = x′′h+2 ∈ EoEo
⊆ Eo. From x L∗ e+ R e L h2 we deduce that ex′′ ∈ ΛEo

⊆ Λ and ex′′ L x′′ implies that
ex′′ ∈ Λ∩I = Eo . It follows from y = x′ ·x·ex′′ that eye+ = ex′xex′′e+ = exe+ = x and e L x′ R∗ y, e+ R ex′′ L∗ y,
and so y ∈ CSo (x). Therefore CW(a) ⊆ V and W is a generalised quasi-adequate transversal of Γ.

Lemma 3.5 W is a weakly simplistic RGQA transversal of Γ.

Proof. It follows from W is a generalised quasi-adequate transversal of Γ that

I(Γ) = {(K(x),Le) ∈ E(Γ) : (K(x),Le) L (K(y),Ly) ∈ E(W)}

Λ(Γ) = {(K(x),Le) ∈ E(Γ) : (K(x),Le) R (K(z),Lz) ∈ E(W)}.

We give a useful description of I(Γ) and Λ(Γ). Denoting

P = {(K(ix),Lx+ ) ∈ Γ : x ∈ R, x = ixxλx, ix, λx ∈ E, ix L x+, λx R x∗},

Q = {(K(x),Le) ∈ Γ : x ∈ Eo
}.

It is obvious that by Lemma 3.2 and Lemma 3.4, P ⊆ I(Γ) and Q ⊆ Λ(Γ). For any (K(x),Le) ∈ E(Γ) with
(K(x),Le) L (K(y),Ly) ∈ E(W) then by Lemma 3.4, e L y ∈ Eo and so e ∈ I ∩ Λ = Eo. Thus ϕex = ex = e+

by Lemma 3.2 and there exists e ∈ E such that x R∗ e L e. From e ∈ Eo we deduce that e ∈ I and so
x = ee+ ∈ IEo

⊆ I. It is easy to see e = xe and K(x) = K(xe). Consequently (K(x),Le) = (K(xe),Le) ∈ P and
I(Γ) = P.

If (K(x),Le) ∈ E(Γ) with (K(x),Le) R (K(z),Lz) ∈ E(W), it follows from Lemma 3.5 that x R∗ z ∈ Eo

and so x ∈ R ∩ L = So. From (K(x),Le) ∈ E(Γ) and Lemma 3.2 we deduce that e+ = ϕex = ex. Thus
(xe)2 = xe · xe = x(ex)e = x(e+e) = xe and xe is idempotent. It follows from xe · e+ = x(ee+) = xe+ = x that
x R∗ xe and so xe ∈ L with xe ∈ L ∩ E = Λ. Therefore x = xee+ = (xe)e+ ∈ ΛEo

⊆ Λ and so x ∈ Λ ∩ So = Eo.
Consequently Q = Λ(Γ).

For any (K(ix),Lx+ ) ∈ I(Γ), (K(y),Ly) ∈ E(W), where y ∈ Eo, we have

(K(ix),Lx+ )(K(y),Ly) = (K(ixx+y),Lx+yy) = K(ixy),Lx+y) ∈ I(Γ)

since ixy ∈ IEo
⊆ I, x+y ∈ EoEo

⊆ Eo and ixy L x+y. On the other hand,

(K(y),Ly)(K(ix,Lx+ ) = (K(yyix),L(yψix)x+ ) = (K(yix),Lλyix
) ∈ I(Γ)

since (yψix)x+ = x+yixx+ = (x+y)(yix) L yix L λyix with yix ∈ EoI ⊆ I and x+y ∈ VSo (yix). Similarly, for any
(K(x),Le) ∈ Λwith x ∈ Eo and (K(y),Ly) ∈ Eo, we have

(K(x),Le)(K(y),Le) = (K(xϕey),Leyy) ∈ Λ(Γ)

since x(ϕey) ∈ EoEo
⊆ Eo (y ∈ Eo, ϕey ∈ Eo) and

(K(y),Ly)(K(x),Le) = (K(yyx),Lyψxe) ∈ Λ(Γ)

since yyx = yx ∈ EoEo
⊆ Eo. Therefore the generalised quasi-adequate transversal W is refined and W is

weakly simplistic.
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To prove the converse part of Theorem 3.1, suppose that S is an abundant semigroup with a weakly
simplistic RGQA transversal So. It follows from Theorem 2.7 that R is an abundant semigroup with an
RGQA transversal So and E(R) = I is a band. Consequently, R is quasi-adequate and for every x ∈ R and
λx ∈ Λx, there exists x∗ ∈ Eo such that λx = x∗. By Theorem 2.7, Λ is a band with an RGQA transversal
Eo = E(So) and each element in Λ is R-related to some element in Eo. For each e ∈ Λ, let ϕe : R → R be a
mapping defined by ϕex = exex∗ for a given ex∗ ∈ Eo, where ex ∈ CSo (ex) and ex∗ L∗ ex. For each y ∈ R, let
ψy : Λ→ Λ be a mapping defined by fψy = λ f y for a given λ f y ∈ Λ f y. It follows from Proposition 2.1 that
conditions (1) ∼ (7) are satisfied and so the quadruple (R,Λ;ϕ,ψ) is permissible.

Thus we may construct a semigroup Γ in the method of the direct part of Theorem 3.1 with the multi-
plication is

(K(x),Le)(K(y),L f ) = (K(xeyey∗),Lλey f ).

In the following we will prove that Γ is isomorphic to S.
For any (K(x),Le) ∈ Γ, define a mapping σ : Γ −→ S given by

(K(x),Le)σ = xe,

then σ is well-defined. In fact, if y ∈ K(x) and h L e, we have xee+ = xe+ = x since e R e+ L∗ x and similarly
yhh+ = y. Thus xe R∗ x R∗ y R∗ yh. For any a, b ∈ S1, if xea = xeb then e+ea = e+eb since x L∗ e+, that is ea = eb,
thus xe L∗ e. Similarly we have yh L∗ h. Hence xe L∗ e L h L∗ yh and consequently xe and yh in the same
H
∗-class. Let x ∈ CSo (x) ∩ CSo (y). Then x = ixxλx, y = iyxλy with ix L x+, λx R x∗, iy L x+′, λy R x∗′. Thus

xe = ixxλxe and it follows from e R e+ L∗ x L∗ λx and Lemma 1.1 that e L λxe R λx with λxe ∈ EoΛ ⊆ Λ.
Consequently λxe R λx R x∗ and x ∈ CSo (xe). Similarly yh = iyxλyh, λyh ∈ EoΛ ⊆ Λ with λyh R λy R x∗′ and
x ∈ CSo (yh). Therefore CSo (xe) ∩ CSo (yh) , ∅ and consequently xe = yh by Lemma 1.9.

For every x ∈ S, it follows from xx∗ L∗ λxx∗ = x∗ R λx that (K(xx∗),Lλx ) ∈ Γ. Hence (K(xx∗),Lλx )σ =
xx∗λx = xλx = x and σ is surjective.

For any (K(x),Le), (K(y),L f ) ∈ Γ, we have

[(K(x),Le)(K(y),L f )]σ = (K(xeyey∗),Lλey f )σ = (xeyey∗)λey f

= xey(ey∗λey) f = x(eyλey) f
= x(ey) f = xe · y f
= (K(x),Le)σ · (K(y),L f )σ.

Thus σ is a homomorphism.
If (K(x),Le), (K(y),L f ) ∈ Γwith the property that (K(x),Le)σ = (K(y),L f )σ, that is xe = y f . Since e R e+ L∗ x

and f R f+ L∗ y for some e+, f+ ∈ Eo, it is easy to see that

xee+ = xe+ = x and y f f+ = y f+ = y.

Hence x R∗ xe = y f R∗ y and R∗x = R∗y. Similarly, e = e+e L∗ xe = y f L∗ f+ f = f and Le = L f . Similar to
the proof of σ is well-defined, we have x ∈ CSo (x) ∩ CSo (xe) and CSo (x) = CSo (xe). Similarly CSo (y) = CSo (y f ).
From xe = y f we deduce that CSo (xe) = CSo (y f ) and so CSo (x) = CSo (y). Hence K(x) = K(y). Combining with
Le = L f implies that σ is injective and so σ is an isomorphism.
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