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Abstract. As the real common generalisations of both orthodox transversals and adequate transversals in
abundant semigroups, the concept of refined generalised quasi-adequate transversals, briefly, RGQA transversals
was introduced by Kong and Wang. In this paper, for the RGQA transversal, the necessary and sufficient
condition for the sets I and A to be bands is investigated. It is demonstrated that the sets I and A are
both bands if and only if the RGQA transversal is weakly simplistic. Moreover, the RGQA transversal S°
being weakly simplistic is different from S° being a quasi-ideal nor the abundant semigroup S satisfying the
regularity condition. Finally, by means of a quasi-adequate semigroup and a band, the structure theorem
for an abundant semigroup with a weakly simplistic RGQA transversal is established.

1. Introduction and preliminaries

Let S° be a subsemigroup of the regular semigroup S. Then S° is called an inverse transversal of S if S° is an
inverse subsemigroup of S and contains exactly one inverse of each element of S, that is, [V (a)| = 1, where
Vso(a) denotes the intersection of V(a) and S°. This concept was first introduced by Blyth and McFadden
[1] in 1982. Afterwards, this class of regular semigroups attracted many semigroup researchers’ attention
and a deal of important results were obtained (see [1-4] and their references). Let I = {aa® : a € S,a° € Vs (a)}
and A = {a%a :a € 5,a° € Vs(a)}. In 1997, Tang [4] showed that if S is a regular semigroup with an inverse
transversal S°, then both [ and A are bands with I a left regular band and A a right regular band. These
two bands play a key role in the study of regular semigroups with inverse transversals. Other important
subsets of Sare R = {x € S : x%x = x’x*} and L = {x € S : xx° = x*x°}. Both R and L are subsemigroups
with R left inverse and L right inverse. The concept of orthodox transversals was introduced by Chen [5] as a
generalisation of inverse transversals, and an excellent structure theorem for regular semigroups with quasi-
ideal orthodox transversals was established. Chen and Guo [6] considered the general case of orthodox
transversals and investigated some properties associated with the sets I and A. In [7,8], Kong and Zhao
introduced two interesting sets R and L and established the structure theorems for regular semigroups
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with quasi-ideal orthodox transversals. In 2014, Kong [9] introduced the concept of generalised orthodox
transversals and Kong and Meng [10] acquired the characterization for a generalised orthodox transversal
to be an orthodox transversal. In [11], Kong introduced the weakly simplistic orthodox transversal and
obtained the result that ] and A are both bands if and only if the orthodox transversal S° is weakly simplistic.

The concept of adequate transversals, was introduced by El-Qallali [12] in the class of abundant semi-
groups. Chen, Guo and Shum [13,14] obtained some important results about quasi-ideal adequate transver-
sals. Afterwards, Kong [15] explored some properties concerned with adequate transversals. Kong and
Wang [16] considered the product of quasi-ideal adequate transversals and proposed the open problem
of the isomorphism of adequate transversals. The concept of quasi-adequate transversals was introduced
by Ni [17] and followed by Luo, Kong and Wang [18,19], their work mainly focused on the structure and
the properties of multiplicative quasi-adequate transversals. Unfortunately, quasi-adequate transversals
are neither the generalisation of orthodox transversals nor adequate transversals. Inspired by the charac-
terization of orthodox transversals [10], the concept of refined generalised quasi-adequate transversal, briefly,
RGQA transversal was introduced by Kong and Wang [20]. It was demonstrated that RGQA transversals
are the real common generalisations of both orthodox transversals and adequate transversals in the abun-
dant semigroups. The product of quasi-ideal RGQA transversals was explored [21] and generalised to
quasi-Ehresmann transversals [22].

In this article, we continue along the line of [3, 11, 20] by studying the equivalent condition of the sets I
and A to be bands as for abundant semigroups with RGQA transversals. It is shown that the sets [ and A are
both bands if and only if the RGQA transversal is weakly simplistic. A structure theorem for an abundant
semigroup with a weakly simplistic RGQA transversal is also established. The related results concerning
orthodox transversals and adequate transversals are generalised and enriched.

It is worth remarking that the RGQA transversal being weakly simplistic is different from a quasi-ideal
nor the abundant semigroup S satisfying the regularity condition. As for an abundant semigroup S with
adequate transversals S°, even if the adequate transversal S° is a quasi-ideal of S, I and A need not be
subsemigroups, see Example 2.7 in [13]. If S is a regular semigroup with an orthodox transversal 5%, then
S is certainly an abundant semigroup satisfying the regularity condition and S° is an RGQA transversal
of S, but in general, I and A are not necessary bands. Let S be an abundant semigroup with an RGQA
transversal S°. If S satisfies the regularity condition and S° is a quasi-ideal of S, it is easy to check that both
I'and A are bands. But these conditions are a little stronger. As for orthodox transversals, it is shown that
in [11], I and A are both bands if and only if the orthodox transversal 5° is weakly simplistic. The second
author gave Example 2.4 in [11] illustrating that weakly simplistic orthodox transversal S° is not necessarily
a quasi-ideal of S. As for adequate transversals, it happens that both I and A are bands, but the abundant
semigroup S does not satisfy the regular condition, see Example 1 in [15].

The so called Miller-Clifford theorem will be used frequently.

Lemma 1.1 [23] (1) Let e and f be D-equivalent idempotents of the semigroup S. Then each element a in R, N Ly has
a unique inverse a’ in Ry N L, withaa’ = eand a’a = f;
(2) Let a, b be elements of the semigroup S. Then ab € R, N Ly if and only if L, N Ry has an idempotent.

Definition 1.1 [5] Let S° be an orthodox subsemigroup of be the regular semigroup S. Then S° is called an
orthodox transversal of S, if the following two conditions are satisfied:

(1) ForallaeS, Vg(a)+0;

(2) Foranya,beS,if {a,b}NS° # 0, then Vg (a)Vs(b) € Vo (ba).

Lemma 1.2 [10] Let S° be an orthodox subsemigroup of the regular semigroup S. If Vso(a) # 0 for any a € S, then
5% is an orthodox transversal of S if and only if

(Va,b € S) [Ve(a)N Va(b) 20 = Ve(a) = Vs (b)].

A subsemigroup T of S is called a quasi-ideal of S,if TST C T.

In this article, for semigroups S and S°, we denote the set of idempotents of S and S° by E and E°
respectively if no confusion. If the product of any two regular elements in S is also regular, then S is said
to satisfy the reqularity condition.
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On a semigroup S the relation £* is defined by a £* b if and only if {Vx,y € S!,ax = ay & bx = by}
and the relation R* is defined dually. Obviously, £* is a right congruence and R* a left congruence with
LCL,RCR. Itis easy to see if a, b are regular elements of S, thena L b (a R* b) if and only ifa L b (a R b).
A semigroup is called abundant [24] if each L*-class and each R*-class contains an idempotent. An abundant
semigroup S is called quasi-adequate [25] (adequate) if its idempotents form a band (semilattice). Let S be an
abundant semigroup and U an abundant subsemigroup of S. Then U is a *-subsemigroup of S if and only
if £ (U) =L (S)n (U x U)and R* (U) =R* (S) n (U x U).

Lemma 1.3 [24] Let e be an idempotent of a semigroup S. Then for a € S, the following conditions are equivalent:
MaLlre@Re),
(2) a = ae (ea = a) and for all x,y € S, ax = ay (xa = ya) implies ex = ey (xe = ye).

Lemma 1.4 [17] Let S be an abundant semigroup and x,y € S. If there exist e, f € E such that x = eyf and
eLy", fRy forsomey*,y € E, thene R xand f L* x.

Definition 1.2 [12] Let S° be a *-adequate subsemigroup of an abundant semigroup S. Then S° is called an
adequate transversal of S, if for any x € S there exist idempotents ¢, f € S and a unique element x € S° such
that x = exf, where e £ X" and f R X". It can be shown that ¢ and f are uniquely determined by x and S°
(see [12] for detail).

Let S be an abundant semigroup and S° a quasi-adequate *—subsemigroup of S. Then S° is called a gen-
eralised quasi-adequate transversal of Sif Cso(x) = {x € §° | x = ixXAy, iy, Ay € E, iy L x5, A, RX for somex’, X €
E°} # 0. Let

I, =iy €E| (Ax € Cso(x)) x = ixXAy, ix, Ay €E,iy LX ,A, RX forsomex X € E%,

Ay ={Ay €E|(@x € Coo(x)) x = ix XAy, ix, Ay €E, iy LX ,Ay RX forsomeXx',x" € E%},

I= UIx, A= UAx.

xeS xeS

In [17], Ni called the generalised quasi-adequate transversal S° a quasi-adequate transversal of S if it satisfies
(Ve € E) (Vg € E°), Cso(e)Cso(g) € Cso(ge) and Cso(g)Cso(e) € Cso(eg).

Lemma 1.5 [20] If S is an abundant semigroup with a generalised quasi-adequate transversal S°, then I = {e € E :
(JereEYeLetand A={feE:(Aff €E°) fR friwithINA = E°.
LetR={xeS: AN, e A) A €eE}and L={aeS:(Ti,el,)i, € E°},. ThenR={xeS: (A € E°)x L ]} and
L={aeS:(TheE)aR hjwithRNL =S5 ER)=Iand E(L) = A.

Definition 1.3 [20] Let S° be a generalised quasi-adequate transversal of the abundant semigroup S. If
for all a,b € RegS, Vso(a) N Vso(b) # 0 implies that Vs(a) = Vs (b), then S° is called a refined generalised
quasi-adequate transversal, briefly, RGQA transversal of S.

Lemma 1.6 [20] Let S° be a generalised quasi-adequate transversal of the abundant semigroup S. Then S° is refined
ifand only if IE°,E°A CEand foralli € I, A € A, e° € E°, if €%, Ae° are regular, then they are idempotent.

Lemma 1.7 [20] Let S be an abundant semigroup with an RGQA transversal S°.
(1) If Cse(@) NE® £ 0 or Vso(a) N E® # B, then Cso(a) = Vso(a) C E°.

(2) If Cso(a) N Cso(b) #0and a L b,a R* b, thena = .

2. Weakly simplistic RGQA transversals

In this section, the concept of left simplistic, simplistic, left weakly simplistic, weakly simplistic and left
quasi-ideal RGQA transversals are introduced and some interesting equivalence conditions for an RGQA



P. Wang, X. Kong / Filomat 37:1 (2023), 155-171 158

transversal to be left simplistic, simplistic, left weakly simplistic, weakly simplistic and left quasi-ideal are
obtained.

Definition 2.1 Let S° be an RGQA transversal of the abundant semigroup S. Then 5° is called left simplistic

simplistic.

Theorem 2.1 Let S° be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:
(1) S° is left simplistic;
(2) E°IC S
(3) I c s
(4) S° is a right ideal of R;
() R is a subsemigroup and 5°S C L;
(6) R is a subsemigroup and L is a right ideal of S;
(7) R is a subsemigroup and Al C L.

Proof. (1)= (2). Forany i € I, thereexistsi* € E’ such thati* L i. Thusforanye’ € E°, ¢’ = ¢°ii* € S°IS° C 5°.

(2) = (3). For any s° € S°, there exists s € E° such that s L* s°. Then for any i € I we have
% =¢%-s" s’ E°l Cs°S° C S°.

(3) = (4). Forany s° € 5°, x € R, it is easy to see s°x = 5%, XA, € 5°] - S’E° € §° - §° C 5°.

(4) = (5). For any x,y € R, there exists ¢’ € E° such that x L ¢° and so xy L' ¢’y € S°R € S°. Thus
xy € R and R is a subsemigroup.

For any x € S,5° € §%, we have s°x R* s°i, € S°I C S°R € §° and so s°x € L. Consequently, 5°S C L.

(5) = (6). It only need to show that L is a right ideal of S. For any x € Sand a € L, ax = i,al,x €
E°S°A,x € S°S € Land so LS C L.

(6) = (7). It follows from (6) that AI C LI C L.

(7) = (1). For any a°,1° € S° and i € I, there exists a°* € E° such that a”™ £L* a°, we have

a”i€e E°’ICAICL, a”i€e E'ICRRCR.
Thus a”i € LN R = 5° and so a°ib° = a°(a”1)b° € a°S°b° C S°, that is, S° is left simplistic. [

Combining Theorem 2.1 with its dual, it is easy to see the following result.

Theorem 2.2 Let S° be an RGQA transversal of the abundant semigroup S. Then the following statements are
equivalent:
(1) S°I € 8% AS° C 8%
(2) S° is simplistic, that is, S°IS° C S° and S°AS° € S°;
(3) S is a quasi-ideal of S, that is, S°SS° C S°;
(4) AI C S
(5) S°R € 8%, LS° € S
(6) E°I € S°, AE° C S
(7)SS° CR,SSCL;
(8) R is a left ideal and L is a right ideal of S;
(9) LR C 5.

Theorem 2.3 Let S be an abundant semigroup with an RGQA transversal S°. Then the following statements are
equivalent:

(1) S° is left simplistic and weakly multiplicative (i.e. Al is a reqular subset and Vs (Al) C E°);

(2) AI € A and R is a subsemigroup of S.
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Proof. (1) = (2). If (1) holds, then AI C L and R is a subsemigroup by Theorem 2.2. Forany / € A,i € I,
since li € L and regular, there exist (li)° € Vs (i), (Ii)*° € Vs ((li)°) such that li = (Ii)*°(li)°li. It follows from S°
is weakly multiplicative that (/i)° € E° and so (li)* € E°. Thus, by Lemma 1.7 Ii = (li)*(li)°li € E°’A C E. It is
easy to see in this case, E’A € A and so AI C A.

(2) = (1). Suppose that Al C A, then Vs (Al) € Vs(A) € E° and so S° is weakly multiplicative. Since
A € L, wehave Al C L. It follows from R is a subsemigroup and Theorem 2.1 that S° is left simplistic. [

Theorem 2.4 Let S be an abundant monoid with an RGQA transversal S°. Then the following statements are
equivalent:

(1) S° is left simplistic;

@L=5S.

Proof. (1) = (2). From S is a monoid we deduce that 1 € S°. Thus by S° is left simplistic, for each i € I,
i=1-i-1€8°S°C 5% andsol CINS®=E° Consequently, forevery x € S, x R ey € [ = E° and so x € L.
Therefore S = L.

(2) = (1). For any i € I, there exists i* € E° such that i* L i. It follows from S = L that for i € I, there
exists h € E° such that h R* i. Thus h R* i L i* and so by Proposition 2.2 in [20] 7 € S°. Therefore I C 5° and
S°IS° € §°5°S° C S°, thus S° is left simplistic. [

As a consequence of Theorem 2.4 and its dual, we have

Corollary 2.1 Let S be an abundant monoid with an RGQA transversal S°. Then S° is a quasi-ideal of S if and only
ifS =25

Theorem 2.5 Let S be an abundant monoid with an RGQA transversal S° with E°I C RegS. Then the following
Statements are true:

(1) iy -1} € Vo(iyip -+ i), where iy € ECand i} L), 1=1,2,---k;

(2) the semiband (Iy generated by I is a subband of S.
Dually, if S° is an RGQA transversal of an abundant semigroup S with AE° C RegS, then the semiband (A) generated

by A is a subband of S.

Proof. (1). Certainly, this is true for k = 1. Now, if it is true for k = s — 1 and we will show that it is also
true for k = s. Let iy, i, -+ ,ix € I. Then we have i;---i; € Vs(ia---is) by the hypothesis. It follows from
E°I C Reg$ and Lemma 1.7 that

iy i) it i) €EICE, (- ig)(i---i3) -1, € IE° C E.

Thus
(i )iy - 1y (i - ds) - (B3 -+ By)i)
= (@ i) (G i) - )i (G - - d)(E - - 1))
= (5 i) (2 ds) iy - )i}
= (i3 i) i) (05 - )T
= (i)
and

iy i) - (i )iy - £+ s) -
= (i) D) (i) (G -+ 1)) (2 -+ ds)
= (G0 )i 1)) (i - i)

= (i),
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and so 7; - - - iyi] € Vso(ijia -+ - is). Therefore

L B in) (- B5) (- 1))

~

(5 i)y -~ i) (i -+ 1) = (

=

~

and

(i -+ Gs)(ig - - - 11 ) (10 - - - )
(i is) = i -

(iniy - - ds)(ig - - Ly )(lndy - - )

(2) To show that (I) is a band, we first notice that V.(a) # 0 for every a € (I) by (1). Leta = ijip - - - i5 € (I)
and b = iz ---i; € (I). It follows from (1) and Lemma 1.8 that Vs (x) = Vi (x) for every x € (I). Denoting
e=ig---ijand f =ij---i ,. For each h € Vs (a), notice that e € Vs (a), we have ah R ae L e € E°, and so by

Lemma 1.1, ah L eah R e. Similarly ha L ea R e € E° and h R hae L e. It follows from h°hae € E°I C E that
hae - h° - hae = h - h°hae - h°hae = h - h°hae = hae.

Thus hae is regular and so hae = (ha)e € AE° C E by Lemma 1.7. That eah = e(ah) € E°I C E is obvious.
Consequently,
ehe =e-haeah-e =e-hae-ahe =eah-e=¢

and
heh=h-ahe-e-echa-h=h-ae-e-ea-h=h-aea-h=hah =h,

that is, e € Vs (h). Certainly ¢ € Vg (e) and so Vs (h) = Vso(e) since the regular elements of S’ form an
orthodox semigroup. Hence i D ¢ and therefore Vi.(a) C E°(e) with E°(e) denoting the D-class of the
band E° containing e. It is a routine matter to show that E°(¢) € V.(a) and so Vi.(a) = E°(e). Similarly,
VEo(b) = E°(f), Vo (ba) = E°(fe). Therefore Vo (a) Ve (b) € Vio(ba) and so (I) is indeed an orthodox semigroup.
Thus E({I)) is a band and it follows from (I) 2 E({I)) 2 I and (I) is the smallest subsemigroup containing I
that (I) = E({(I)) isaband. O

Definition 2.2 Let S° be an RGQA transversal of the abundant semigroup S. Then we define 5° to be left
weakly simplistic if S°IS° C R and E°I C RegS; right weakly simplistic if S’AS° € L and AE° C Reg$S; and weakly
simplistic if S° is left weakly simplistic and right weakly simplistic together.

Theorem 2.6 Let S° be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:
(1) S° is left weakly simplistic;
QFEICL
(3) E°I C RegR;
(4) S°I € R and E°I C Reg$;
(5) S°R € Rand E°I C RegS;
(6) S°RS° € R and E°I C Reg$;
(7) R is a subsemigroup of S and E°I C RegS;
(8) I is a subband of S.

Proof. (1) = (2). For any i € I, there exists i* € E° such that i* £ i. Hence for any ¢’ € E°, e°i = ¢%ii" €
5°1S° C R. It follows from E°I C RegS and Lemma 1.7 that ¢’i € E and thuse’i € RNE = 1.

(2) = (3). This is clear.

(3) = (4). Foranyi € I,s° € 5%, it is that s°i L* s”i € E°I € R. Hence s”i L* | for some | € E° and
consequently s°i L I. Therefore, s°i € R by Lemma 1.5.

(4) = (5). Forany s° € 5°,x € R, clearly s°x = s%e,xA, € S°I - S°’E° C RS’E° C R.

(5) = (6). This is obvious.
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(6) = (7). For any x,y € R,l € E° with x L* [, we have xy L ly = liyyA, € S’RS°E° C RE° C R. Hence
ly L ¢ for some ¢ € E° and so xy L* lyL*¢’. Thus xy € R by Lemma 1.5.

(7) = (8). Lete, f € I. Thene, f € Rand so ef € R by the assumption that R is a subsemigroup. It
follows from Theorem 2.5 thatef € Eand soef € RN E =, thatis, I is a band.

(8) = (1). Clearly, if I is a band, E°I C RegS. For any s°,° € 5% € I, there exists s” € E° such that
s® L* s and 5”1 € E°I C II C I. Thus there exists (s”i)* € E° such that (s”7)* L* s”i. Consequently,

s°it? L 8™t L7 (st L ((s™1)t°)" € E°.
Thus s°t° € R and so S°IS° C R. By Definition 2.2, 5 is left weakly simplistic. [

Combining Theorem 2.6 with its dual, we have the following result.

Theorem 2.7 Let S° be an RGQA transversal of the abundant semigroup S. Then the following statements are
equivalent:

(1) S° is weakly simplistic, that is, S°’IS° C R, S°’AS° C L and E°I, AE° C Reg$;

(2)E° I Cland AE° C A;

(3) E°I € R, AE° C L and E°I, AE° C Reg$;

(4) S°’I € R, AS° C Land E°I, AE° C Reg$;

(5) S’R C R, LS® € L and E°I, AE° C RegS;

(6) S°’RS° C R, S°LS° C L and E°I, AE° C RegS;

(7) R and L are both subsemigroups of S and E°I, AE° C RegS;

(8) I and A are both subbands of S.

Theorem 2.8 Let S° be an RGQA transversal of the abundant semigroup S. Then the following conditions are
equivalent:
(1) S°SS° C R;
@ AICKR;
(3) SS° CR;
(4) SRCR;
G)LRCK;
6)LICKR;
(7) LIS° C R;
(8) LRS° C R;
(9) R is a subsemigroup of S and LS° C R.

Proof. (1) = (2). Foranye € i, f € A, there exists ¢*, f* € E’ such thate L¢*, f R f* and so fe = e'ef f* €
5°S5° € R.
(2) = (3). Forany a € S and s° € S, it follows from .L* is a right congruence that

as® L A,8° = A,8°t - € AE%s” € AIs° C Rs° CR.

(3) = (4). Foranya € Sand x € R, it is clear that ax = ax] € S5° C R, where [ € E° with xL'Ly

(4) = (5). This is clear.

(5) = (6). This is clear.

(6) = (7). It follows from L* is a right congruence that RS’ C R and so (7) valids.

(7) = (8). This is clear.

(8) = (9).For any x,y € R,] € E° with x L* |, we have xy L ly = lijyA, € S’RS’E’ € RE° C R.
Hence ly L* ¢° for some ¢’ € E° and so xy L* lyL'e’. Thus xy € R by Lemma 1.5. It is obvious that
LS° = LS°S° C LRS° C R.

(9) = (1). For any 5%, t° € 5° and x € R, it follows from R is a subsemigroup that

$xt® =8 iy xA, - t°€s°-1-x-LS° Cs’RX R CR,

and so S’SS° CR. O
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Definition 2.3 We say that 5% is a
o left quasi-ideal of S if any one of the equivalent properties of Theorem 2.8 holds;
e right quasi-ideal of S if any one of the dual properties of Theorem 2.8 holds.
It is easy to see that S° is both a left quasi-ideal and a right quasi-ideal if and only if S° is a quasi-ideal.

Theorem 2.9 The following statements are equivalent:
(1) S° is left simplistic;
(2) S°IS° C R and S° is a right quasi-ideal;
(3) S°IS° € R, S°AS° C Land S°R C L.

Proof. (1) = (2). For any a°,1° € S° and ¢ € S, a°cb® = a°(cb°) € S°S C L by Theorem 2.6 and S° is a right
quasi-ideal. That S°IS° C S° C R is obvious.

(2) = (3). We only need notice that S°’R € S’RE® C 5°SS° C L.

(3)=(1). Foranya’,1° € S°andi € I, thereexistsa”* € E° such thata” £L* a°, wehavea™i € E°Yl CS°RCL,
and so a”i € E(L) = A. Thus a°ib° = a®(@*i)l° € a° Ab° C L and therefore a°it® € S°IS°NL C RNL C S°, that s,
S is left simplistic. [

Theorem 2.10 Let S be an abundant semigroup with an RGQA transversal S°. Then the following statements are
equivalent:

(1) S° is a left quasi-ideal and weakly multiplicative;

QAICL

Proof. (1) = (2). If S° is a left quasi-ideal, it follows from Theorem 2.8 that, AI € R. Thus for any
A€ A, i €, Ai = Ai(Ai)°(Ai)*” for some (Ai)° € Vso(Ai), (Ai)* € Vo ((Ai)°) by Ai is regular. It follows from S° is
weakly multiplicative that (Ai)° € E°. Thus (li))*° € E° and Ai = Ai(Ai)°(Ai)* € IE° C E. Therefore Ai € 1.

(2) = (1). If AI € I, then Vs (Al) € Vs(I) € E°. Thus S° is weakly multiplicative. Clearly AI €I C R
and so S’ is a left quasi-ideal by Theorem 2.8. [

Let S be an abundant semigroup and S° a weakly simplistic RGQA transversal of S. Then by Theorem
2.7, R is an abundant semigroup with an RGQA transversal S° with E(R) = [ is a band. Consequently, R
is quasi-adequate and for every x € R and A, € A,, there exists X' € E° such that A, = X". Fora € R, the
R'-class of R containing a will be denoted by R; and we define K(a) = K(b) if R; = R; and Cs.(a) = Cso(b) for
a,b € R. The relation K, defined on R by (a,b) € K if and only if K(a) = K(b), is an equivalence relation on
R. By Theorem 2.7, A is a band with an RGQA transversal E° = E(5°) and each element in A is R-related
to some element in E°. For each e € A, let ¢, : R — R be a mapping defined by ¢.x = exex” for a given ex,
where ex € Cso(ex). Foreach y € R, let ¢, : A — A be a mapping defined by fy, = As, foragiven As, € Ag,.
Foree Aand x € R, let LP(E°) = {(e,x) e AX R :eRe* L xfor some e € E°}. Then we have the following
properties associated with ¢ and .

Proposition 2.1 Let S be an abundant semigroup with a weakly simplistic RGQA transversal S° and R, A, ¢ and ¢
be defined as above. Then for anye, f € Aand x,y € R:

(1) Cs: (o) = Co(ey);

(2) X(Pey) R* xey and (ep,)f L eyf;

(3) there exists A(g,x) € E° such that ey R A(p,x);

(4) @) Piegmr¥) K D@ 7y)) and @io, ) () L (@) i

(5) e*(¢pex) = Pex and (fY,)A, = fp, for any e* € E° withe* Reand A, € A,;

6)ife’ € A,y e Rwithe LeRe* € E°and y Ky, then Cso(dpey) = Cso(Pey’);

(7)ife, f € Aand x',y' € Rwith f* L f,x L e* and x K x’ such that (¢/,x"), (f,v), (f’,y’) € LP(E°), then
x(dey) R (Gey) and (e,)f L € Y,)f';

(8) for ¢pyx = gxgx', if g € E° or x L* g* R g for some g* € E° with x(¢yx) K x, then (¢pgx)Ax = Pyx;

9) if hpy L rpyx and y(Ppx) = z(¢p,x), then hip; L rp;, and y(puix) = z(Prix).
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Proof.  (1). Since ¢poy = eyey’ = iyeyleyey’ = iyey ey, we have ey € Cso(dey). Consequently, Cso(¢ey) N
Cso(ey) # 0 and Cso(¢pey) = Cso(ey).

(2). It follows from xeyey A., = xeyA., = xey that xeyey” R* xey and so x(¢.y) = xeyey” R* xey. Similarly,
(epy)f L eyf sinceey L A, = ey, and L" is a right congruence.

(3). Since ¢ox = exex’ = iex ex and exX R Aey € Ay, take ey = Aoy and Ay = &X' € E°, then
617035 = Aex R a* = /\(q)gx)‘

(4). It follows from (2) that

(Pex) (DY) R (Pex)((ex) fy) = exeX Aefy = exAefy = exfy

and ¢e(x(¢ry)) R ex(¢sy) R exfy. Thus (¢ex)(@ep.)ry) R de(x(@5y))-
By the definition of ¢ and ¢, we have

(Pex)(Depry) = exex (P fY)
= exex - )\exfy-/\exfy)e = exex Agy -fy'/\exfy*
= exf]/ : Aw(f]/ = iexfyexf]/)\exfy : )\exfy .

It follows from A is a band that A, - m* € AE° € A. Since L' is a right congruence, we have
Aapy Lexfy L Aafy L Ap,.5y- Thus @* R Aexpy L Apusy R m* and by Lemma 1.1, Aep, R*
AexfyAex fy* L m*. Consequently, Aexfym R @* and so exfy € Cso((Pex)(Pey)fy))- For a similar
proof, we have exfy € Cso(¢(x(¢sy))).- Therefore (Pex)(Pey.)ry) K Pe(x(Pry)). Similarly,

(E¢X(¢fy))(f¢'y) L (ex(pry)rsy = exf}/f_y*)\fy =exfy L (epx)fy L () )iy

(5). For any e* € E° with e* Reand A, € A, we have e*(P.x) = eexex’ = exex’ = ¢x and (fp,)A, =
Ay = Agy = (fy). /

(6). Since y K ', we have y = y'(y"'Ay), where 7' A, € E°E° C E°. It follows from ¢’ L e R e* € E° and
Lemma 1.1 that e’ R e’e* L e* with e’e* € AE° C A and so e = ¢*¢’. Thus for any s € Cs(¢'y’) = Cso(Pery),
we have

ey=e'e YT Ay = e (ioyshey) T Ay) = (€ ipy)s(Aey T Ay).
Since (¢'y’ - ¥ ' A)Ay =y AAy) = €y’ Ay = €'y, it follows from e'y’ L Ay that Aey (T Ay = Aey.
Thus Aey R Aey (' Ay) and Apy (¥'A)) R Aeyy Rs* Ls. Similarly, ¢ - e*ipyy = ipy and e*ipy Lipy Lst Rs.
Therefore s € Cso(ey) = Cso(¢pey) and Cso(¢ey) = Cse(Pert/').

(7). Since x K x’, we have x = i,¥A,, ¥’ = ip¥Ay with iy £L X ,A R X,iy L X, Ay R X and
LR xRY R iy, X RXR X It follows from iy Riy Lx RX" L iy, and Lemma 1.1 that i,x"" = i,..
Thus

x = iy = (87 XX Ag) = (X EAy) = i X (X Ay) = X (X A).
It follows from x L£* ¢* Re L Re'T L£* 1’ and Lemma 1.1 that x £* ¢’e” R ¢’. Thus x’¢’,xe’ = x¥'X A e €
R:, N Ly. It is easy to see

x'e =iy -XApe with Aye’ € E°’ACA and Ave RAy RX

xe =i, -xAe with A.e € E°ACA and A RA, RX.

Thus X € Cs(x’¢’) N Cso(xe’) and so xe’ = x¥’X Ae’ = x'Ave’ = x'¢’.

From (2) and the proof of (6) we deduce that x(¢.y) R* xey R* x - e*ipy = (xe*)ipy = xipyy R x(e'y’) =
(xe")y = (xX'e")y’ R x'(pey’). Similarly, (e,)f L (€'Wy)f".

(8). If g € E° then gx € E°R C S°R C R and so gx L gx L' gx for some gx € Cs(gx). Thus
Ggx = gxgx’ = gx and (Pgx)Ax = gxA, = gx = Pyx.

If x(¢pyx) K x then x(pyx) = x(x'As), where Ap € Ax(p,v)- Since x € R, we may assume x L* x and
so x(¢pgx) L Aa R ¥ L0X L0Xx L0 x L0 gt Tt follows from Lemma 1.1 that Ay £ ¥'Ay R X and
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Ap L g7x'Ap R g* with g*X' Ay € E°E°E° C E° since x(¢p,x) € RR C R. From x L* g* we deduce that ¢,x =
g (pgx) = g"X Ap € E° and so gx R* gxgx” = ¢gx = g7X Aa R g*. Since gx = (gxgx )y = pgxAyx € E°A C A,
then g* is an inverse of gx € A in E°. Thus we may take gx = gx* = g*. Consequently

((ng)Ax = (gxﬁ*))\x = (gxg+)Ax = (g0)Ax = g(xAy) = gx = gxg+ = gxﬁ* = (ng'

9). If hy L 1y, that is Ayy L Ay, it follows from L7 is a right congruence that Ay, - X L Ay - X
Consequently, hxx" L rxx" and s0 Aguzy L Ay Thatis Agiz £ A since xx¥° = XA, X" = ix. Thus
Awmigx L Apiyx and so )\(h,-x)fr L /\(rix)?- Hence hi,x" £* ri,x", that is hi, £* ri,. Therefore Awiy L Ay and
h¢ix L rl,bix-

Since Apy L Anx, we have hx L rx. It follows from x £L* y & Ay = A, that Ay, = A,y and so for any
A € A, wehave Ajy € Ay Letdx = halix , Ape R Iix and ¢,x = 17X with 72 R Apy. Since y(¢dpx) = z(r),
that is yhxhx = zrxrx', postmultiplying by A, we acquire

yhx = yhxﬁ*Ahx = ZrXTX Apy = ZIX.

Thus yhi, = zri, since x R* i,. Since hi, L ri,, similar to the above proof, we can choose an element h_zx = rix’e
satisfying yhihi, = zriyriy . Therefore Y(Prix) = z(Priy). O

3. A Structure Theorem

In this section we will establish a structure theorem for abundant semigroups with weakly simplistic RGQA
transversals.

In what follows A denotes a band with an RGQA (in fact, a band) transversal B and each element in A
is R-related to some element in B and R denotes a quasi-adequate semigroup with an RGQA transversal
S°. Suppose that the band of idempotents of S° is isomorphic to B. For the sake of simplicity, we coincide
E(S°) with B, and denote it by E°.

For each e € A, let ¢, : R — R be a mapping given by x — ¢.x and for each y € R, let, : A - Abea
mapping given by f — fi,. Then the pair of mappings (¢, 1) is said to be normal if for any e, f € A and
x,y € R, the following conditions are satisfied:

(1) there exists Ay, € E? such that ey R Ag,x;

(2) (Pex) (P ewy) ) K Qe(x(Pry)) and (e, (fy) L ((ex) Yy;

(3) e*(¢pex) = Pex and (f1P,)A, = fip, for some e* € E° with e* Reand y° € Vs (y);

4)ife’ e A,y eRwithe’ LeRe" € E°and y K v/, then Cso(¢pey) = Cso(per y');

G)ife, f e Aand x’,y’ € Rwith f* L f,x Le* and x K x’ such that (¢/,x"), (f,y), (f',y’) € LP(E°), then
x(bey) R ¥ (dey) and (ep,)f L (€ Y,)f';

(6) for ¢p,x = gxgx', if g € E° or x L* g* R g for some g+ € E° with x(¢4x) K x, then (¢pyx)Ax = pyx;

(7) if hpy L vy and y(Ppx) = z(¢p,x), then hp;, L r;, and y(puix) = z(Prix).

The quadruple (R, A; ¢, ) is said to be permissible if the pair of mappings (¢, ¢) is normal.

Theorem 3.1 Let (R, A; ¢, ) be a permissible quadruple. Define a multiplication on the set
I' =R/ K Ix|A/ L={(K(x),L;) € R/ K XA/ L: (Fe* € E®) e Re" L x}

by
(K(x), Le)(K(y), L) = (K(X(Pey))s Liew,))-
Then T is an abundant semigroup with a weakly simplistic RGQA transversal isomorphic to S°.
Conwversely, every abundant semigroup with a weakly simplistic RGQA transversal can be constructed in this way.

We first notice a simple but useful result that, if x € R, then x L* X for some X' € Cs(x). For x € R, we
have x = i, XA, iy L x, Ay RX for some x',x € E® with A, € E°. Theni,-X'x = i,X  -x = i,x = x and
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X'x L x. Clearly, x'x = X'i;xA, = XAy and XA, - X =% - A, X =xx =% Thusx L' X x =X, R xR *'
and XA, € S°E° C S°. Tt follows from x = i,xA, = iy(XA,)Ac and iy £ X" R* XA,, A, € E° that XA, € Cs(x) and
x L' xA,. In the following, we identity X =XA, with x for x € R and in fact, we assume x £* X.

Obviously the definition of I is not dependent on the choice of x and e. In fact, ife; £ eand x; € K(x), then
by Remark 1 in [20], x; = xh for some i € E° and X' R h L* x;. It follows from ejet Let L x L'x L°X Rh
and Lemma 1.1 that e;e™ R ejeth L h with ejeth € AE°E° C A since A is a band. Furthermore e;eth L h € E°
implies that e;e™h € I and so e;e*h € IN A = E°. Notice that e; R ere*h L' x; and so (K(x1), L,,) € T’ with
(K(X), LL’) = (K(xl)r Lm )

Lemma 3.1 T is a semigroup.

Proof. Let (K(x),L,), (K(y),L,) € T. Then there exist e*,h* € E° such thate Re™ L* xand h R h* L" y. We
first prove that (K(x(¢c¥)), Liey,)r) € I'. By conditions (1) and (3), there exists A,x € E” and so

X(ey) L e (Pey) = ey L' Agx) € E°

and
(P h R (epy)h™ = () R* Ax) € E°.

Hence (K(x(¢.y)), Ley,) r) €T.
Now we prove that the multiplication on I is not dependent on the choice of x, ¢, y and h. If

(K(x),Le) = (K(x'), L) and (K(y), Ly) = (K(¥'), L),

then
(K(x), Le) (K(y), L) = (K(x(pey)), Liey,yn)
and
(K(x"), L) (K(y'), L) = (KX (Pey')) Ly, )

We shall prove that Cs(x(¢ey)) = Cso(x'(¢pey’)). Since (K(x),L.) = (K(x'),Ls), x K ¥’ and e R e* L
x R x L e¢" Re Le Theneet € Ly NRy and e*e’ = e. It is easy to see that x = x’¢’et and
e'e*e =¢. Similarly, y = y’I’h*. Thus x(¢.y) = (x'e’e*)(Pe(y' I h)) = X' (Peero)y )W HT) = X' (e y’)(W'hT) and
50 Coo(x(chey)) N Co (X' (")) # 0. Consequently, Coo(x(dy)) = Coo(x' (o). It follows from (4),(5) that
x(Pey) R X' (¢ y’) and (ey)f L (e'Yy)f’. Hence

(K(x(Pey), Liey,m) = (K (Pery")), Ly, i)

and the multiplication on I' is well-defined.
For any a= (K(x)/ LE)/ b= (K(xl)/ LL’1 )/ c= (K(xZ)/ LEz) € 1—‘/ then by (2)
(ab)e (K(x(@ex1)), Liey.yer)(K(x2), Le, )
= (K@(Pex1)(Pepeyer X2))s Lo, yeryre,Jeo)
= (K(xe(x1(e; X2))), Ly, yer)ipyJen)

and

albe) = (K(x), Le)(K(x1(Pe, X2)), Ler sy )er)
= (K(xe(x1(Pe; X2)))s Ly g, 1)1y )e2)
= (K(x¢e (x1 (Qbe] x2))), L(((et,b)(1 )e1)x, Jea )-

Therefore (ab)c = a(bc) and I' is a semigroup. [

Lemma 3.2 I is an abundant semigroup.



P. Wang, X. Kong / Filomat 37:1 (2023), 155-171 166

Proof. Let (K(x), L) € I'. We first show that (K(x), L,) € E(T') if and only if ¢x = e* L ey, where e* € E° and
eRet L x. If (K(x),L,) € E(T'), then

(K(x), Le)(K(x), Le) = (K(x(PeX)), Liey)e) = (K(x), Le)-

Hence K(x(¢ex)) = K(x), Ley,)e = Le and so x(¢.x) K x. Consequently, x(¢.x) = x(x'A5), where A5 € Ax(por)-
Thus x = x(¢ex)Ay = (X' Aa)Ay and x L* e* implies that e*(¢ex) = Ppex = e" (X' Ap) € E°E°E° C E°. Therefore
by (6), e* = " (Pex)Ax = €7 (Pex) = Pox. Since L* is a right congruence, (eyy)e L e implies that (eyy)ee™ L ee*,
that is (eyy)e™ L e*. It follows from x L* e* and e* € E° that (eyy)e* = e),. Therefore ey, L e*.

Conversely, for (K(x), L) € I, if ¢pox = e* L e1,, then

(K(x), Le)(K(x)/ Le) = (K(x(¢ex))r L(EI,UX)E)
= (K(xe"),Lewe) = (K(x), Le).

Denoting u = (K(ix), Ly+), v = (K(Ay), L), where x = i,xA,, i, L ¥ and A, RX". Then certainly u,v € E(I)
and we shall show that u R* (K(x), L,) £ v. Computing

(K(ix), L+ )(K(x), Le) = (K(2X" %), Lz )
= (K(x), Lz+,)
= (K(x), Lzp,e)
= (K(x),Lpe) (sinceXx'Ave=Aeandx LX)
= (K(x),Le). (since Ay Le* Re)

Suppose that (K(y), L), (K(z), L,) € T" are such that
(K(y), Ln)(K(x), L) = (K(z), Ly)(K(x), Le)-

This implies that
(K(y(¢pnx)), Lany,ye) = (K(z(¢rX)), Liry)e),

that is, y(¢nx) K z(¢,x) and (hpy)e L (ry)e. From (hyy)e L (riy)e, we have (hipy)eet L (riy)ee*, where
et € E’and e Re™ L x, this implies that (hyy)e* L (ripy)e*. It follows that (hx)e* L* (rx)e* and thus hx L* rx
since x L* e*. By ¢ux = h*(pux), ¢;x = r*(¢pyx) and y L* h*,z L ", we have y(¢pnx) L z(¢p,x). Hence by
Lemma 1.9

(Y(Pnx), z(px)) €K N L= 1.
That is y(¢nx) = z(¢rx). From (hyp,) L (r¢y) and (7) we deduce that y(¢pnir) = z(¢siy) and (hy;) L (rhi).
Therefore
(K@), Li)(K(i), Lgr) = (K((Pnix)), Liug,) (since iy LX)
= (K(Z(¢rix))r L(rlp,-x))
= (K@), L,)(K(iy), Ls+). (since iy LX)

By Lemma 1.3, u R* (K(x), L¢).
On the other hand, we have

(K(x),Le)v = (K(x), Le)(K(Ax), Le)
= (K(x(edy)),Lerye)  (Ay € E° since x € R)
= (K(xe™), Leve) (since eA, = e* € E°)
= (K(x),L). (since x L et Re)

If (K(x), Le)(K(y), Ly) = (K(x), Le)(K(z), L) for any (K(y), L), (K(z), L,) € T, then

(K(x(¢€y))/ L(f.’yby)h) = (K(x(¢ez))r L(egbz)r)'
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That is
x(@ey) K x(2) and (ew,)h L (ew.)r.

By x(¢.y) K x(¢.z), there exists | € E° with x(gbez)* R 1 L x(¢ey) such that x(¢.y) = x(¢ez)l. From x L* Ay

and Lemma 1.1 we deduce that A (¢.y) = Ax(¢pez)l. Moreover ! is R related to some A (¢p.z) and ! L Ax(¢ey)
since x £* Ay € E°, whence Cso(A+(¢ey)) N Cso(Ax(pez)) # 0. Similarly we have Ay (¢ey)h = Ay(¢pez) for some
h € E°. Thus Ax(¢ey) R* Ax(¢pez) and therefore K(A«(¢pey)) = K(Ax(¢.z)). Consequently,

(K(A2), Le)(K(y), L) = (K(Ax(Pe)), Liey,yn)

(K(Ax(e2)), Liey.yr)
(K(Ax), Le), (K(2), Ly).

By Lemma 1.3, v £* (K(x), L) and I is an abundant semigroup. [J

Lemma 3.3 Let
W = {(K(x),Ly): x€S° (x" € E°) x" L x}.

Then W is isomorphic to S° and is a quasi-adequate +-subsemigroup of T, moreover, E(W) = {(K(x),Ly) : x € E°}.

Proof. Obviously W C I'. Define o : S — W by so = (K(s), Ls), where s € 5,5 € E° and s* L* 5, then ¢ is
well-defined. For any s, t € S?, we have

so - to = (K(s), Ls )(K(), L) = (K(s(s1)), Lis-pyrr) = (K(s5°E), L. r-)-

It follows from L* is a right congruence that Agt* L* s*tt* = s*t L* st L* (st)* and so (K(ss*t), Ly.+) =
(K(st), Ly ). Thus so - to = (st)o and o is a homomorphism.

If so = to, then Cso(s) N Cso(t) # O,R; = R} and Ly = Ly-. Thus s = t and so ¢ is injective. Obviously o is
surjective. Therefore ¢ is an isomorphism.

To prove that W is a *—subsemigroup, let (K(x), L) € W. By the proof of Lemma 3.2, u = (K(x*),Ly+) €
E(W) and v = (K(x*), Ly) € E(W). In the following we will prove that

v L'(T) (K(x), L) RY(T) u.
It is readily that
(K(x), L )v = K(xx"x", L ..o, ) = (K(x), L)

and
u(K(x), Ly) = (K(x*x"x), Ly .....) = (K(x), Ly-).

For all (K(y1), Ly,), (K(y2), Ly,) € T}, if
(K(x), Ly )(K(y1), Ln,) = (K(x), Ly )(K(2), Li,),
then

(K@x"y1), Loy, m) = (K(ex"y2), Loy, i)

Thus xx*y; K xx*y, and (x*y1)h1 L (x*y2)h,. Similar to the proof of Lemma 3.2, we can show that x*x*y; K
x*x*1,. Therefore
(K(x"), Le )(K(y1), Ln,) = (K(x7), L )(K(y2), Ly )-

By Lemma 1.3, v £L*(I') (K(x), Ly). Similarly, u R*(I') (K(x), Ly-).
By Lemma 3.2, it is easy to see that E(W) = {(K(x),Ly) : x € E°}. O

Lemma 3.4 W is a generalised quasi-adequate transversal of T.
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Proof. Let (K(x1), Le,), (K(x2), Le,) € I'. We first show that (K(x1), L,,) R* (K(x2), L,,) if and only if x; R* x,. By
Lemma 3.3, it is equivalent to show that

(K(ix)), Lgr) R (K(izy), Ly:) if and only if x; R* x,.

Now uy = (K(ix,), L) R* (K(ix,), Ly) = 12

& iy = up and upuy = uy, that is (K(iy, Xy ir,), L Aryis) = (Kl Lyy) and (K(ix, Xy ix,), L A7) =
(K(ix ), Lg;)

— (K(ixix,), Lyl*ixZ) = (K(ix,), L@) and (K(ix,ix,), L}Qixl) = (K(ix,), Lzl*) since iy, £ H/ixz L Eg .

& ixix, K in, X5 LAz L¥ iy, and iyiy, K i, ¥ LAz L%ix. It follows from iy, £ 3] that
inix, £LX 1y, L% L iy, and dually, iy iy, £ iy,. Thus it is equivalent to

= iy by, = Iy, Ixyley = I

& x1 R* xp since x1 R* iy, x2 R iy,.
Similarly we may show that (K(x1), L.,) L (K(x2), L,,) if and only if e; L es.

Leta = (K(x), L) € I, V = {(K(y),Ly) € W : y € Cso(x)} and (K(y),L,) € V. Since y € Cso(x), there exist

i, A € E(R) such that x = iyA, where i L y*, A R* " for some y*, y* € E°. It follows that

(K(x), Le) = (K(i), Ly+)(K(y), Ly )(K(A), Le).-
Furthermore, we have
(K@), Ly+) L (K(y"),Ly+) R* (K(y), Ly-)

and
(K(A),Le) R (K(y'), Ly) L (K(y), Ly:).

Hence (K(y), L) € Cw(a) and V C Cw(a).
Conversely, let (K(y), L,-) € Cw(a). Then there exist (K(y1), Ly,), (K(y2), Ly,) € E(I') such that

(K(JC), LE) = (K(]/l)/ th )(K(y)/ Ly*)(K(yZ)/ Lhz)/

and
(K(y1), L) L (K(y),Ly)" for some (K(y),Ly)" € E(W),

(K(y2), Ly,) R (K(y), Ly»)* for some (K(y), Ly»)* € E(W).

By Lemma 1.3, (K(y1), Ly,) R* a L* (K(y2), Ln,)- Hence, y1 R* x and e L hy.
On the other hand, by Lemma 3.3 there exist x’, x”” € E° such that

(K(y), Ly)* = (K(x'),Ly) with X’ Ry,

and
(K),Ly)* = (K&"), Le) with x” Ly

It follows that
(K(x"), Ly )(K(x), Le)(K(x"), Lyr) = (K(y), Ly),

and so that x’x"xex” K y and (x'xex” ) L y*. Thus x’xex” L* y and so y = x"xex” since K N L= 1.

Since (K(y1), Ln,) £ (K(v),Ly)* = (K(x"), Ly'), we have hy L x". Hence (K(y1), L) = (K(y1), L,,) € E(T') and
there exists x’* € E° such that y; £* x’* R x’. And from (K(y1), Ly) € E(T) by Lemma 3.3, 11 = X'y1 =17,
and so y1x'y1 = X't = y; since y; L* x’". Thus vy is regular. Since x’y; = x’* and y;,x’",x’ are all
regular, from y; £ x’* R x’, we deduce that there exists an idempotent e in R, N Ly. Consequently
y=ex’" €ER)E°=IE°CI=ER)andx’ LeRy; R «x.

Since (K(y2), Ly,) R (K(y), L) = (K(x"'), Ly), we have y, R* x”. Also

(K(y2), L, J(K(x), Lyr) = (K(x), Ly),
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and

(K(x""), Ly )(K(y2), Ln,) = (K(y2), Ln,)-
That is

(K(y201,X""), Lipyrryer) = (K(x"), Lyr),
and

(K(x"y2), Ly, yn) = (K(y2), Ly )-

From y, R* x”” we have y, € L and so y», € LN R = §°. Thus hy = ¢p,y2 = haya since (K(y2), Ly,) € E(T'). This
implies that y2hoyo = yoh = y» and so y; is regular. It follows from y, R* x”, y» L* hy R hy with x”, k3 € E°
that y, = x”hy € E°E° C E°. From x L* e¢* Re L hy we deduce thatex” € AE° C A and ex”” L x” implies that
ex” € ANl = E°. Itfollows from y = x"-x-ex” thateye* = ex’xex’e* = exe* = xande Lx' R y, e Rex” L y,
and so y € Cgo(x). Therefore Cw(a) C V and W is a generalised quasi-adequate transversal of I. [

Lemma 3.5 W is a weakly simplistic RGQA transversal of T
Proof. It follows from W is a generalised quasi-adequate transversal of I' that
IT') = {(K(x), L) € E(I') : (K(x), L) L (K(y), Ly) € E(W)}
A(T) = {(K(x), L) € E(T) : (K(x), Le) R (K(2), Lz) € E(W)}.
We give a useful description of I(I') and A(I'). Denoting
P ={(K(iy),Lz+) € T : x € R,x = iyXAy, iy, Ay €E,iy LX, A, RX},

QO ={(K(x),L,) €T :x € E°}.
It is obvious that by Lemma 3.2 and Lemma 3.4, P C I(I') and Q € A(I'). For any (K(x),L.) € E(I') with
(K(x),Le) L (K(y),Ly) € E(W) then by Lemma 3.4, ¢ L y € E°and soe € IN A = E°. Thus ¢.x = ex = e*
by Lemma 3.2 and there exists e € E such that x R* ¢ L e. From e € E° we deduce that e € I and so
x =ee” € I[E° C I. Itis easy to see e = xe and K(x) = K(xe). Consequently (K(x),L.) = (K(xe),L,) € P and
IT) =P.

If (K(x),L,) € EI') with (K(x),L,) R (K(z),L,) € E(W), it follows from Lemma 3.5 that x R* z € E°
and so x € RNL = 5° From (K(x),L,) € E(I') and Lemma 3.2 we deduce that e* = ¢.x = ex. Thus
(xe)?> = xe - xe = x(ex)e = x(e*e) = xe and xe is idempotent. It follows from xe - e = x(ee*) = xe™ = x that
x R xe and so xe € L with xe € LN E = A. Therefore x = xee* = (xe)e* € AE° C Aandsox € ANS° = E°.
Consequently Q = A(T).

For any (K(iy), Lz+) € I(T'), (K(y), Ly) € E(W), where y € E°, we have

(i), L YK(y), Ly) = (KGE ), Lye,) = KGixy), Lge,) € 1(T)
since i,y € IE° C I,Xx"y € E°E° C E° and i,y £ X" y. On the other hand,
(K(y), Ly)(K(ix, L) = (K(yyix), Lyyiyz) = (K(yix), La,,) € I(T)

since (yi )X =X yi,X' = (X y)(yix) £ yix L Ay, with yiy € E'I CTand X'y € Vso(yiy). Similarly, for any
(K(x),L,) € Awith x € E° and (K(y),L,) € E°, we have

(K(x), Le)(K(]/)r L) = (K(deey), Leyy) € A(T)
since x(¢.y) € E°E° C E° (y € E°, ¢,y € E°) and
(K(y), Ly)(K(x), Le) = (K(yyx), Lyp,e) € AT)

since yyx = yx € E°E° C E°. Therefore the generalised quasi-adequate transversal W is refined and W is
weakly simplistic. [
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To prove the converse part of Theorem 3.1, suppose that S is an abundant semigroup with a weakly
simplistic RGQA transversal S°. It follows from Theorem 2.7 that R is an abundant semigroup with an
RGQA transversal 5 and E(R) = I is a band. Consequently, R is quasi-adequate and for every x € R and
Ay € Ay, there exists X' € E° such that A, = X". By Theorem 2.7, A is a band with an RGQA transversal
E° = E(5°) and each element in A is R-related to some element in E°. For eache € A, let ¢, : R = Rbe a
mapping defined by ¢.x = exex” for a given ex” € E°, where ex € Cs(ex) and ex” L* ex. For each y € R, let
Yy : A — A be a mapping defined by fi, = A, for a given Ag, € Ag,. It follows from Proposition 2.1 that
conditions (1) ~ (7) are satisfied and so the quadruple (R, A; ¢, }) is permissible.

Thus we may construct a semigroup I' in the method of the direct part of Theorem 3.1 with the multi-
plication is

(KO, LK), Ly) = (K(reyey ), L, ).

In the following we will prove that I' is isomorphic to S.
For any (K(x), L) € T, define a mapping o : I' — S given by

(K(x), Le)o = xe,

then o is well-defined. In fact, if y € K(x) and & L e, we have xee™ = xe* = x since e R ¢* L* x and similarly
yhh* = y. Thus xe R* x R* y R* yh. Forany a, b € S, if xea = xeb then e*ea = e*eb since x L' ¥, thatis ea = eb,
thus xe £* e. Similarly we have yh L h. Hence xe £ e L h L yh and consequently xe and yh in the same
H'-class. Let X € Cs:(x) N Cso(y). Then x = iy¥Ay, y = i,¥A, with iy LX, A, R¥,i, LX", 1, RX". Thus
xe = iyxAe and it follows from e R et L* x L* A, and Lemma 1.1 thate £ Ae R A, with Ae € E°A C A.
Consequently A,e R Ay RX" and X € Cs:(xe). Similarly yh = i, XA h, A,h € E°A € A with A,h R A, RX” and
X € Cso(yh). Therefore Cso(xe) N Cso(yh) # @ and consequently xe = yh by Lemma 1.9.

For every x € §, it follows from xx* £* A,x" = X R A, that (K(xx"),L;,) € T. Hence (K(xx"),L;,)0 =
XX Ay = xAy = x and o is surjective.

For any (K(x), L), (K(y),Ly) € T', we have

[(K(x), L)(K(y), L)]o

(K(xeyey"), Ly, f)o = (xeyey")Aey f
= xey(ey Aey)f = x(eydey)f
= xley)f =xe-yf
= (K(x), Le)o - (K(y), L)o.

Thus ¢ is a homomorphism.

If (K(x), L), (K(y), Ly) € T with the property that (K(x), L.)o = (K(y), Lf)o, thatisxe = yf. Sincee R e* L* x
and f R f* L' y for some e*, f* € E it is easy to see that

xeet =xe* =x and yfff =yf =y

Hence x R* xe = yf R* y and R} = R}. Similarly, e = e*e L xe = yf L* f*f = f and L, = Ly. Similar to
the proof of ¢ is well-defined, we have x € Cs:(x) N Cge(xe) and Cso(x) = Cso(xe). Similarly Cso(y) = Cso(yf).
From xe = yf we deduce that Cg(xe) = Cso(yf) and so Cso(x) = Cso(y). Hence K(x) = K(y). Combining with
L, = Ly implies that o is injective and so ¢ is an isomorphism.
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