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Abstract. Motivated by the representation for the Moore-Penrose inverse of the block matrix over a
∗-regular ring presented in [R.E. Hartwig and P. Patrı́cio, When does the Moore-Penrose inverse flip?
Operators and Matrices, 6(1):181-192, 2012], we show that the formula of the Moore-Penrose inverse is the
same as the expression given by [Nieves Castro-González, Jianlong Chen and Long Wang, Further results
on generalized inverses in rings with involution, Elect. J. Linear Algebra, 30:118-134, 2015].

1. Introduction

Representations and characterizations of the Moore-Penrose inverse (abbr. MP-inverse) for matrices over
various settings attract wide interest from many scholars. In 2012, Hartwig [5] obtained new expressions

for the MP-inverse of the matrix
(

a 0
b d

)
over a ∗-regular ring, extending some well known results for

complex matrices. However, in order to guarantee the existence and to be able to give a formula of block
matrices over a ring, the extra conditions on the ring are assumed. In [2, 3], Deng investigated the existence
of MP-inverse of block operator valued triangular matrices with specified properties on a Hilbert space. In
[6], necessary and sufficient conditions for the existence of the MP-inverse of the companion matrix in the

form
(

0 a
In b

)
over an arbitrary ring are considered and the formulae for the MP-inverse of the companion

matrix are established. In [1], Castro-González obtained some characterizations on the existence of MP-
inverse of block matrices over a ring in terms of the invertibility of elements, and the expressions of such
MP-inverses were given. In this article, we show that the formula of MP inverse which was given by [1,
Theorem 4.7] is the same as the expression given by (10)-(19) in [5, Section 2.2] for the MP-inverse of a 2× 2
lower triangular matrix over a ∗-regular ring.

We recall that ∗ is an involution in R, if it is a map ∗ : R→ R such that for all a, b ∈ R:

(a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗.

Throughout this paper, R is an associative ring with unity and involution ∗. Let Mm×n(R) denote the set of
m × n matrices over R. For any matrix A = (ai j) ∈Mm×n(R), A∗ ∈Mn×m(R) stands for (Ā)T where Ā = (a∗i j). A
matrix A ∈Mm×n(R) is said to be Moore-Penrose invertible with respect to ∗ if the equations
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Research supported by the NNSF of China (no. 11901510), NSF of Jiangsu Province (BK20170589)
Email address: lwangmath@yzu.edu.cn (Long Wang)



Y. Sun, L. Wang / Filomat 37:1 (2023), 173–177 174

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

have a unique common solution. Such a solution, when exists, is denoted by A†. From now on, R† stands for
the set of all MP-invertible elements in R. Following [4], a ring R is said to satisfy the k-term star-cancellation
(SCk) if

a∗1a1 + · · · + a∗kak = 0⇒ a1 = · · · = ak = 0

for any a1, · · · , ak ∈ R. Note that a ring satisfying SC1 is known as a ∗-cancellable ring. A ring is said to be
∗-regular if it is regular and ∗-cancellable. It is well-known that R is a ∗–regular ring if and only if every
element in R is MP-invertible, and that M2×2(R) is a ∗–regular ring if and only if R is a regular ring satisfying
SC2 (see [4]).

2. Main results

Hartwig [5] derived the representations for the MP-inverse of the matrix

M =
(

a 0
b d

)
(1)

over R̃. In order to guarantee the existence and to be able to give a formula of M†, the following extra
conditions on the regular R̃ are assumed:

(1) R̃ satisfy the SC2.
(2) For each r ∈ R̃, there exists c ∈ R̃ such that 1 + r∗r = c∗c = cc∗.
Under these hypothesis, the following result was obtained in [5].

Lemma 2.1. [5] Let M as in (1), where a, d ∈ R̃†. And R̃ satisfy the above two conditions. Then

M† =

(
p q
s r

)
.

where

p = ξa∗ − (1 + η∗η)−1η∗d†bξa∗,
s = −(1 + ηη∗)−1d†bξa∗,
q = ξb∗(1 − dd†) + (1 + η∗η)−1η∗d†[1 − bξb∗(1 − dd†)],
r = (1 + ηη∗)−1d†[1 − bξ∗b∗(1 − dd†)],

in which

ξ = t(1 + x∗x)−1t∗ + (ζ∗ζ)†,
x = (1 − ζζ†)(1 − dd†)ba†,
t = [1 − ζ†(1 − dd†)b]a†,
η = d†b(1 − a†a − ζ†ζ),
ζ = (1 − dd†)b(1 − a†a).

In fact, we write e = 1 − dd† and f = 1 − a†a. Then ζ = eb f , and it is easy to check that ζ†e = ζ† = fζ†.
Indeed, ζ†e = ζ†ζζ†e = ζ†(eζζ†)∗ = ζ†(ζζ†)∗ = ζ†. Similarly, we can obtain fζ† = ζ†. This leads to

t = [1 − ζ†(1 − dd†)b]a† = (1 − ζ†b)a†.

Note that a f = 0 implies that aζ∗ = a(eb f )∗ = a f (eb)∗ = 0, and consequently

aζ† = a(ζ†ζ)∗ζ† = aζ∗(ζ†)∗ζ† = 0.
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Similarly, ζa† = ζa∗(a†)∗a† = (aζ∗)∗(a†)∗a† = 0.
Write 1 = 1− ζζ† and h = 1− ζ†ζ. Then x = 1eba† and e1e = e(1− ζζ†)e = e1, where the second identity is

due to the fact that ζ†e = ζ†.
Base on the above equations, we have the following claims:
Claim 1. 1 + x∗x = u, where u = 1 + (ba†)∗e1ba† (See [1, Theorem 2.4.10]). Indeed,

1 + x∗x = 1 + (1eba†)∗(1eba†) = 1 + (ba†)∗e1eba† = 1 + (ba†)∗e1ba† = u. (2)

Claim 2. 1 + ηη∗ = v, where v = 1 + d†bh f (d†b)∗ (See [1, Theorem 2.4.10]). Indeed, on account of aζ† = 0
and ζa† = 0, we conclude that (1 − a†a − ζ†ζ)2 = 1 − a†a − ζ†ζ. Thus,

ηη∗ = d†b(1 − a†a − ζ†ζ)(1 − a†a − ζ†ζ)(d†b)∗

= d†b(1 − a†a − ζ†ζ)(d†b)∗

= d†b(1 − ζ†ζ)(1 − a†a)(d†b)∗ = d†bh f (d†b)∗. (3)

Claim 3. ξa∗ = tu−1 ( See [5, Section 2.2 (20)]).
Claim 4. ξb∗e = (1 − ζ†b)a†u−1(ba†)∗e1 + ζ†.

Note that e1 = e(1 − ζζ†) = e − eζζ† = e − ζζ†. Then we can obtain ebt = e1ba†. Indeed, since t = (1 − ζ†b)a†,
fζ† = ζ† and ζ = eb f , we have

ebt = eb(1 − ζ†b)a† = (e − ebζ†)ba† = (e − eb fζ†)ba†

= (e − ζζ†)ba† = e1ba†.

By e1 = e1e, (e1)∗ = (e1e)∗ = e1, and (ζ∗ζ)† = ζ†(ζ†)∗, then we get

ξb∗e = [tu−1t∗ + (ζ∗ζ)†]b∗e
= tu−1(ebt)∗ + ζ†(ζ†)∗b∗e
= tu−1(e1ba†)∗ + ζ†(ebζ†)∗

= tu−1(ba†)∗(e1)∗ + ζ†(eb fζ†)∗

= tu−1(ba†)∗e1 + ζ†

= (1 − ζ†b)a†u−1(ba†)∗e1 + ζ†.

The next theorem, a main result of this paper, shows that the formula of MP inverse which was given
by [1, Theorem 4.7] is the same as the expression given by (10)-(19) in [5, Section 2.2] for the Moore-Penrose
inverse of a 2 × 2 lower triangular matrix over a ∗-regular ring.

Theorem 2.2. Let R be a ring and M as in (1) and let a, d ∈ R†. If ζ† exists, then M† exist if and only if
u = 1 + (ba†)∗e1ba† and v = 1 + d†bh f (d†b)∗ are invertible, where e = 1 − dd†, f = 1 − a†a, 1 = 1 − ζζ† and
h = 1 − ζ†ζ. In this case,

M† =

(
(1 − h f (d†b)∗v−1d†b)σ γ

−ρba†u−1 ρ(1l − ba†u−1(ba†)∗e1)

)
=

(
p q
s r

)
,

where

ρ = v−1d†(1 − bζ†),
σ = (1 − ζ†b)a†u−1,

γ = ζ† + h f (d†b)∗ρ(1 − ba†u−1(ba†)∗e1) + σ(ba†)∗e1,

and p, q, r, s as in Lemma A.

Proof. In view of Claim 1, Claim 2 and [1, Theorem 3.7], we have 1 + x∗x and 1 + ηη∗ are invertible if and
only if M† exists. This, we only have to verify two matrices have the equal corresponding elements.
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Step one: We prove p = (1 − h f (d†b)∗v−1d†b)σ.
Indeed, by Claim 2, 1+ηη∗ = v. Since (1+η∗η)η∗ = η∗(1+ηη∗) and v is invertible, we can obtain (1+η∗η)−1η∗ =
η∗(1 + ηη∗)−1, it is due to the fact that 1 + η∗η is invertible if and only if 1 + ηη∗ is invertible. Therefore,

p = ξa∗ − (1 + η∗η)−1η∗d†bξa∗

= ξa∗ − η∗(1 + ηη∗)−1d†bξa∗

= ξa∗ − η∗v−1d†bξa∗

Note that η∗ = (1 − a†a − ζ†ζ)(d†b)∗ = (1 − ζ†ζ)(1 − a†a)(d†b)∗ = h f (d†b)∗.
This gives that

p = ξa∗ − h f (d†b)∗v−1d†bξa∗.

By Claim 3, ξa∗ = tu−1 = (1 − ζ†b)a†u−1 = σ. So we get

p = [1 − h f (d†b)∗v−1d†b]σ.

Step two: We prove s = −ρba†u−1. Indeed,
note that ξa∗ = tu−1, we can obtain

s = −(1 + ηη∗)−1d†bξa∗

= −v−1d†bξa∗

= −v−1d†btu−1

= −v−1d†b(1 − ζ†b)a†u−1

= −v−1d†(1 − bζ†)ba†u−1

= −ρba†u−1

Step three: We prove r = ρ[1 − ba†u−1(ba†)∗e1]. Indeed,

r = (1 + ηη∗)−1d†(1 − bξ∗b∗(1 − dd†))
= v−1d†(1 − bξ∗b∗e)
= v−1d†(1 − bc† − b(1 − c†b)a†u−1(ba†)∗e1)
= v−1d†(1 − bc† − (1 − bc†)ba†u−1(ba†)∗e1)
= v−1d†(1 − bc†)[1 − ba†u−1(ba†)∗e1]
= ρ[1 − ba†u−1(ba†)∗e1]

Step four: We show that q = ζ† + σ(ba†)∗e1 + h f (d†b)∗ρ[1 − ba†u−1(ba†)∗e1].
By Claim 4, we have

ξb∗e = ζ† + (1 − ζ†b)a†u−1(ba†)∗e1 = ζ† + σ(ba†)∗e1. (4)

Since

η∗ = [d†b(1 − a†a − ζ†ζ)]∗ = (1 − a†a − ζ†ζ)(d†b)∗

= (1 − ζ†ζ)(1 − a†a)(d†b)∗ = h f (d†b)∗

and ξ∗ = ξ, this implies that

η∗v−1d†(1 − bξb∗e) = η∗r = h f (d†b)∗ρ[1 − ba†u−1(ba†)∗e1], (5)

the last identity due to Step 3. In view of (2.4) and (2.5), by direct computation, we have

q = ξb∗(1 − dd†) + (1 + η∗η)−1η∗d†[1 − bξb∗(1 − dd†)]
= ξb∗e + η∗(1 + ηη∗)−1d†(1 − bξb∗e)
= ξb∗e + η∗v−1d†(1 − bξb∗e)
= c† + σ(ba†)∗e1 + h f (d†b)∗ρ[1 − ba†u−1(ba†)∗e1]
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So, we can obtain that(
(1 − h f (d†b)∗v−1d†b)σ γ

−ρba†u−1 ρ(1l − ba†u−1(ba†)∗e1)

)
=

(
p q
s r

)
.

The proof is complete.
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