A note on the Moore-Penrose inverse of block matrices

Yunhu Sun ${ }^{\text {a }}$, Long Wang ${ }^{\text {b }}$
${ }^{a}$ Xuhai College, China University of Mining and Technology, Xuzhou, 221008, China
${ }^{b}$ School of Mathematical Sciences, Yangzhou University, Yangzhou, 225002, China

Abstract

Motivated by the representation for the Moore-Penrose inverse of the block matrix over a *-regular ring presented in [R.E. Hartwig and P. Patrício, When does the Moore-Penrose inverse flip? Operators and Matrices, 6(1):181-192, 2012], we show that the formula of the Moore-Penrose inverse is the same as the expression given by [Nieves Castro-González, Jianlong Chen and Long Wang, Further results on generalized inverses in rings with involution, Elect. J. Linear Algebra, 30:118-134, 2015].

1. Introduction

Representations and characterizations of the Moore-Penrose inverse (abbr. MP-inverse) for matrices over various settings attract wide interest from many scholars. In 2012, Hartwig [5] obtained new expressions for the MP-inverse of the matrix $\left(\begin{array}{ll}a & 0 \\ b & d\end{array}\right)$ over a *-regular ring, extending some well known results for complex matrices. However, in order to guarantee the existence and to be able to give a formula of block matrices over a ring, the extra conditions on the ring are assumed. In [2,3], Deng investigated the existence of MP-inverse of block operator valued triangular matrices with specified properties on a Hilbert space. In [6], necessary and sufficient conditions for the existence of the MP-inverse of the companion matrix in the form $\left(\begin{array}{cc}0 & a \\ I_{n} & b\end{array}\right)$ over an arbitrary ring are considered and the formulae for the MP-inverse of the companion matrix are established. In [1], Castro-González obtained some characterizations on the existence of MPinverse of block matrices over a ring in terms of the invertibility of elements, and the expressions of such MP-inverses were given. In this article, we show that the formula of MP inverse which was given by [1, Theorem 4.7] is the same as the expression given by (10)-(19) in [5, Section 2.2] for the MP-inverse of a 2×2 lower triangular matrix over a $*$-regular ring.

We recall that $*$ is an involution in R, if it is a map $*: R \rightarrow R$ such that for all $a, b \in R$:

$$
\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*} \text { and }(a b)^{*}=b^{*} a^{*} .
$$

Throughout this paper, R is an associative ring with unity and involution *. Let $M_{m \times n}(R)$ denote the set of $m \times n$ matrices over R. For any matrix $A=\left(a_{i j}\right) \in M_{m \times n}(R), A^{*} \in M_{n \times m}(R)$ stands for $(\bar{A})^{T}$ where $\bar{A}=\left(a_{i j}^{*}\right)$. A matrix $A \in M_{m \times n}(R)$ is said to be Moore-Penrose invertible with respect to $*$ if the equations

[^0]$$
\text { (1) } A X A=A \text {, (2) } X A X=X \text {, (3) }(A X)^{*}=A X \text {, (4) }(X A)^{*}=X A \text {. }
$$
have a unique common solution. Such a solution, when exists, is denoted by A^{\dagger}. From now on, R^{\dagger} stands for the set of all MP-invertible elements in R. Following [4], a ring R is said to satisfy the k-term star-cancellation $\left(S C_{k}\right)$ if
$$
a_{1}^{*} a_{1}+\cdots+a_{k}^{*} a_{k}=0 \Rightarrow a_{1}=\cdots=a_{k}=0
$$
for any $a_{1}, \cdots, a_{k} \in R$. Note that a ring satisfying $S C_{1}$ is known as a $*$-cancellable ring. A ring is said to be *-regular if it is regular and *-cancellable. It is well-known that R is a *-regular ring if and only if every element in R is MP-invertible, and that $M_{2 \times 2}(R)$ is a *-regular ring if and only if R is a regular ring satisfying $S C_{2}$ (see [4]).

2. Main results

Hartwig [5] derived the representations for the MP-inverse of the matrix

$$
M=\left(\begin{array}{ll}
a & 0 \tag{1}\\
b & d
\end{array}\right)
$$

over \tilde{R}. In order to guarantee the existence and to be able to give a formula of M^{\dagger}, the following extra conditions on the regular \tilde{R} are assumed:
(1) \tilde{R} satisfy the $S C_{2}$.
(2) For each $r \in \tilde{R}$, there exists $c \in \tilde{R}$ such that $1+r^{*} r=c^{*} c=c c^{*}$.

Under these hypothesis, the following result was obtained in [5].
Lemma 2.1. [5] Let M as in (1), where $a, d \in \tilde{R}^{\dagger}$. And \tilde{R} satisfy the above two conditions. Then

$$
M^{\dagger}=\left(\begin{array}{cc}
p & q \\
s & r
\end{array}\right)
$$

where

$$
\begin{aligned}
& p=\xi a^{*}-\left(1+\eta^{*} \eta\right)^{-1} \eta^{*} d^{\dagger} b \xi a^{*}, \\
& s=-\left(1+\eta \eta^{*}\right)^{-1} d^{\dagger} b \xi a^{*}, \\
& q=\xi b^{*}\left(1-d d^{\dagger}\right)+\left(1+\eta^{*} \eta\right)^{-1} \eta^{*} d^{\dagger}\left[1-b \xi b^{*}\left(1-d d^{\dagger}\right)\right] \\
& r=\left(1+\eta \eta^{*}\right)^{-1} d^{+}\left[1-b \xi^{*} b^{*}\left(1-d d^{\dagger}\right)\right]
\end{aligned}
$$

in which

$$
\begin{aligned}
& \xi=t\left(1+x^{*} x\right)^{-1} t^{*}+\left(\zeta^{*} \zeta\right)^{\dagger} \\
& x=\left(1-\zeta \zeta^{\dagger}\right)\left(1-d d^{\dagger}\right) b a^{\dagger}, \\
& t=\left[1-\zeta^{\dagger}\left(1-d d^{\dagger}\right) b\right] a^{\dagger}, \\
& \eta=d^{\dagger} b\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right), \\
& \zeta=\left(1-d d^{\dagger}\right) b\left(1-a^{\dagger} a\right) .
\end{aligned}
$$

In fact, we write $e=1-d d^{\dagger}$ and $f=1-a^{\dagger} a$. Then $\zeta=e b f$, and it is easy to check that $\zeta^{\dagger} e=\zeta^{\dagger}=f \zeta^{\dagger}$. Indeed, $\zeta^{\dagger} e=\zeta^{\dagger} \zeta \zeta^{\dagger} e=\zeta^{\dagger}\left(e \zeta \zeta^{\dagger}\right)^{*}=\zeta^{\dagger}\left(\zeta \zeta^{\dagger}\right)^{*}=\zeta^{\dagger}$. Similarly, we can obtain $f \zeta^{\dagger}=\zeta^{\dagger}$. This leads to

$$
t=\left[1-\zeta^{\dagger}\left(1-d d^{\dagger}\right) b\right] a^{\dagger}=\left(1-\zeta^{\dagger} b\right) a^{\dagger} .
$$

Note that $a f=0$ implies that $a \zeta^{*}=a(e b f)^{*}=a f(e b)^{*}=0$, and consequently

$$
a \zeta^{\dagger}=a\left(\zeta^{\dagger} \zeta\right)^{*} \zeta^{+}=a \zeta^{*}\left(\zeta^{\dagger}\right)^{*} \zeta^{\dagger}=0
$$

Similarly, $\zeta a^{\dagger}=\zeta a^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}=\left(a \zeta^{*}\right)^{*}\left(a^{\dagger}\right)^{*} a^{\dagger}=0$.
Write $g=1-\zeta \zeta^{\dagger}$ and $h=1-\zeta^{\dagger} \zeta$. Then $x=g e b a^{\dagger}$ and $e g e=e\left(1-\zeta \zeta^{\dagger}\right) e=e g$, where the second identity is due to the fact that $\zeta^{\dagger} e=\zeta^{\dagger}$.

Base on the above equations, we have the following claims:
Claim 1. $1+x^{*} x=u$, where $u=1+\left(b a^{+}\right)^{*}$ egba ${ }^{+}$(See [1, Theorem 2.4.10]). Indeed,

$$
\begin{equation*}
1+x^{*} x=1+\left(g e b a^{\dagger}\right)^{*}\left(g e b a^{\dagger}\right)=1+\left(b a^{\dagger}\right)^{*} \text { egeba }{ }^{\dagger}=1+\left(b a^{\dagger}\right)^{*} e g b a^{\dagger}=u . \tag{2}
\end{equation*}
$$

Claim 2. $1+\eta \eta^{*}=v$, where $v=1+d^{+} b h f\left(d^{+} b\right)^{*}$ (See [1, Theorem 2.4.10]). Indeed, on account of $a \zeta^{+}=0$ and $\zeta a^{\dagger}=0$, we conclude that $\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)^{2}=1-a^{\dagger} a-\zeta^{\dagger} \zeta$. Thus,

$$
\begin{align*}
\eta \eta^{*} & =d^{\dagger} b\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\left(d^{\dagger} b\right)^{*} \\
& =d^{\dagger} b\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\left(d^{\dagger} b\right)^{*} \\
& =d^{\dagger} b\left(1-\zeta^{\dagger} \zeta\right)\left(1-a^{\dagger} a\right)\left(d^{\dagger} b\right)^{*}=d^{\dagger} b h f\left(d^{\dagger} b\right)^{*} \tag{3}
\end{align*}
$$

Claim 3. $\xi a^{*}=t u^{-1}$ (See [5, Section 2.2 (20)]).
Claim 4. $\xi b^{*} e=\left(1-\zeta^{\dagger} b\right) a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g+\zeta^{\dagger}$.
Note that $e g=e\left(1-\zeta \zeta^{\dagger}\right)=e-e \zeta \zeta^{\dagger}=e-\zeta \zeta^{\dagger}$. Then we can obtain $e b t=e g b a^{\dagger}$. Indeed, since $t=\left(1-\zeta^{\dagger} b\right) a^{\dagger}$, $f \zeta^{+}=\zeta^{\dagger}$ and $\zeta=e b f$, we have

$$
\begin{aligned}
e b t & =e b\left(1-\zeta^{\dagger} b\right) a^{\dagger}=\left(e-e b \zeta^{\dagger}\right) b a^{\dagger}=\left(e-e b f \zeta^{\dagger}\right) b a^{\dagger} \\
& =\left(e-\zeta \zeta^{\dagger}\right) b a^{\dagger}=e g b a^{\dagger}
\end{aligned}
$$

By eg $=e g e,(e g)^{*}=(e g e)^{*}=e g$, and $\left(\zeta^{*} \zeta\right)^{\dagger}=\zeta^{\dagger}\left(\zeta^{\dagger}\right)^{*}$, then we get

$$
\begin{aligned}
\xi b^{*} e & =\left[t u^{-1} t^{*}+\left(\zeta^{*} \zeta\right)^{\dagger}\right] b^{*} e \\
& =t u^{-1}(e b t)^{*}+\zeta^{\dagger}\left(\zeta^{+}\right)^{*} b^{*} e \\
& =t u^{-1}\left(e g b a^{+}\right)^{*}+\zeta^{\dagger}\left(e b \zeta^{+}\right)^{*} \\
& =t u^{-1}\left(b a^{+}\right)^{*}(e g)^{*}+\zeta^{\dagger}\left(e b f \zeta^{+}\right)^{*} \\
& =t u^{-1}\left(b a^{+}\right)^{*} e g+\zeta^{\dagger} \\
& =\left(1-\zeta^{\dagger} b\right) a^{+} u^{-1}\left(b a^{+}\right)^{*} e g+\zeta^{+} .
\end{aligned}
$$

The next theorem, a main result of this paper, shows that the formula of MP inverse which was given by [1, Theorem 4.7] is the same as the expression given by (10)-(19) in [5, Section 2.2] for the Moore-Penrose inverse of a 2×2 lower triangular matrix over a $*$-regular ring.

Theorem 2.2. Let R be a ring and M as in (1) and let $a, d \in R^{\dagger}$. If ζ^{\dagger} exists, then M^{\dagger} exist if and only if $u=1+\left(b a^{+}\right)^{*}$ egba ${ }^{\dagger}$ and $v=1+d^{+} b h f\left(d^{+} b\right)^{*}$ are invertible, where $e=1-d d^{\dagger}, f=1-a^{\dagger} a, g=1-\zeta \zeta^{+}$and $h=1-\zeta^{\dagger} \zeta$. In this case,

$$
M^{\dagger}=\left(\begin{array}{cc}
\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right) \sigma & \gamma \\
-\rho b a^{\dagger} u^{-1} & \rho\left(1_{l}-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right)
\end{array}\right)=\left(\begin{array}{ll}
p & q \\
s & r
\end{array}\right),
$$

where

$$
\begin{aligned}
& \rho=v^{-1} d^{\dagger}\left(1-b \zeta^{\dagger}\right) \\
& \sigma=\left(1-\zeta^{\dagger} b\right) a^{\dagger} u^{-1} \\
& \gamma=\zeta^{\dagger}+h f\left(d^{\dagger} b\right)^{*} \rho\left(1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right)+\sigma\left(b a^{\dagger}\right)^{*} e g
\end{aligned}
$$

and p, q, r, s as in Lemma A.
Proof. In view of Claim 1, Claim 2 and [1, Theorem 3.7], we have $1+x^{*} x$ and $1+\eta \eta^{*}$ are invertible if and only if M^{\dagger} exists. This, we only have to verify two matrices have the equal corresponding elements.

Step one: We prove $p=\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right) \sigma$.
Indeed, by Claim $2,1+\eta \eta^{*}=v$. Since $\left(1+\eta^{*} \eta\right) \eta^{*}=\eta^{*}\left(1+\eta \eta^{*}\right)$ and v is invertible, we can obtain $\left(1+\eta^{*} \eta\right)^{-1} \eta^{*}=$ $\eta^{*}\left(1+\eta \eta^{*}\right)^{-1}$, it is due to the fact that $1+\eta^{*} \eta$ is invertible if and only if $1+\eta \eta^{*}$ is invertible. Therefore,

$$
\begin{aligned}
p & =\xi a^{*}-\left(1+\eta^{*} \eta\right)^{-1} \eta^{*} d^{+} b \xi a^{*} \\
& =\xi a^{*}-\eta^{*}\left(1+\eta \eta^{*}\right)^{-1} d^{+} b \xi a^{*} \\
& =\xi a^{*}-\eta^{*} v^{-1} d^{+} b \xi a^{*}
\end{aligned}
$$

Note that $\eta^{*}=\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\left(d^{\dagger} b\right)^{*}=\left(1-\zeta^{\dagger} \zeta\right)\left(1-a^{\dagger} a\right)\left(d^{\dagger} b\right)^{*}=h f\left(d^{\dagger} b\right)^{*}$.
This gives that

$$
p=\xi a^{*}-h f\left(d^{+} b\right)^{*} v^{-1} d^{\dagger} b \xi a^{*} .
$$

By Claim 3, $\xi a^{*}=t u^{-1}=\left(1-\zeta^{\dagger} b\right) a^{\dagger} u^{-1}=\sigma$. So we get

$$
p=\left[1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right] \sigma .
$$

Step two: We prove $s=-\rho b a^{\dagger} u^{-1}$. Indeed,
note that $\xi a^{*}=t u^{-1}$, we can obtain

$$
\begin{aligned}
s & =-\left(1+\eta \eta^{*}\right)^{-1} d^{\dagger} b \xi a^{*} \\
& =-v^{-1} d^{\dagger} b \xi a^{*} \\
& =-v^{-1} d^{\dagger} b t u^{-1} \\
& =-v^{-1} d^{\dagger} b\left(1-\zeta^{\dagger} b\right) a^{\dagger} u^{-1} \\
& =-v^{-1} d^{\dagger}\left(1-b \zeta^{\dagger}\right) b a^{\dagger} u^{-1} \\
& =-\rho b a^{\dagger} u^{-1}
\end{aligned}
$$

Step three: We prove $r=\rho\left[1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right]$. Indeed,

$$
\begin{aligned}
r & =\left(1+\eta \eta^{*}\right)^{-1} d^{\dagger}\left(1-b \xi^{*} b^{*}\left(1-d d^{\dagger}\right)\right) \\
& =v^{-1} d^{\dagger}\left(1-b \xi^{*} b^{*} e\right) \\
& =v^{-1} d^{\dagger}\left(1-b c^{\dagger}-b\left(1-c^{\dagger} b\right) a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right) \\
& =v^{-1} d^{\dagger}\left(1-b c^{\dagger}-\left(1-b c^{\dagger}\right) b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right) \\
& =v^{-1} d^{\dagger}\left(1-b c^{\dagger}\right)\left[1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right] \\
& =\rho\left[1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right]
\end{aligned}
$$

Step four: We show that $q=\zeta^{\dagger}+\sigma\left(b a^{\dagger}\right)^{*} e g+h f\left(d^{\dagger} b\right)^{*} \rho\left[1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right]$.
By Claim 4, we have

$$
\begin{equation*}
\xi b^{*} e=\zeta^{\dagger}+\left(1-\zeta^{\dagger} b\right) a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g=\zeta^{\dagger}+\sigma\left(b a^{\dagger}\right)^{*} e g . \tag{4}
\end{equation*}
$$

Since

$$
\begin{aligned}
\eta^{*} & =\left[d^{\dagger} b\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\right]^{*}=\left(1-a^{\dagger} a-\zeta^{\dagger} \zeta\right)\left(d^{\dagger} b\right)^{*} \\
& =\left(1-\zeta^{\dagger} \zeta\right)\left(1-a^{\dagger} a\right)\left(d^{\dagger} b\right)^{*}=h f\left(d^{\dagger} b\right)^{*}
\end{aligned}
$$

and $\xi^{*}=\xi$, this implies that

$$
\begin{equation*}
\eta^{*} v^{-1} d^{\dagger}\left(1-b \xi b^{*} e\right)=\eta^{*} r=h f\left(d^{\dagger} b\right)^{*} \rho\left[1-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right], \tag{5}
\end{equation*}
$$

the last identity due to Step 3. In view of (2.4) and (2.5), by direct computation, we have

$$
\begin{aligned}
q & =\xi b^{*}\left(1-d d^{\dagger}\right)+\left(1+\eta^{*} \eta\right)^{-1} \eta^{*} d^{\dagger}\left[1-b \xi b^{*}\left(1-d d^{\dagger}\right)\right] \\
& =\xi b^{*} e+\eta^{*}\left(1+\eta \eta^{*}\right)^{-1} d^{\dagger}\left(1-b \xi b^{*} e\right) \\
& =\xi b^{*} e+\eta^{*} v^{-1} d^{\dagger}\left(1-b \xi b^{*} e\right) \\
& =c^{\dagger}+\sigma\left(b a^{+}\right)^{*} e g+h f\left(d^{+} b\right)^{*} \rho\left[1-b a^{\dagger} u^{-1}\left(b a^{+}\right)^{*} e g\right]
\end{aligned}
$$

So, we can obtain that

$$
\left(\begin{array}{cc}
\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right) \sigma & \gamma \\
-\rho b a^{\dagger} u^{-1} & \rho\left(1_{l}-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right)
\end{array}\right)=\left(\begin{array}{cc}
p & q \\
s & r
\end{array}\right) .
$$

The proof is complete.

References

[1] N. Castro-González, J.L. Chen and L. Wang, Further results on generalized inverses in rings with involution, Elect. J. Linear Algebra 30 (2015), 118-134.
[2] C.Y. Deng and H.K. Du, Representations of the Moore-Penrose inverse for a class of 2-by-2 block operator valued partial matrices, Linear Multilinear Algebra 58 (2010), 15-26.
[3] C.Y. Deng, Geometry structures of the generalized inverses of block two-by-two matrices, Appl. Math. Comput. 250 (2015), $479-491$.
[4] R.E. Hartwig, An application of the Moore-Penrose inverse to antisymmetric relations, Proc. Amer. Math. Soc. 78 (1980), 181-186.
[5] R.E. Hartwig and P. Patrício, When does the Moore-Penrose inverse flip? Operators Matrices 6(1) (2012), 181-192.
[6] P. Patrício, The Moore-Penrose inverse of a companion matrix, Linear Algebra Appl. 437(3) (2012), 870-877.

[^0]: 2020 Mathematics Subject Classification. 15A09; 16E50; 16W10.
 Keywords. Moore-Penrose inverse; Triangular matrices; k-term star-cancellation; ring.
 Received: 25 November 2020; Revised: 30 June 2021; Accepted: 4 July 2021
 Communicated by Dijana Mosić
 Research supported by the NNSF of China (no. 11901510), NSF of Jiangsu Province (BK20170589)
 Email address: 1wangmath@yzu.edu.cn (Long Wang)

