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Abstract. In this paperwe investigate the spectrum and the Drazin spectrum and their pseudo spectral
analogues, for linear relations between Banach spaces and corresponding spectra, the generalized Drazin-
meromorphic pseudospectrum. More specifically, the generalized Drazin-meromorphic pseudospectrum
for a linear relations on a Banach space is studied. We also make several observations about the level set
of the generalized Drazin-meromorphic pseudospectrum of linear relations. Furthermore, it is shown that
pseudospectrum has no isolated points, has a finite number of connected components and each component
contains an element from the generalized Drazin-meromorphic spectrum .

1. Introduction

This section contains some basic notions and results from the theory of linear relations given in [5] -
[11, 13].

First, let us fix some notations. The symbols X, Y, Z stand for infinite dimensional Banach spaces over
the same fieldK (K being R or C). A multivalued linear operator or linear relation is a mapping T ⊂ X ×Y
which goes from a subspaceD(T) ⊂ X called the domain of T, into the collection of nonempty subsets of Y
such that

T(α1x1 + α2x2) = α1T(x1) + α2T(x2)

for arbitrary scalars α1, α2 and x1, x2 ∈ D(T).
For x ∈ X\D(T), we define Tx = ∅,with this convention, we have

D(T) = {x ∈ X : Tx , ∅}.

The collection of linear relations as defined above will be denoted by LR(X,Y). A linear relation T ∈ LR(X,Y)
is uniquely determined by and identified with its graph, G(T),which is defined by

G(T) := {(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx}.
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The inverse of T ∈ LR(X,Y) is the linear relation T−1 defined by

G(T−1) := {(y, x) ∈ Y × X : (x, y) ∈ G(T)}.

If T, S ∈ LR(X,Y), then their algebraic sum T + S is also a linear relation defined by

G(T + S) := {(x,u + v) : (x,u) ∈ G(T), (x, v) ∈ G(S)}.

Similarly, if T ∈ LR(X,Y) and S ∈ LR(Y,Z), then their product ST is also a linear relation defined by

G(ST) := {(x, z) ∈ X × Z : (x, y) ∈ G(T) and (y, z) ∈ G(S) for some y ∈ Y}.

If M is a subspace of X such that M ∩D(T) , ∅, then T|M∩D(T) := T|M is defined by

G(T|M) := {(x, y) ∈ G(T) : x ∈M}.

The quotient map from Y onto Y/T(0) is denoted by QT. It is easy to see that QTT is single valued so that
we can define

∥Tx∥ := ∥QTTx∥ for all x ∈ D(T) and ∥T∥ := ∥QTT∥.

Let T ∈ LR(X,Y). The range of T is the subspace

R(T) := {y : (x, y) ∈ G(T)}

and T is called surjective if R(T) = Y. The subspace T−1(0) is denoted by N(T) and T is called injective if
N(T) = {0}, that is, if T−1 is a single valued linear operator.

Now if T is both injective and surjective, then we say that T is bijective. T is said to be bounded below
if the set is injective and open. Observe that

Tx = y + T(0), for any y ∈ Tx.

We say that T ∈ LR(X,Y) is continuous if ∥T∥ < ∞; bounded if it is continuous andD(T) = X, open if T−1 is
continuous, equivalent if its minimum modulus γ(T) is a positive number, where

γ(T) := sup{λ ≥ 0 : λd(x,N(T)) ≤ ∥Tx∥, x ∈ D(T)},

where d(x,N(T)) denotes the distance between x and N(T).
A linear relation T is said to be closed if its graph is closed. Similarly, T is called closable if T(0) = T(0).

T is defined by G(T) := G(T).

Let L(X) be the Banach algebra of all bounded linear operators on an infinite dimensional complex
Banach space X. Recall that an operator T ∈ L(X), is Drazin invertible if there is S ∈ L(X) such that

TS = ST, STS = S, TST − T is nilpotent.

The concept of the generalized Drazin invertible operators was introduced by J.Koliha [7]. An operator
T ∈ L(X) is generalized Drazin invertible in case there is S ∈ L(X) such that

TS = ST, STS = S, TST − T is quasinilpotent.

Recall that T is generalized Drazin invertible if and only if 0 < accσ(T), and this is also equivalent to the fact
that T = T1 ⊕ T2 where T1 is invertible and T2 is quasinilpotent.

Recently, Živković-Zlatanović and Cvetković [14, 15] further generalized the concept by replacing the
third condition in the previous definitions by the condition that TST − T is Riesz, and so it is introduced
the concept of generalized Drazin-Riesz invertible operators. Also, Živković-Zlatanović and Duggal [6, 15]
introduced the notion of generalized Drazin-meromorphic invertible by replacing the third condition with
TST − T is meromorphic.

In this paper, we further generalize this concept by introducing generalized Drazin invertible of a
multivalued linear operator T.
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Definition 1.1. T ∈ LR(X). An element S ∈ LR(X) satisfying

TS = ST + T(0), STS = S and TST = T +U

with, U ∈ LR(X) meromorphic, is called a generalized Drazin-meromorphic inverse of T and it is denoted by T⋄.

Now, we investigate corresponding resolvent. For T ∈ LR(X), the generalized Drazin-meromorphic
resolvent

ρg.DM(T) = {λ ∈ C : (λ − T)⋄ exists}.

The complement of the set ρg.DM(T) is called generalized Drazin-meromorphic spectrum and it is defined
as:

σg.DM(T) = {λ ∈ C : λ − T is not g.DM invertible},

where g.DM denote: generalized Drazin-meromorphic.
The map (λ−T)⋄ defined from ρg.DM(T) to LR(X) is called the generalized Drazin-meromorphic resolvent

map. In fact, that
ρg.DM,ε(T) ∋ λ 7→ (λ − T)⋄ ∈ LR(X)

is continuous and even analytic. The Definition of the generalized Drazin-meromorphic pseudospectra of
a multivalued linear operator T, for every ε > 0 is given by:

σg.DM,ε(T) := σg.DM(T)
⋃{

λ ∈ C : inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
,

where σg.DM(T) is the generalized Drazin-meromorphic spectrum of linear relation T. By convention we
write

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= ∞,

if (λ − T)⋄ is unbounded or nonexistent, i.e., if λ is in σg.DM(T). The generalized Drazin-meromorphic
pseudoresolvent set of T ∈ LR(X) is defined as,

ρg.DM,ε(T) := ρg.DM(T)
⋂{

λ ∈ C : inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≤ ε

}
,

For more information about pseudospectrum of a multivalued linear operator see for example [1–
4, 9, 10, 12].

The main aim of this paper is to offer a new definition of the generalized Drazin-meromorphic pseu-
dospectrum of a multivalued linear operator T in Banach space, and we try to explain some properties of
which (Theorem 2.1). Also we introduce some topological property (Theorem 2.5 and 2.6) and investigate
and classify the possible cases, when the norm of the generalized Drazin-meromorphic resolvent map is
not constant in an open connected subset of the generalized Drazin-meromorphic resolvent set (Theorem
3.3). Further attention is then devoted to the analysis of the level sets

Oε(T) :=
{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= ε

}
.

The above set is called level set of the generalized Drazin-meromorphic pseudospectrum. Finally, we
state some results relating the characterization of the generalized Drazin-meromorphic pseudospectrum
(Theorems 2.6, 2.7 and 2.10) of a multivalued linear operator.

In this note, we focus attention on the generalized Drazin-meromorphic pseudospectra of a multivalued
linear operator and its properties. The remainder of this paper is organized as follows. In Section 2, we first
suggest a characterize for the generalized Drazin-meromorphic pseudospectrum of a multivalued linear
operator. Then, in Section 3, we focus on the level set of the generalized Drazin-meromorphic pseudo
spectrum, we also look at some topological property σ1.DM,ε(T).
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2. Generalized Drazin-meromorphic pseudospectra

In the following, we define and characterize the generalized Drazin-meromorphic pseudospectrum
of a multivalued linear operator. We begin with the following definition.

Definition 2.1. Given ε > 0 and T ∈ LR(X). The pseudospectrum of T is denoted by σε(T) and is defined to be the
set

σε(T) := σ(T) ∪
{
λ ∈ C such that ∥(λ − T)−1

∥ > 1
ε

}
.

By convention, we write ∥(λ − T)−1
∥ = ∞ if λ ∈ σ(T), (spectrum of T).

Definition 2.2. Let T ∈ LR(X) and ε > 0. The generalized Drazin-meromorphic pseudospectrum of T is defined as,

σg.DM,ε(T) := σg.DM(T)
⋃{

λ ∈ C : inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
,

By convention, we write

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= ∞,

if (λ − T)⋄ is unbounded or nonexistent, i.e., if λ is in σg.DM(T).

The generalized Drazin-meromorphic pseudoresolvent set of a multivalued linear operator T is defined as,

ρg.DM,ε(T) := ρg.DM(T)
⋂{
λ ∈ C : inf

{
∥(λ − T)⋄∥ : (λ − T)⋄ a g.DM

inverse of λ − T
}
≤ ε

}
.♢

Definition 2.3. [5, Definition I.5.1] Let T ∈ LR(X). A linear operator S is called a selection if

T = S︸︷︷︸
single valued part

+T − T and D(T) = D(S).

If S is a selection of T then we have for all x ∈ D(T)

Tx = Sx + T(0).

Example 2.4. Let I is selection of T, S = I + T(0) and we suppose T2(0) = T(0), then S is a generalized Drazin-
meromorphic inverse. Indeed, we have

TS = (I − T(0))(I + T(0))
= I2

− T2(0)
= I − T(0)
= I − T(0) + T(0)
= ST + T(0),

STS = (I + T(0))(I − T(0))(I + T(0))
= (I + T(0))(I2

− T2(0))
= (I + T(0))(I − T(0))
= I2

− T2(0)
= I − T(0) = S
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and

TST = (I − T(0))(I + T(0))(I − T(0))
= (I − T(0))(I2

− T2(0))
= (I − T(0))(I − T(0))
= I2

− 2T(0) + T2(0)
= I − 2T(0) + T(0)
= I − T(0)
= I + T(0) − 2T(0),

where U = −2T(0) = −2(T − T) ∈ LR(X) meromorphic .

The following lemma collects some useful known properties of the multivalued linear operator. For
more information about these notions, one can see [5].

Lemma 2.5. Let X and Y be two vector spaces and let T ∈ LR(X,Y). Then

(1)D(T−1) = R(T);D(T) = R(T−1).

(2) T is injective if, and only if, T−1T = ID(T).

(3) T is single valued if, and only if, T(0) = {0}.

(4) TT−1y = y + T(0) (y ∈ R(T)) and T−1Tx = x + T−1(0).

The following properties of the generalized Drazin-meromorphic pseudospectrum are easy to check
from the definition of the generalized Drazin-meromorphic pseudospectrum.

Theorem 2.6. Let T ∈ LR(X) and ε > 0. Then,

(1) σg.DM(T) =
⋂
ε>0

σg.DM,ε(T).

(2) If 0 < ε1 < ε2, then σg.DM,ε2 (T) ⊂ σg.DM,ε1 (T).

Proof. (1) Note that⋂
ε>0

σg.DM,ε(T) =
⋂
ε>0

(
σg.DM(T)

⋃{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

})
= σg.DM(T)

⋃⋂
ε>0

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

} .
It is sufficient to prove that⋂

ε>0

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
⊂ σg.DM(T).

Let λ ∈
⋂
ε>0

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
, then we have

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε,
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for all ε > 0. If ε −→ +∞, we obtain

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= +∞.

Hence, λ ∈ σg.DM(T).

The proof of (2) is elementary.

Theorem 2.7. Let T ∈ LR(X) and ε > 0. Then, the set σg.DM,ε(T) is a closed subset of C.

Proof. Let λ ∈ ρg.DM,ε(T). Then, for r ∈]0, ε[ we have

B f (λ, r) ∩ ρg.DM,ε(T) , ∅,

where B f (λ, r) = {µ ∈ C such that |λ − µ| < r}.

So, there exists µ ∈ ρg.DM,ε(T) such that |λ − µ| ≤ r. Then

µ ∈ ρg.DM(T)

and inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≤ ε. Then, (λ − T) is generalized Drazin-meromorphic invertible

and there exists a generalized Drazin-meromorphic invertible (λ − T)⋄ such that the inequality

∥(λ − T)⋄∥ ≤ ε holds.

Applying [5, Theorem. II.2.5] we have γ((µ − T)⋄) ≥ ε. Hence (µ − T)⋄ is exists. But |λ − µ| ≤ r < ε, then
by [5, Corollary III.7.7], (λ − T)⋄ is exists. It follows that,

λ ∈ ρg.DM,ε(T).

For x ∈ D(T), we have
∥(λ − T)⋄x∥ = ∥(T − µ + µ − λ)⋄x∥

≥ ∥(T − µ)⋄x∥ − |µ − λ|∥x∥
≥ (γ((T − µ)⋄) − |µ − λ|)∥x∥,

therefore
γ((λ − T)⋄) ≥ γ((µ − T)⋄) − |µ − λ|.

Hence
γ((λ − T)⋄) ≥ ε − r, ∀ 0 < r < ε.

Then
γ((λ − T)⋄) ≥ ε.

Consequently, applying [5, Theorem. II.2.5] we have

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≤ ε.

We deduce that,
λ ∈ ρg.DM,ε(T).

We observe that ρg.DM,ε(T) is a closed set.

Corollary 2.8. The set σg.DM,ε(T) is a non-empty compact subset of C.
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Proof. From Theorem 2.7, it follows that σg.DM,ε(T) is closed. Since

σg.DM(T) ⊂ σg.DM,ε(T) and σg.DM,ε(T) ⊂ σε(T) is bounded.

Thus σg.DM,ε(T) is compact.

In the rest of the paper we investigate the relation between the generalized Drazin-meromorphic pseu-
dospectrum and the usual generalized Drazin-meromorphic spectrum in a complex Banach space. To do
this, we suppose that X is a Banach space satisfying the following property:

(H) : For all generalized Drazin-meromorphic invertible multivalued linear operator T ∈ LR(X) there exist
D ∈ LR(X) such that T(0) ⊂ D(0),D(T) ⊂ D(D) and D is not generalized Drazin-meromorphic invertible

and ∥T −D∥ =
1
∥T⋄∥

with T⋄ a generalized Drazin-meromorphic inverse of T.

Our next example shows that ∥T −D∥ =
1
∥T⋄∥

.

Example 2.9. Let X be a Banach space and, let T,D ∈ LR(X) where T1(0) is subspaces verify that T2
1(0) = T1(0).

Then, for all n ∈N we consider

T =
(

I − T1(0) 0
0 1

n (I − T1(0))

)
and D =

(
1
n (I − T1(0)) 0

0 0

)
We obtain that,

T⋄ =
(

I − T1(0) 0
0 n(I − T1(0))

)
and T −D =

(
1
n (I − T1(0)) 0

0 1
n (I − T1(0))

)
This implies that,

∥T⋄∥ = max
{
∥(I − T1(0))∥, ∥n(I − T1(0))∥

}
= n

and
∥T −D∥ = max

{
∥

1
n

(I − T1(0))∥, ∥
1
n

(I − T1(0))∥
}
=

1
n
.

We conclude that
∥T −D∥ =

1
n
=

1
∥T⋄∥

.

Suppose X is a complex Banach space with the following property (H).

Theorem 2.10. If λ ∈ σg.DM,ε(T), then there exists D ∈ LR(X) such that T(0) ⊂ D(0), D(T) ⊂ D(D), ε∥D∥ ≤ 1
and

λ ∈ σg.DM(T +D).

Proof. Suppose λ ∈ σg.DM,ε(T).We will discuss these two cases:
1st case : If λ ∈ σg.DM(T), then it is sufficient to take D = 0.

2nd case : If λ ∈ σg.DM,ε(T)\σg.DM(T). Then,

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≥ ε.

Hence, (λ − T) is not generalized Drazin-meromorphic invertible and there exists a generalized Drazin-
meromorphic invertible (λ − T)⋄ such that

∥(λ − T)⋄∥ ≥ ε.
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By assumption, there exists B ∈ LR(X) such that T(0) ⊂ B(0) ,D(T) ⊂ D(B) and

∥λ − T − B∥ =
1

∥(λ − T)⋄∥
≤

1

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

} .
Let D = λ − T − B. Then

∥D∥ =
1

∥(λ − T)⋄∥
≤

1
ε
.

Since
D(D) = D(λ − T − B) = D(T) ∩D(B) = D(B)

and
D(0) = T(0) + B(0) = B(0),

then
B = B +D −D and D = B − B +D.

Thus, D + (B −D) = λ − T − B + (B −D). This is equivalent to saying that B = λ − (T +D) is not generalized
Drazin-meromorphic invertible. So,

λ ∈ σg.DM(T +D).

Theorem 2.11. Let T ∈ LR(X), λ ∈ C, and ε > 0. If there is D ∈ LR(X) such that T(0) ⊂ D(0), D(T) ⊂ D(D),
ε∥D∥ ≤ 1 and λ ∈ σg.DM(T +D). Then,

λ ∈ σg.DM,ε(T).

Proof. We assume that there exists D ∈ LR(X) such that T(0) ⊂ D(0), D(T) ⊂ D(D), ε∥D∥ < 1 and λ ∈
σG.DM(T +D).We will discuss these two cases:
1st case : If λ ∈ σG.DM(T), then the conclusion follows trivially as

σg.DM(T) ⊂ σg.DM,ε(T).

2nd case : If λ < σg.DM(T). Then, λ−T is not generalized Drazin-meromorphic invertible and λ−T−D is not
generalized Drazin-meromorphic invertible. Since T(0) ⊂ D(0),D(T) ⊂ D(D), then

D((λ − T −D) − (λ − T)) = D(T) ∩D(D) = D(D)

and (
(λ − T −D) − (λ − T)

)
(0) = T(0) +D(0) = D(0).

Hence
(λ − T −D) − (λ − T) = D.

Therefore,
1
ε
> ∥D∥ = ∥(λ − T −D) − (λ − T)∥ ≥

1
∥(λ − T)⋄∥

.

Thus, ∥(λ − T)⋄∥ ≥ ε. Hence

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≥ ε.

That is, λ ∈ σg.DM,ε(T).

Theorem 2.12. Let T ∈ LR(X), λ ∈ C, and ε > 0. Let λ ∈ σg.DM,ε(T) and let λn < σg.DM,ε(T) be such that λn → λ
Then,

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= ∞.
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Proof. Let δ ∈ R and we suppose

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≤ δ.

Hence, (λ − T) is generalized Drazin-meromorphic invertible and there exists a generalized Drazin-
meromorphic invertible (λ − T)⋄ such that

∥(λ − T)⋄∥ ≤ δ.

Since |λn − λ| → 0 for all λ ∈ σg.DM,ε(T), then there exists n0 ∈N such that

|λn − λ| <
1
δ + 1

<
1
δ

≤
1

∥(λ − T)⋄∥

≤
1

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

} for all n ≥ n0.

Hence, λ < σg.DM,ε(T). This is a contradiction.

Theorem 2.13. Let T ∈ LR(X) and ε > 0. Then, σg.DM,ε(T) has no isolated points.

Proof. Suppose σg.DM,ε(T) has an isolated point µ. Then there exists an δ > 0 such that for all λ ∈ C with
0 < |λ − µ| < δ and there exists a generalized Drazin-meromorphic invertible (λ − T)⋄ such that

∥(λ − T)⋄∥ < ε.

Let µ ∈ σg.DM,ε(T)\σG.DM(T). Then, using the Hahn-Banach Theorem, there exist x′ ∈ X′ such that

x′((µ − T)⋄) = inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
with ∥x′∥ = 1.

Now, we define
ϕ : ρg.DM(T) −→ R,

λ −→ ϕ(λ) = x′((λ − T)⋄).

Since ϕ is is well-defined and continuous; in B(µ, δ) and for all λ ∈ Cwith 0 < |λ − µ| < δ,we have

|ϕ(λ)| =
∣∣∣∣x′((λ − T)⋄)

∣∣∣∣ ≤ ∥(λ − T)⋄∥ < ε.

But, ϕ(µ) = ∥(µ − T)⋄∥ ≥ ε. This contradicts the maximum modulus principle.

Theorem 2.14. Let T ∈ LR(X) and ε > 0. Then, for each λ ∈ σg.DM(T), there exists r > 0 such that D(λ, r) ⊆
σg.DM,ε(T).
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Proof. Let λ ∈ σg.DM(T) and suppose for every r > 0 such that D(λ, r) ⊈ σg.DM,ε(T), then there exists a
sequence λn → λ such that λn < σg.DM,ε(T). it follows that (λn − T) is generalized Drazin-meromorphic
invertible and there exists a generalized Drazin-meromorphic invertible (λ − T)⋄ such that

∥(λn − T)⋄∥ < ε.

From the continuity of the map
ρg.DM(T) −→ R,

λ −→ ∥(λ − T)⋄∥.

We obtain that
∥(λn − T)⋄∥ → ∥(λ − T)⋄∥.

implies that λ− T is generalized Drazin-meromorphic invertible and therefore λ < σg.DM,ε(T).We conclued
that λ < σg.DM(T). A contradiction.

3. Level sets of the generalized Drazin-meromorphic pseudospectrum for multivalued linear operator

We begin with the following definition.. For more information about level sets of pseudospectrum for
linear operator see for example [8].

Definition 3.1. Let T ∈ LR(X) and ε > 0. Level set of the generalized Drazin-meromorphic pseudospectrum of T is
defined as

Oε(T) :=
{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
= ε

}
.

Remark 3.2. Let T ∈ LR(X) and ε > 0. Then,

(1) Oε(T) ⊂ σg.DM,ε(T).

(2) If T = λI for some λ ∈ C then Oε(T) = ∅. In particular, intOε(T) = ∅.

Theorem 3.3. Let T ∈ LR(X), λ ∈ C, and ε > 0. Then, Oε(T) is a compact subset of C with an uncountable number
of elements.

Proof. Since Oε(T) is a closed subset of σg.DM,ε(T), therefore Oε(T) is compact. Suppose that Oε(T) has a
countable number of elements. Then, we select an isolated point µ ∈ σG.DM,ε(T). Hence, there exist an r > 0
such that

B(µ, r) ∩ σg.DM(T) = ∅, B(µ, r) ∩ σg.DM,ε(T) , ∅ and B(µ, r) ∩ ρg.DM,ε(T) , ∅.

Now, we define the function ϕ by the following forms,
ϕ :V −→ C,

λ −→ inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
,

whereV = B(µ, r) \ Oε(T). Ago ϕ is continuous and

V =
{
λ < σg.DM(T) : ϕ(λ) < ε

}
∪

{
λ < σg.DM(T) : ϕ(λ) > ε

}
.

This is a ambivalence to the fact thatV is connected.
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Theorem 3.4. Let T ∈ LR(X), ε > 0 and λ ∈ C. LetΩ be an open subset of the unbounded component of ρg.DM,ε(T).
For some M > 0, we assume

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≤M

for all λ ∈ Ω, then

inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
<M.

Proof. Let Ω0 the unbounded component of ρG.DM,ε(T). Then,{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
≥M

}
is bounded

and we get {
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
<M

}
∩Ω0 , ∅.

Now, let

µ ∈

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
<M

}
∩Ω0.

Then, the proof follows by applying [8, Theorem 2.1] to the analytic map, the open set Ω and to the point
µ.

Corollary 3.5. Let T ∈ LR(X), λ ∈ C, and ε > 0. The set Oε(T) has empty interior in the unbounded component of
ρg.DM,ε(T).

Theorem 3.6. Let T ∈ LR(X), λ ∈ C, and ε > 0. Then, σg.DM,ε(T) has a finite number of components and each of
which contains an element of σg.DM(T).

Proof. The final stage of knowledge transfer can be broken down into several steps:
Step 1 : Let Ω be a component of σg.DM,ε(T). We first prove the following,

If Ω ∩
{
λ ∈ C : in f

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
, ∅,

then Ω ∩ σg.DM(T) , ∅. Assume to the contrary that Ω is a component and

Ω ∩

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
, ∅

but Ω ∩ σg.DM(T) = ∅. Consider the set

Ω1 = Ω\Oε(T) = Ω ∩ Oε(T)c.

We see that

Ω1 ⊆

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
⊆ Oε(T)c.

Since Ω is a component, µ ∈ Ω and B(µ, r) is connected, we have

B(µ, r) ⊆ Ω.

From the definition of Ω1, B(µ, r) ⊆ Ω1, it follows that Ω1 is open in C. Let µ ∈ Ω1. Using the Hahn-Banach
Theorem, there exist x′ ∈ X′ such that

x′(µ − T) = inf
{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
with ∥x′∥ = 1.
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Now, we define
ϕ : Ω1 −→ C,

λ −→ ϕ(λ) = x′(λ − T).

Clearly ϕ is well defined, analytic and also continuous on Ω1 (closure of Ω1). For any boundary point λ of
Ω1 we have

∥(λ − T)⋄∥ = ε,

hence |ϕ(λ)| ≤ ε but at the point µ, we have

|ϕ(µ)| = |x′(µ − T)| = ∥(µ − T)⋄∥ > ε.

This is a contradiction to Maximum Modulus Theorem.
Step 2 : We claim that

σg.DM(T) ⊆
n⋃

i=1

Oi.

Indeed, let λ ∈ σg.DM(T), then from Theorem 2.14, there exists r > 0 such that

D(λ, r) ⊆ σg.DM,ε(T) and
{
B(λ, r) : λ ∈ σg.DM(T)

}
is an open cover for σg.DM(T). Since σg.DM(T) is compact, there exists {λ1, λ2, · · · , λn} such that

σg.DM(T) ⊆
n⋃

i=1

B(λi, ri).

Consequently, there exists components O1,O2, · · · ,On of σg.DM,ε(T) and each Oi contains at least one B(λi, ri)
such that

σg.DM(T) ⊆
n⋃

i=1

B(λi, ri) ⊆
n⋃

i=1

Oi.

Step 3 : We show that

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
⊆

n⋃
i=1

Oi.

Let µ ∈
{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
, then there exists r > 0 such that

B(µ, r) ⊆
{
λ ∈ C : inf

{
∥(λ − T)⋄∥ : (λ − T)⋄ is g.DM inverse of λ − T

}
> ε

}
.

Hence B(µ, r) ⊆ Ω1 for some connected component Ω1 of σg.DM,ε(T). We proved that Ω ∩ σg.DM(T) , ∅. It

follows that Ω ⊆
n⋃

i=1

Oi. Thus

{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
⊆

n⋃
i=1

Oi.
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Since each Oi is closed in C and Theorem 2.13 and Step 2, we obtain{
λ ∈ C : inf

{
∥(λ − T)⋄∥ :

(λ − T)⋄ a g.DM
inverse of λ − T

}
> ε

}
= σG.DM,ε(T)

⊆

n⋃
i=1

Oi .

The proof is therefore complete.
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[10] J. J. Koliha and V. Rakočević, Differentiability of the g-Drazin inverse, Studia Math. 168 no. 3 (2005), 193–201.
[11] V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Birkhauser, 2007.
[12] G.K. Pedersen, Analysis Now, Graduate Texts in Math., vol. 118, Springer-Verlag, 1989.
[13] M. Schechter, Principles of Functional Analysis, Academic Press, New York, 1971.
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