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Abstract. Let K be a compact set of Rn and t ≥ 0. In this paper, we discuss the relation between the

t-dimensional Hewitt-Stromberg premeasure and measure denoted by H
t

and Ht respectively. We prove

: if H
t
(K) < +∞ then H

t
(K) = Ht(K) and if H

t
(K) = +∞, there exists a compact subset F of K such that

H
t
(F) = Ht(F) and Ht(F) is close as we like to Ht(K).

1. Introduction

Hewitt-Stromberg measures were introduced in [13, Exercise (10.51)]. Since then, they have been
investigated by several authors, highlighting their importance in the study of local properties of fractals
and products of fractals. One can cite, for example [2, 3, 9–12]. In particular, Edgar’s textbook [6, pp. 32-36]
provides an excellent and systematic introduction to these measures. Such measures also appears explicitly,
for example, in Pesin’s monograph [18, 5.3] and implicitly in Mattila’s text [16]. The reader can be referred
to [15]for a class of generalization of these measures).

For t ≥ 0, let H
t
, Ht denote the t-dimensional Hewitt-Stromberg premeasure and measure, respectively

(see Section 2 for the definitions). In this paper, we discuss the relation between H
t

and Ht. We prove, for
n ≥ 1 and any compact subset K of Rn, that

H
t
(K) = Ht(K)

provided that H
t
(K) < +∞ (Theorem 3.3). As a consequence, we prove, for E ⊆ Rn, that if H

t
(E) ∈ (0,∞)

then
Ht(E) ∈ (0,∞).

Moreover, if E is compact then, for t > dimMB(E), we have either H
t
(E) = 0 or H

t
(E) = +∞ (Corollary 3.4),

where dimMB denote the Hewitt-Stomberg dimension (see definition in Section 2). We prove also, as an
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application, some semifiniteness property of H
t
. A measure µ is said to be semifinite if every set of infinite

measure has a subset of finite positive measure. This property was be studied in [4, 5] for Hausdorffmeasure
and in [14] for packing measure, but this does not hold for the Hewitt-Stromberg premeasure (Corollary

3.5). More precisely, there exists a compact set K and t > 0 with H
t
(K) = +∞ such that K contains no subset

with positive finite Hewitt-Stromberg premeasure. In addition, we study in Theorem 4.1 the compact sets

of infnite Hewitt-Stromberg premeasure. We prove that if H
t
(K) = +∞, there exists a compact subset F of K

such that
H

t
(F) = Ht(F)

and Ht(F) is close as we like to Ht(K).

2. Preliminary

First we recall briefly the definitions of Hausdorff dimension, packing dimension and Hewitt-Stromberg
dimension and the relationship linking these three notions. Let F be the class of dimension functions, i.e.,
the functions h : R∗+ → R∗+ which are right continuous, monotone increasing with limr→0 h(0) = 0.

Suppose that, for n ≥ 1, Rn is endowed with the Euclidean distance. For E ⊂ Rn, h ∈ F and ε > 0, we
write

H
h
ε (E) = inf

∑
i

h
(
|Ei|
)

E ⊆
⋃

i

Ei, |Ei| < ε

 ,
where |A| is the diameter of the set A defined as |A| = sup

{
|x − y|, x, y ∈ A

}
. This allows to define the

Hausdorffmeasure, with respect to h, of E by

H
h(E) = sup

ε>0
H

h
ε (E).

The reader can be referred to Rogers’ classical text [20] for a systematic discussion ofHh.
We define, for ε > 0,

P
h
ε(E) = sup

∑
i

h
(
2ri

) ,
where the supremum is taken over all disjoint closed balls

(
B(xi, ri)

)
i

such that ri ≤ ε and xi ∈ E. The
h-dimensional packing premeasure, with respect to h, of E is now defined by

P
h
(E) = sup

ε>0
P

h
ε(E).

This makes us able to define the packing measure, with respect to h, of E as

P
h(E) = inf

∑
i

P
h
(Ei)
∣∣∣∣ E ⊆

⋃
i

Ei

 .
While Hausdorff and packing measures are defined using coverings and packings by families of sets

with diameters less than a given positive number ε, the Hewitt-Stromberg measures are defined using
covering of balls with the same diameter ε. Now, we define

H
h
0(E) = lim sup

r→0
H

h
r where H

h
r (E) = Nr(E) h(2r)



N. Attia et al. / Filomat 37:1 (2023), 13–20 15

and the covering number Nr(E) of E is defined by

Nr(E) = inf
{
♯{I}

∣∣∣∣ (
B(xi, r)

)
i∈I

is a family of closed balls

with xi ∈ E and E ⊆
⋃

i

B(xi, r)
}
.

Since H
h
0 is not increasing and not countably subadditive, one needs a standard modification to get an outer

measure. Hence, we modify the definition as follows, first we define the Hewitt-Stromberg premeasure

H
h
(E) = sup

F⊆E
H

h
0(F)

and, by applying now the standard construction ([17, 20, 21]), we obtain the Hewitt-Stromberg measure,
with respect to h, defined by

Hh(E) = inf

∑
i

H
h
(Ei)
∣∣∣∣ E ⊆

⋃
i

Ei and Ei is closed

 .
In the following, we illustrate the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and
the packing measures (the proof is straightforward and mimics that in [15, Proposition 2.1]

H
h
(E) ≤ P

h
(E)

≤ ≤

H
h(E) ≤ Hh(E) ≤ P

h(E).

Let t ≥ 0 and ht is the dimension function defined by

ht(r) = rt.

In this case we will denote simplyHht byH t, alsoPht will be denoted byPt, H
ht

will be denoted by H
t
and Hht

will be denoted by Ht. Now we define the Hausdorff dimension, packing dimension and Hewitt-Stromberg
dimension of a set E ⊆ Rn respectively by

dimH E = sup
{
t ≥ 0, H t(E) = +∞

}
= inf

{
t ≥ 0, H t(E) = 0

}
,

dimP E = sup
{
t ≥ 0, Pt(E) = +∞,

}
= inf

{
t ≥ 0, Pt(E) = 0

}
and

dimMB E = sup
{
t ≥ 0, Ht(E) = +∞

}
= inf

{
t ≥ 0, Ht(E) = 0

}
.

It follows that
dimH(E) ≤ dimMB(E) ≤ dimP(E).

Lemma 2.1. Let E ⊂ Rn and t ≥ 0. Then
H

t
(E) ≤ 2tH

t
(E),

where E is the closure of E.

Proof. Let r > 0 and
{
Bi := B(xi, r)

}
i
be a covering of E and let A ⊂ E. Now, we consider

I =
{
i : Bi ∩ A , ∅

}
.

For each i ∈ I, let yi ∈ Bi ∩ A. Therefore, Bi ⊆ B(yi, 2r) and then
{
B(yi, 2r)

}
i
is a covering of A. It follows that

N2r(A)(4r)t
≤ 2tNr(E)(2r)t.

Thus, H
t
0(A) ≤ 2tH

t
0(E) ≤ 2tH

t
(E). Since A is arbitrarily, we get the desired result.
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We finish this section by a lemma which will be useful in the following.

Lemma 2.2. Let {En} be a decreasing sequence of compact subsets of Rn and F =
⋂

n En. Then, for t ≥ 0 and γ > 1,
there exist n0 such that

H
t
(En) ≤ γtH

t
(F), ∀ n ≥ n0.

Proof. Let δ > 0 and
{
Bi := B(xi, δ)

}
i

be any covering of F. We claim that there exists n0 such that En ⊂ U =⋃
i B(xi, γδ), for all n ≥ n0. Indeed, otherwise,

{
En\U

}
is a decreasing sequence of non-empty compact sets,

which, by an elementary consequence of compactness, has a non-empty limit set (lim En)\U. Then, for t ≥ 0
and n ≥ n0,

H
t
γδ(En) = Nγδ(En)(2γδ)t

≤ γtNδ(F)(2δ)t = γtH
t
δ(F).

It follows, for all n ≥ n0, that

H
t
0(En) ≤ γtH

t
0(F) ≤ γtH

t
(F). (2.1)

Now, let A ⊆ En, we only have to prove that H
t
0(A) ≤ γtH

t
(F). We may suppose that F ⊆ A ⊆ En. Indeed,

otherwise,
H

t
0(A) ≤ H

t
(F) ≤ γtH

t
(F).

Thus, without loss of generality we may suppose that, A = Em, for some m ≥ n. Therefore, using (2.1), we

have H
t
0(A) ≤ γtH

t
(F).

3. Main results

We can see, from the definition, that estimating H
t
is much easier than estimating the Hewitt-Sttromberg

measure Ht. It is therefore natural to look for relationships between these two quantities. The reader can
also see [1, 8, 14, 22] for a similar result for Hausdorff and packing measures.

Lemma 3.1. Let K be compact set in Rn and t ≥ 0. Suppose that for every ϵ > 0 and closed subset E of K one can

find an open set U such that E ⊂ U and H
t
(U ∩ K) ≤ H

t
(E) + ϵ, then

Ht(K) = H
t
(K).

Proof. Let ϵ > 0 and let {Ei} be a sequence of closed sets such that K ⊆
⋃

i Ei. Take, for each i, an open set Ui
such that Ei ⊂ Ui and

H
t
(Ui ∩ K) ≤ H

t
(Ei) + 2−i−1ϵ.

Since K is compact, the cover {Ui} of K has a finite subcover. So we may use the fact that, for all F1,F2 ⊂ Rn,

H
t
(F1 ∪ F2) ≤ H

t
(F1) + H

t
(F2)

to infer that
H

t
(K) ≤

∑
i

H
t
(Ui ∩ K) ≤

∑
i

(H
t
(Ei) + 2−i−1ϵ) ≤

∑
i

H
t
(Ei) + ϵ.

This is true for all ϵ > 0 and {Ei} such that K ⊆
⋃

i Ei. Thus

Ht(K) ≥ H
t
(K).

The opposite inequality is obvious.



N. Attia et al. / Filomat 37:1 (2023), 13–20 17

Theorem 3.2. Let K ⊂ Rn be a compact set and t ≥ 0 such that H
t
(K) < +∞. Then, for any closed subset E of K and

any ϵ > 0, there exists an open set U such that E ⊂ U and

H
t
(U ∩ K) < H

t
(E) + ϵ.

Proof. For n ≥ 1, define the n-parallel body En of E by

En =
{
x ∈ Rn, |x − y| < 1/n, for some y ∈ E

}
.

It is clear that En is an open set and E ⊆ En, for all n. Denote by En the closure of En and let γ > 1. Using
Lemma 2.2 and Lemma 2.1, there exists n such that

H
t
(En ∩ K) ≤ γtH

t
(E)

For ϵ > 0, we can choose γ such that γtH
t
(E) ≤ H

t
(E) + ϵ. Finally, we get

H
t
(En ∩ K) ≤ H

t
(En ∩ K) ≤ H

t
(E) + ϵ.

As a direct consequence, we get the following result.

Theorem 3.3. Let K ⊂ Rn be a compact set and t ≥ 0. Assume that H
t
(K) < +∞ then

H
t
(K) = Ht(K).

From Theorem 3.3, we immediately obtain the following corollary.

Corollary 3.4. Let E ⊂ Rn and t ≥ 0

1. Assume that 0 < H
t
(E) < +∞. Then 0 < Ht(E) < ∞. In particular,

dimMBE = dimMBE = t,

where dimMBE = sup
{
t ≥ 0, H

t
(E) = +∞

}
= inf

{
t ≥ 0, H

t
(E) = 0

}
.

2. Assume that E is compact and t > dimMB E. Then either H
t
(E) = 0 or H

t
(E) = +∞.

The following corollary shows that the theorems of Besicovitch [4] and Davies [5] for Hausdorff measures
and the theorem of Joyce and Preiss [14] for packing measures does not hold for the Hewitt-Stromberg
premeasure.

Corollary 3.5. There exists a compact set K and t > 0 with H
t
(K) = +∞ such that K contains no subset with positive

finite Hewitt-Stromberg premeasure.

Proof. Consider for n ≥ 1, the set An = {0}
⋃
{1/k, k ≤ n} and

K =
⋃

n

An =
{
0
} ⋃ {

1/n, n ∈N
}
.

Now, we will prove that dimMBK = 1/2. For n ≥ 1 and δn =
1

n+n2 , remark that

Nδn (An) = n + 1.
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It follows that
H

1/2
δn

(K) ≥ H
1/2
δn

(An) =
√

2
n + 1
√

n + n2
.

Thereby, H
1/2

(K) > 0 which implies that dimMBK ≥ 1/2. In the other hand, if dimp(K) denote the box-
counting dimension of K, i.e.,

dimp(K) = sup{t; P
t
(K) = +∞} = inf{t; P

t
(K) = 0}

then dimp(K) = 1
2 (see Corollary 2.5 in [8]) and thus

dimMBK ≤ dimp(K) = 1/2.

As a consequence, we have dimMBK = 1/2. Take t = 1/3, it is cleat that Ht(K) = 0. Moreover, H
t
(K) = +∞.

It follows, for any subset F of K, that H
t
(F) = 0 or +∞. Otherwise, assume that 0 < H

t
(F) < +∞. Then

0 < H
t
(F) < +∞ and thus, by using Theorem 3.3, 0 < Ht(F) < +∞, which is impossible since F is a subset of

K.

4. Compact sets of infnite Hewitt-Stromberg premeasure

Now, we discuss the compact sets of infnite Hewitt-Stromberg premeasure.

Theorem 4.1. Let K be a compact subset of Rn; t ≥ 0 and H
t
(K) = +∞. Then, for any ϵ > 0; there exists a compact

subset F of K such that H
t
(F) = Ht(F) and

Ht(F) ≥ Ht(K) − ϵ.

Proof. The case Ht(K) = +∞ is trivial, then we assume that Ht(K) < +∞. Take a closed sets {Fi} such that
K =
⋃

i Fi and∑
i

H
t
(Fi) ≤ Ht(K) +

ϵ
2
. (4.1)

Since we have
∑

i H
t
(Fi) ≥ Ht(K), there exists m ∈N such that

m∑
i=1

H
t
(Fi) ≥ Ht(K) −

ϵ
2
. (4.2)

Therefore, from (4.1) and (4.2), we obtain
+∞∑

i=m+1

H
t
(Fi) ≤ ϵ. (4.3)

We condiser the set F =
m⋃

i=1

Fi. Then, by the finite subadditivity of H
t

and (4.1), we have

H
t
(F) ≤

m∑
i=1

H
t
(Fi) < +∞.

Finally, using Theorem 3.3 we have H
t
(F) = Ht(F) and, by (4.3), we get

Ht(K) − Ht(F) ≤ Ht
( +∞⋃

i=m+1

Fi

)
≤

+∞∑
i=m+1

H
t
(Fi) ≤ ϵ.
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Remark 4.2. One can check that the proof of Theorem 3.3 and Theorem 4.1 works for every dimension function h and

the corresponding Hewitt-Stromberg measure and premeasure Hh and H
h

repectively, provided that for every ϵ > 0
there are δ > 0 and r0 > 0 such that

h
(
(1 + δ)r

)
h(r)

< 1 + ϵ ∀r < r0.

Especially, if h(r) = xtL(r) where L is slowly varying in the sense of Karamata, that is,

lim
r→0

L(ar)
L(r)

= 1

for every a > 0 ([19]). Then, for every compact set K,

H
h
(K) < +∞ =⇒ Hh(K) = H

h
(K) (4.4)

and if H
h
(K) = +∞ then there exists a compact set F ⊆ K such that

H
h
(F) = Hh(F) and Hh(F) ≥ Hh(K) − ϵ. (4.5)

Open problems :

1. We ask if (4.4) and (4.5) remain true for any dimension function h or even for h satisfies the doubling
condition, that is, for all r > 0

h(2r) ≤ kh(r),

for some positive constant k.
2. We ask if Theorem 3.3 remains true if the Hewitt-Stromberg measure of a set E is defined with

Mr(E) = sup
{
♯{I} |

(
B(xi, r)

)
i∈I

is a family of disjoint closed

balls with xi ∈ E
}
.

instead of Nr(E).
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