Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure

Najmeddine Attia ${ }^{\text {a }}$, Omrane Guizani ${ }^{\text {b }}$, Amal Mahjoub ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics and Statistics, College of Science, King Faisal University, PO. Box: 400 Al-Ahsa 31982, Saudi Arabia
${ }^{b}$ Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Monastir-5000, Tunisia

Abstract

Let K be a compact set of \mathbb{R}^{n} and $t \geq 0$. In this paper, we discuss the relation between the t-dimensional Hewitt-Stromberg premeasure and measure denoted by $\overline{\mathrm{H}}^{t}$ and H^{t} respectively. We prove : if $\overline{\mathrm{H}}^{t}(K)<+\infty$ then $\overline{\mathrm{H}}^{t}(K)=\mathrm{H}^{t}(K)$ and if $\overline{\mathrm{H}}^{t}(K)=+\infty$, there exists a compact subset F of K such that $\overline{\mathrm{H}}^{t}(F)=\mathbf{H}^{t}(F)$ and $\mathbf{H}^{t}(F)$ is close as we like to $\mathbf{H}^{t}(K)$.

1. Introduction

Hewitt-Stromberg measures were introduced in [13, Exercise (10.51)]. Since then, they have been investigated by several authors, highlighting their importance in the study of local properties of fractals and products of fractals. One can cite, for example [2,3,9-12]. In particular, Edgar's textbook [6, pp. 32-36] provides an excellent and systematic introduction to these measures. Such measures also appears explicitly, for example, in Pesin's monograph [18,5.3] and implicitly in Mattila's text [16]. The reader can be referred to [15]for a class of generalization of these measures).

For $t \geq 0$, let $\overline{\mathrm{H}}^{t}, \mathrm{H}^{t}$ denote the t-dimensional Hewitt-Stromberg premeasure and measure, respectively (see Section 2 for the definitions). In this paper, we discuss the relation between $\overline{\mathrm{H}}^{t}$ and H^{t}. We prove, for $n \geq 1$ and any compact subset K of \mathbb{R}^{n}, that

$$
\overline{\mathrm{H}}^{t}(K)=\mathrm{H}^{t}(K)
$$

provided that $\overline{\mathrm{H}}^{t}(K)<+\infty$ (Theorem 3.3). As a consequence, we prove, for $E \subseteq \mathbb{R}^{n}$, that if $\overline{\mathrm{H}}^{t}(E) \in(0, \infty)$ then

$$
\mathrm{H}^{t}(\bar{E}) \in(0, \infty)
$$

Moreover, if E is compact then, for $t>\operatorname{dim}_{M B}(E)$, we have either $\overline{\mathrm{H}}^{t}(E)=0$ or $\overline{\mathrm{H}}^{t}(E)=+\infty$ (Corollary 3.4), where $\operatorname{dim}_{M B}$ denote the Hewitt-Stomberg dimension (see definition in Section 2). We prove also, as an

[^0]application, some semifiniteness property of $\overline{\mathrm{H}}^{t}$. A measure μ is said to be semifinite if every set of infinite measure has a subset of finite positive measure. This property was be studied in [4,5] for Hausdorff measure and in [14] for packing measure, but this does not hold for the Hewitt-Stromberg premeasure (Corollary 3.5). More precisely, there exists a compact set K and $t>0$ with $\bar{H}^{t}(K)=+\infty$ such that K contains no subset with positive finite Hewitt-Stromberg premeasure. In addition, we study in Theorem 4.1 the compact sets of infnite Hewitt-Stromberg premeasure. We prove that if $\overline{\mathrm{H}}^{t}(K)=+\infty$, there exists a compact subset F of K such that
$$
\overline{\mathrm{H}}^{t}(F)=\mathrm{H}^{t}(F)
$$
and $\mathbf{H}^{t}(F)$ is close as we like to $\mathrm{H}^{t}(K)$.

2. Preliminary

First we recall briefly the definitions of Hausdorff dimension, packing dimension and Hewitt-Stromberg dimension and the relationship linking these three notions. Let \mathcal{F} be the class of dimension functions, i.e., the functions $h: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}^{*}$ which are right continuous, monotone increasing with $\lim _{r \rightarrow 0} h(0)=0$.

Suppose that, for $n \geq 1, \mathbb{R}^{n}$ is endowed with the Euclidean distance. For $E \subset \mathbb{R}^{n}, h \in \mathcal{F}$ and $\varepsilon>0$, we write

$$
\mathcal{H}_{\varepsilon}^{h}(E)=\inf \left\{\sum_{i} h\left(\left|E_{i}\right|\right) E \subseteq \bigcup_{i} E_{i},\left|E_{i}\right|<\varepsilon\right\},
$$

where $|A|$ is the diameter of the set A defined as $|A|=\sup \{|x-y|, x, y \in A\}$. This allows to define the Hausdorff measure, with respect to h, of E by

$$
\mathcal{H}^{h}(E)=\sup _{\varepsilon>0} \mathcal{H}_{\varepsilon}^{h}(E)
$$

The reader can be referred to Rogers' classical text [20] for a systematic discussion of \mathcal{H}^{h}.
We define, for $\varepsilon>0$,

$$
\overline{\mathcal{P}}_{\varepsilon}^{h}(E)=\sup \left\{\sum_{i} h\left(2 r_{i}\right)\right\}
$$

where the supremum is taken over all disjoint closed balls $\left(B\left(x_{i}, r_{i}\right)\right)_{i}$ such that $r_{i} \leq \varepsilon$ and $x_{i} \in E$. The h-dimensional packing premeasure, with respect to h, of E is now defined by

$$
\overline{\mathcal{P}}^{h}(E)=\sup _{\varepsilon>0} \overline{\mathcal{P}}_{\varepsilon}^{h}(E)
$$

This makes us able to define the packing measure, with respect to h, of E as

$$
\mathscr{P}^{h}(E)=\inf \left\{\sum_{i} \overline{\mathcal{P}}^{h}\left(E_{i}\right) \mid E \subseteq \bigcup_{i} E_{i}\right\}
$$

While Hausdorff and packing measures are defined using coverings and packings by families of sets with diameters less than a given positive number ε, the Hewitt-Stromberg measures are defined using covering of balls with the same diameter ε. Now, we define

$$
\overline{\mathrm{H}}_{0}^{h}(E)=\underset{r \rightarrow 0}{\limsup } \overline{\mathrm{H}}_{r}^{h} \quad \text { where } \quad \overline{\mathrm{H}}_{r}^{h}(E)=N_{r}(E) h(2 r)
$$

and the covering number $N_{r}(E)$ of E is defined by

$$
\begin{aligned}
N_{r}(E)=\inf \{\sharp\{I\} \quad & \left(B\left(x_{i}, r\right)\right)_{i \in I} \text { is a family of closed balls } \\
& \text { with } \left.x_{i} \in E \text { and } E \subseteq \bigcup_{i} B\left(x_{i}, r\right)\right\} .
\end{aligned}
$$

Since $\overline{\mathrm{H}}_{0}^{h}$ is not increasing and not countably subadditive, one needs a standard modification to get an outer measure. Hence, we modify the definition as follows, first we define the Hewitt-Stromberg premeasure

$$
\overline{\mathrm{H}}^{h}(E)=\sup _{F \subseteq E} \overline{\mathrm{H}}_{0}^{h}(F)
$$

and, by applying now the standard construction ([17, 20, 21]), we obtain the Hewitt-Stromberg measure, with respect to h, defined by

$$
\mathrm{H}^{h}(E)=\inf \left\{\sum_{i} \overline{\mathrm{H}}^{h}\left(E_{i}\right) \mid E \subseteq \bigcup_{i} E_{i} \text { and } E_{i} \text { is closed }\right\} .
$$

In the following, we illustrate the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and the packing measures (the proof is straightforward and mimics that in [15, Proposition 2.1]

$$
\begin{array}{rl}
\overline{\mathrm{H}}^{h}(E) & \leq \overline{\mathcal{P}}^{h}(E) \\
\mathrm{VI} & \mathrm{VI} \\
\mathcal{H}^{h}(E) \leq \mathrm{H}^{h}(E) & \leq \mathcal{P}^{h}(E) .
\end{array}
$$

Let $t \geq 0$ and h_{t} is the dimension function defined by

$$
h_{t}(r)=r^{t}
$$

In this case we will denote simply $\mathcal{H}^{h_{t}}$ by \mathcal{H}^{t}, also $\mathcal{P}^{h_{t}}$ will be denoted by $\mathcal{P}^{t}, \overline{\mathrm{H}}^{h_{t}}$ will be denoted by $\overline{\mathrm{H}}^{t}$ and $\mathrm{H}^{h_{t}}$ will be denoted by H^{t}. Now we define the Hausdorff dimension, packing dimension and Hewitt-Stromberg dimension of a set $E \subseteq \mathbb{R}^{n}$ respectively by

$$
\begin{gathered}
\operatorname{dim}_{H} E=\sup \left\{t \geq 0, \mathcal{H}^{t}(E)=+\infty\right\}=\inf \left\{t \geq 0, \quad \mathcal{H}^{t}(E)=0\right\} \\
\operatorname{dim}_{P} E=\sup \left\{t \geq 0, \quad \mathcal{P}^{t}(E)=+\infty,\right\}=\inf \left\{t \geq 0, \quad \mathcal{P}^{t}(E)=0\right\}
\end{gathered}
$$

and

$$
\operatorname{dim}_{M B} E=\sup \left\{t \geq 0, \quad \mathrm{H}^{t}(E)=+\infty\right\}=\inf \left\{t \geq 0, \quad \mathrm{H}^{t}(E)=0\right\}
$$

It follows that

$$
\operatorname{dim}_{H}(E) \leq \operatorname{dim}_{M B}(E) \leq \operatorname{dim}_{P}(E)
$$

Lemma 2.1. Let $E \subset \mathbb{R}^{n}$ and $t \geq 0$. Then

$$
\overline{\mathrm{H}}^{t}(\bar{E}) \leq 2^{t} \overline{\mathrm{H}}^{t}(E)
$$

where \bar{E} is the closure of E.
Proof. Let $r>0$ and $\left\{B_{i}:=B\left(x_{i}, r\right)\right\}_{i}$ be a covering of E and let $A \subset \bar{E}$. Now, we consider

$$
I=\left\{i: B_{i} \cap A \neq \emptyset\right\} .
$$

For each $i \in I$, let $y_{i} \in B_{i} \cap A$. Therefore, $B_{i} \subseteq B\left(y_{i}, 2 r\right)$ and then $\left\{B\left(y_{i}, 2 r\right)\right\}_{i}$ is a covering of A. It follows that

$$
N_{2 r}(A)(4 r)^{t} \leq 2^{t} N_{r}(E)(2 r)^{t}
$$

Thus, $\overline{\mathrm{H}}_{0}^{t}(A) \leq 2^{t} \overline{\mathrm{H}}_{0}^{t}(E) \leq 2^{t} \overline{\mathrm{H}}^{t}(E)$. Since A is arbitrarily, we get the desired result.

We finish this section by a lemma which will be useful in the following.
Lemma 2.2. Let $\left\{E_{n}\right\}$ be a decreasing sequence of compact subsets of \mathbb{R}^{n} and $F=\bigcap_{n} E_{n}$. Then, for $t \geq 0$ and $\gamma>1$, there exist n_{0} such that

$$
\overline{\mathrm{H}}^{t}\left(E_{n}\right) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(F), \quad \forall n \geq n_{0} .
$$

Proof. Let $\delta>0$ and $\left\{B_{i}:=B\left(x_{i}, \delta\right)\right\}_{i}$ be any covering of F. We claim that there exists n_{0} such that $E_{n} \subset U=$ $\bigcup_{i} B\left(x_{i}, \gamma \delta\right)$, for all $n \geq n_{0}$. Indeed, otherwise, $\left\{E_{n} \backslash U\right\}$ is a decreasing sequence of non-empty compact sets, which, by an elementary consequence of compactness, has a non-empty limit set (lim $\left.E_{n}\right) \backslash U$. Then, for $t \geq 0$ and $n \geq n_{0}$,

$$
\overline{\mathrm{H}}_{\gamma \delta}^{t}\left(E_{n}\right)=N_{\gamma \delta}\left(E_{n}\right)(2 \gamma \delta)^{t} \leq \gamma^{t} N_{\delta}(F)(2 \delta)^{t}=\gamma^{t} \overline{\mathrm{H}}_{\delta}^{t}(F) .
$$

It follows, for all $n \geq n_{0}$, that

$$
\begin{equation*}
\overline{\mathrm{H}}_{0}^{t}\left(E_{n}\right) \leq \gamma^{t} \overline{\mathrm{H}}_{0}^{t}(F) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(F) \tag{2.1}
\end{equation*}
$$

Now, let $A \subseteq E_{n}$, we only have to prove that $\overline{\mathrm{H}}_{0}^{t}(A) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(F)$. We may suppose that $F \subseteq A \subseteq E_{n}$. Indeed, otherwise,

$$
\overline{\mathrm{H}}_{0}^{t}(A) \leq \overline{\mathrm{H}}^{t}(F) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(F)
$$

Thus, without loss of generality we may suppose that, $A=E_{m}$, for some $m \geq n$. Therefore, using (2.1), we have $\overline{\mathrm{H}}_{0}^{t}(A) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(F)$.

3. Main results

We can see, from the definition, that estimating $\overline{\mathrm{H}}^{t}$ is much easier than estimating the Hewitt-Sttromberg measure H^{t}. It is therefore natural to look for relationships between these two quantities. The reader can also see $[1,8,14,22]$ for a similar result for Hausdorff and packing measures.
Lemma 3.1. Let K be compact set in \mathbb{R}^{n} and $t \geq 0$. Suppose that for every $\epsilon>0$ and closed subset E of K one can find an open set U such that $E \subset U$ and $\overline{\mathrm{H}}^{t}(U \cap K) \leq \overline{\mathrm{H}}^{t}(E)+\epsilon$, then

$$
\mathrm{H}^{t}(K)=\overline{\mathrm{H}}^{t}(K)
$$

Proof. Let $\epsilon>0$ and let $\left\{E_{i}\right\}$ be a sequence of closed sets such that $K \subseteq \bigcup_{i} E_{i}$. Take, for each i, an open set U_{i} such that $E_{i} \subset U_{i}$ and

$$
\overline{\mathrm{H}}^{t}\left(U_{i} \cap K\right) \leq \overline{\mathrm{H}}^{t}\left(E_{i}\right)+2^{-i-1} \epsilon .
$$

Since K is compact, the cover $\left\{U_{i}\right\}$ of K has a finite subcover. So we may use the fact that, for all $F_{1}, F_{2} \subset \mathbb{R}^{n}$,

$$
\overline{\mathrm{H}}^{t}\left(F_{1} \cup F_{2}\right) \leq \overline{\mathrm{H}}^{t}\left(F_{1}\right)+\overline{\mathrm{H}}^{t}\left(F_{2}\right)
$$

to infer that

$$
\overline{\mathrm{H}}^{t}(K) \leq \sum_{i} \overline{\mathrm{H}}^{t}\left(U_{i} \cap K\right) \leq \sum_{i}\left(\overline{\mathrm{H}}^{t}\left(E_{i}\right)+2^{-i-1} \epsilon\right) \leq \sum_{i} \overline{\mathrm{H}}^{t}\left(E_{i}\right)+\epsilon .
$$

This is true for all $\epsilon>0$ and $\left\{E_{i}\right\}$ such that $K \subseteq \bigcup_{i} E_{i}$. Thus

$$
\mathrm{H}^{t}(K) \geq \overline{\mathrm{H}}^{t}(K)
$$

The opposite inequality is obvious.

Theorem 3.2. Let $K \subset \mathbb{R}^{n}$ be a compact set and $t \geq 0$ such that $\overline{\mathrm{H}}^{t}(K)<+\infty$. Then, for any closed subset E of K and any $\epsilon>0$, there exists an open set U such that $E \subset U$ and

$$
\overline{\mathrm{H}}^{t}(U \cap K)<\overline{\mathrm{H}}^{t}(E)+\epsilon
$$

Proof. For $n \geq 1$, define the n-parallel body E_{n} of E by

$$
E_{n}=\left\{x \in \mathbb{R}^{n}, \quad|x-y|<1 / n, \text { for some } y \in E\right\} .
$$

It is clear that E_{n} is an open set and $E \subseteq E_{n}$, for all n. Denote by \bar{E}_{n} the closure of E_{n} and let $\gamma>1$. Using Lemma 2.2 and Lemma 2.1, there exists n such that

$$
\overline{\mathrm{H}}^{t}\left(\bar{E}_{n} \cap K\right) \leq \gamma^{t} \overline{\mathrm{H}}^{t}(E)
$$

For $\epsilon>0$, we can choose γ such that $\gamma^{t} \overline{\mathrm{H}}^{t}(E) \leq \overline{\mathrm{H}}^{t}(E)+\epsilon$. Finally, we get

$$
\overline{\mathrm{H}}^{t}\left(E_{n} \cap K\right) \leq \overline{\mathrm{H}}^{t}\left(\bar{E}_{n} \cap K\right) \leq \overline{\mathrm{H}}^{t}(E)+\epsilon .
$$

As a direct consequence, we get the following result.
Theorem 3.3. Let $K \subset \mathbb{R}^{n}$ be a compact set and $t \geq 0$. Assume that $\overline{\mathrm{H}}^{t}(K)<+\infty$ then

$$
\overline{\mathrm{H}}^{t}(K)=\mathrm{H}^{t}(K)
$$

From Theorem 3.3, we immediately obtain the following corollary.
Corollary 3.4. Let $E \subset \mathbb{R}^{n}$ and $t \geq 0$

1. Assume that $0<\overline{\mathrm{H}}^{t}(E)<+\infty$. Then $0<\mathrm{H}^{t}(\bar{E})<\infty$. In particular,

$$
\operatorname{dim}_{\overline{M B}} E=\operatorname{dim}_{M B} \bar{E}=t
$$

where $\operatorname{dim}_{\overline{M B}} E=\sup \left\{t \geq 0, \overline{\mathrm{H}}^{t}(E)=+\infty\right\}=\inf \left\{t \geq 0, \overline{\mathrm{H}}^{t}(E)=0\right\}$.
2. Assume that E is compact and $t>\operatorname{dim}_{M B} E$. Then either $\overline{\mathrm{H}}^{t}(E)=0$ or $\overline{\mathrm{H}}^{t}(E)=+\infty$.

The following corollary shows that the theorems of Besicovitch [4] and Davies [5] for Hausdorff measures and the theorem of Joyce and Preiss [14] for packing measures does not hold for the Hewitt-Stromberg premeasure.
Corollary 3.5. There exists a compact set K and $t>0$ with $\overline{\mathrm{H}}^{t}(K)=+\infty$ such that K contains no subset with positive finite Hewitt-Stromberg premeasure.

Proof. Consider for $n \geq 1$, the set $A_{n}=\{0\} \bigcup\{1 / k, k \leq n\}$ and

$$
K=\bigcup_{n} A_{n}=\{0\} \bigcup\{1 / n, n \in \mathbb{N}\}
$$

Now, we will prove that $\operatorname{dim}_{\overline{M B}} K=1 / 2$. For $n \geq 1$ and $\delta_{n}=\frac{1}{n+n^{2}}$, remark that

$$
N_{\delta_{n}}\left(A_{n}\right)=n+1
$$

It follows that

$$
\overline{\mathrm{H}}_{\delta_{n}}^{1 / 2}(K) \geq \overline{\mathrm{H}}_{\delta_{n}}^{1 / 2}\left(A_{n}\right)=\sqrt{2} \frac{n+1}{\sqrt{n+n^{2}}}
$$

Thereby, $\overline{\mathrm{H}}^{1 / 2}(K)>0$ which implies that $\operatorname{dim}_{\overline{M B}} K \geq 1 / 2$. In the other hand, if $\overline{\operatorname{dim}}_{p}(K)$ denote the boxcounting dimension of K, i.e.,

$$
\overline{\operatorname{dim}}_{p}(K)=\sup \left\{t ; \overline{\mathcal{P}}^{t}(K)=+\infty\right\}=\inf \left\{t ; \overline{\mathcal{P}}^{t}(K)=0\right\}
$$

then $\overline{\operatorname{dim}}_{p}(K)=\frac{1}{2}$ (see Corollary 2.5 in [8]) and thus

$$
\operatorname{dim}_{\overline{M B}} K \leq \overline{\operatorname{dim}}_{p}(K)=1 / 2
$$

As a consequence, we have $\operatorname{dim}_{\overline{M B}} K=1 / 2$. Take $t=1 / 3$, it is cleat that $\mathrm{H}^{t}(K)=0$. Moreover, $\overline{\mathrm{H}}^{t}(K)=+\infty$. It follows, for any subset F of K, that $\overline{\mathrm{H}}^{t}(F)=0$ or $+\infty$. Otherwise, assume that $0<\overline{\mathrm{H}}^{t}(F)<+\infty$. Then $0<\overline{\mathrm{H}}^{t}(\bar{F})<+\infty$ and thus, by using Theorem 3.3, $0<\mathrm{H}^{t}(\bar{F})<+\infty$, which is impossible since F is a subset of K.

4. Compact sets of infnite Hewitt-Stromberg premeasure

Now, we discuss the compact sets of infnite Hewitt-Stromberg premeasure.
Theorem 4.1. Let K be a compact subset of $\mathbb{R}^{n} ; t \geq 0$ and $\overline{\mathrm{H}}^{t}(K)=+\infty$. Then, for any $\epsilon>0$; there exists a compact subset F of K such that $\overline{\mathrm{H}}^{t}(F)=\mathrm{H}^{t}(F)$ and

$$
\mathrm{H}^{t}(F) \geq \mathrm{H}^{t}(K)-\epsilon
$$

Proof. The case $\mathrm{H}^{t}(K)=+\infty$ is trivial, then we assume that $\mathrm{H}^{t}(K)<+\infty$. Take a closed sets $\left\{F_{i}\right\}$ such that $K=\bigcup_{i} F_{i}$ and

$$
\begin{equation*}
\sum_{i} \overline{\mathrm{H}}^{t}\left(F_{i}\right) \leq \mathrm{H}^{t}(K)+\frac{\epsilon}{2} \tag{4.1}
\end{equation*}
$$

Since we have $\sum_{i} \bar{H}^{t}\left(F_{i}\right) \geq \mathrm{H}^{t}(K)$, there exists $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} \overline{\mathrm{H}}^{t}\left(F_{i}\right) \geq \mathrm{H}^{t}(K)-\frac{\epsilon}{2} \tag{4.2}
\end{equation*}
$$

Therefore, from (4.1) and (4.2), we obtain

$$
\begin{equation*}
\sum_{i=m+1}^{+\infty} \overline{\mathrm{H}}^{t}\left(F_{i}\right) \leq \epsilon \tag{4.3}
\end{equation*}
$$

We condiser the set $F=\bigcup_{i=1}^{m} F_{i}$. Then, by the finite subadditivity of $\overline{\mathrm{H}}^{t}$ and (4.1), we have

$$
\overline{\mathrm{H}}^{t}(F) \leq \sum_{i=1}^{m} \overline{\mathrm{H}}^{t}\left(F_{i}\right)<+\infty
$$

Finally, using Theorem 3.3 we have $\overline{\mathrm{H}}^{t}(F)=\mathrm{H}^{t}(F)$ and, by (4.3), we get

$$
\mathrm{H}^{t}(K)-\mathrm{H}^{t}(F) \leq \mathrm{H}^{t}\left(\bigcup_{i=m+1}^{+\infty} F_{i}\right) \leq \sum_{i=m+1}^{+\infty} \overline{\mathrm{H}}^{t}\left(F_{i}\right) \leq \epsilon
$$

Remark 4.2. One can check that the proof of Theorem 3.3 and Theorem 4.1 works for every dimension function h and the corresponding Hewitt-Stromberg measure and premeasure H^{h} and $\overline{\mathrm{H}}^{h}$ repectively, provided that for every $\epsilon>0$ there are $\delta>0$ and $r_{0}>0$ such that

$$
\frac{h((1+\delta) r)}{h(r)}<1+\epsilon \quad \forall r<r_{0} .
$$

Especially, if $h(r)=x^{t} L(r)$ where L is slowly varying in the sense of Karamata, that is,

$$
\lim _{r \rightarrow 0} \frac{L(a r)}{L(r)}=1
$$

for every $a>0$ ([19]). Then, for every compact set K,

$$
\begin{equation*}
\overline{\mathrm{H}}^{h}(K)<+\infty \Longrightarrow \mathrm{H}^{h}(K)=\overline{\mathrm{H}}^{h}(K) \tag{4.4}
\end{equation*}
$$

and if $\overline{\mathrm{H}}^{h}(K)=+\infty$ then there exists a compact set $F \subseteq K$ such that

$$
\begin{equation*}
\overline{\mathrm{H}}^{h}(F)=\mathrm{H}^{h}(F) \text { and } \mathrm{H}^{h}(F) \geq \mathrm{H}^{h}(K)-\epsilon \tag{4.5}
\end{equation*}
$$

Open problems :

1. We ask if (4.4) and (4.5) remain true for any dimension function h or even for h satisfies the doubling condition, that is, for all $r>0$

$$
h(2 r) \leq k h(r)
$$

for some positive constant k.
2. We ask if Theorem 3.3 remains true if the Hewitt-Stromberg measure of a set E is defined with

$$
\begin{gathered}
M_{r}(E)=\sup \left\{\sharp\{I\} \mid\left(B\left(x_{i}, r\right)\right)_{i \in I}\right. \text { is a family of disjoint closed } \\
\text { balls with } \left.x_{i} \in E\right\} .
\end{gathered}
$$

instead of $N_{r}(E)$.

References

[1] N. Attia, relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459-471.
[2] H.K. Baek and H.H. Lee, Regularity of d-measure, Acta Math. Hungar., 99 (1-2) (2003), 25-32.
[3] H.K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci., 118 (2008), 273-279.
[4] A.S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14 (1952), 339-344.
[5] R.O. Davies, Subsets of finite measure in analytic sets, Indag Math., 14 (1952), 448-489.
[6] G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998.
[7] K.J. Falconer, Techniques in fractal geometry, Wiley, New York., 1997.
[8] D.J. Feng, S. Hua, Z.Y. Wen, Some relations between packing pre-measure and packing measure, Bull. London Math. Soc., 31 (1999), 665-670.
[9] O. Guizani and N. Attia , A note on the scalong properties of Hewitt-Stromberg measure. Filomat (2020), to appear (complete reference)
[10] O. Guizani, A. Mahjoub and N. Attia , On the Hewitt Stromberg measure of product sets. Annali di Matematica Pura ed Applicata (2020), to appear (complete reference)
[11] H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45-55.
[12] H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295-307.
[13] E. Hewitt and K. Stromberg. Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, (1965).
[14] H. Joyce and D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika 42 (1995), 14-24.
[15] S. Jurina, N. MacGregor, A. Mitchell, L. Olsen and A. Stylianou. On the Hausdorff and packing measures of typical compact metric spaces, Aequat. Mat. 92 (2018), 709-735.
[16] P. Mattila, Geometry of sets and Measures in Euclidian Spaces: Fractals and Rectifiability, Cambridge University Press, 1995.
[17] M. E. Munroe, Introduction to Measure and Integration, Addison-Wesley, Reading, Mass., 1953.
[18] Y. Pesin, Dimension theory in dynamical systems, Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, (1997).
[19] E. Seneta. Regylarity varying functions, Lecture Notes in Mathematics 508 (1971).
[20] C.A. Rogers, Hausdorff Measures, Cambridge University Press, London (1970)
[21] B. S. Thomson, Construction of measures in metric spaces, J. London Math. Soc. 14 (1976), 21-24.
[22] S. Wen, M. Wu. Relations between packing premeasure and measure on metric space, Acta Mathematica Scientia. 27 (2007), 137-144.

[^0]: 2020 Mathematics Subject Classification. 28A78, 28A80.
 Keywords. Multifractal measures; Hewitt-Stromberg measures.
 Received: 24 May 2020; Accepted: 9 July 2020
 Communicated by Dragan S. Djordjević
 Email addresses: nattia@kfu.edu.sa (Najmeddine Attia), omran.guizani@gmail.com (Omrane Guizani), amal.mahjoub.m@gmail.com (Amal Mahjoub)

