Filomat 37:1 (2023), 13–20 https://doi.org/10.2298/FIL2301013A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure

Najmeddine Attia^a, Omrane Guizani^b, Amal Mahjoub^b

^aDepartment of Mathematics and Statistics, College of Science, King Faisal University, PO. Box : 400 Al-Ahsa 31982, Saudi Arabia ^bDepartment of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Monastir-5000, Tunisia

Abstract. Let *K* be a compact set of \mathbb{R}^n and $t \ge 0$. In this paper, we discuss the relation between the *t*-dimensional Hewitt-Stromberg premeasure and measure denoted by $\overline{\mathsf{H}}^t$ and H^t respectively. We prove : if $\overline{\mathsf{H}}^t(K) < +\infty$ then $\overline{\mathsf{H}}^t(K) = \mathsf{H}^t(K)$ and if $\overline{\mathsf{H}}^t(K) = +\infty$, there exists a compact subset *F* of *K* such that $\overline{\mathsf{H}}^t(F) = \mathsf{H}^t(F)$ and $\mathsf{H}^t(F)$ is close as we like to $\mathsf{H}^t(K)$.

1. Introduction

Hewitt-Stromberg measures were introduced in [13, Exercise (10.51)]. Since then, they have been investigated by several authors, highlighting their importance in the study of local properties of fractals and products of fractals. One can cite, for example [2, 3, 9–12]. In particular, Edgar's textbook [6, pp. 32-36] provides an excellent and systematic introduction to these measures. Such measures also appears explicitly, for example, in Pesin's monograph [18, 5.3] and implicitly in Mattila's text [16]. The reader can be referred to [15] for a class of generalization of these measures).

For $t \ge 0$, let \overline{H}^t , H^t denote the *t*-dimensional Hewitt-Stromberg premeasure and measure, respectively (see Section 2 for the definitions). In this paper, we discuss the relation between \overline{H}^t and H^t . We prove, for $n \ge 1$ and any compact subset *K* of \mathbb{R}^n , that

$$\overline{\mathsf{H}}^t(K) = \mathsf{H}^t(K)$$

provided that $\overline{\mathsf{H}}^{t}(K) < +\infty$ (Theorem 3.3). As a consequence, we prove, for $E \subseteq \mathbb{R}^{n}$, that if $\overline{\mathsf{H}}^{t}(E) \in (0,\infty)$ then

$$\mathsf{H}^t(E) \in (0,\infty).$$

Moreover, if *E* is compact then, for $t > \dim_{MB}(E)$, we have either $\overline{H}^{t}(E) = 0$ or $\overline{H}^{t}(E) = +\infty$ (Corollary 3.4), where dim_{*MB*} denote the Hewitt-Stomberg dimension (see definition in Section 2). We prove also, as an

²⁰²⁰ Mathematics Subject Classification. 28A78, 28A80.

Keywords. Multifractal measures; Hewitt-Stromberg measures.

Received: 24 May 2020; Accepted: 9 July 2020

Communicated by Dragan S. Djordjević

Email addresses: nattia@kfu.edu.sa (Najmeddine Attia), omran.guizani@gmail.com (Omrane Guizani),

amal.mahjoub.m@gmail.com (Amal Mahjoub)

application, some semifiniteness property of \overline{H}^t . A measure μ is said to be semifinite if every set of infinite measure has a subset of finite positive measure. This property was be studied in [4, 5] for Hausdorff measure and in [14] for packing measure, but this does not hold for the Hewitt-Stromberg premeasure (Corollary 3.5). More precisely, there exists a compact set *K* and t > 0 with $\overline{H}^t(K) = +\infty$ such that *K* contains no subset with positive finite Hewitt-Stromberg premeasure. In addition, we study in Theorem 4.1 the compact sets of infinite Hewitt-Stromberg premeasure. We prove that if $\overline{H}^t(K) = +\infty$, there exists a compact subset *F* of *K* such that

$$\overline{\mathsf{H}}^{t}(F) = \mathsf{H}^{t}(F)$$

and $H^t(F)$ is close as we like to $H^t(K)$.

2. Preliminary

First we recall briefly the definitions of Hausdorff dimension, packing dimension and Hewitt-Stromberg dimension and the relationship linking these three notions. Let \mathcal{F} be the class of dimension functions, i.e., the functions $h : \mathbb{R}^*_+ \to \mathbb{R}^*_+$ which are right continuous, monotone increasing with $\lim_{r\to 0} h(0) = 0$.

Suppose that, for $n \ge 1$, \mathbb{R}^n is endowed with the Euclidean distance. For $E \subset \mathbb{R}^n$, $h \in \mathcal{F}$ and $\varepsilon > 0$, we write

$$\mathcal{H}^{h}_{\varepsilon}(E) = \inf\left\{\sum_{i} h(|E_{i}|) \ E \subseteq \bigcup_{i} E_{i}, \ |E_{i}| < \varepsilon\right\},\$$

where |A| is the diameter of the set *A* defined as $|A| = \sup \{|x - y|, x, y \in A\}$. This allows to define the Hausdorff measure, with respect to *h*, of *E* by

$$\mathcal{H}^h(E) = \sup_{\varepsilon>0} \mathcal{H}^h_\varepsilon(E).$$

The reader can be referred to Rogers' classical text [20] for a systematic discussion of \mathcal{H}^h . We define, for $\varepsilon > 0$,

 $\overline{\mathcal{P}}^h_{\varepsilon}(E) = \sup\left\{\sum_i h(2r_i)\right\},\,$

where the supremum is taken over all disjoint closed balls $(B(x_i, r_i))_i$ such that $r_i \leq \varepsilon$ and $x_i \in E$. The *h*-dimensional packing premeasure, with respect to *h*, of *E* is now defined by

$$\overline{\mathcal{P}}^{h}(E) = \sup_{\varepsilon > 0} \overline{\mathcal{P}}^{h}_{\varepsilon}(E).$$

This makes us able to define the packing measure, with respect to *h*, of *E* as

$$\mathcal{P}^{h}(E) = \inf\left\{\sum_{i} \overline{\mathcal{P}}^{h}(E_{i}) \mid E \subseteq \bigcup_{i} E_{i}\right\}.$$

While Hausdorff and packing measures are defined using coverings and packings by families of sets with diameters less than a given positive number ε , the Hewitt-Stromberg measures are defined using covering of balls with the same diameter ε . Now, we define

$$\overline{\mathsf{H}}_{0}^{h}(E) = \limsup_{r \to 0} \overline{\mathsf{H}}_{r}^{h} \text{ where } \overline{\mathsf{H}}_{r}^{h}(E) = N_{r}(E) h(2r)$$

and the covering number $N_r(E)$ of *E* is defined by

$$N_r(E) = \inf \{ \#\{I\} \mid (B(x_i, r))_{i \in I} \text{ is a family of closed balls} \\ \text{with } x_i \in E \text{ and } E \subseteq \bigcup_i B(x_i, r) \}.$$

Since \overline{H}_0^h is not increasing and not countably subadditive, one needs a standard modification to get an outer measure. Hence, we modify the definition as follows, first we define the Hewitt-Stromberg premeasure

$$\overline{\mathsf{H}}^{h}(E) = \sup_{F \subseteq E} \overline{\mathsf{H}}_{0}^{h}(F)$$

and, by applying now the standard construction ([17, 20, 21]), we obtain the Hewitt-Stromberg measure, with respect to *h*, defined by

$$\mathsf{H}^{h}(E) = \inf \left\{ \sum_{i} \overline{\mathsf{H}}^{h}(E_{i}) \mid E \subseteq \bigcup_{i} E_{i} \text{ and } E_{i} \text{ is closed} \right\}.$$

In the following, we illustrate the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and the packing measures (the proof is straightforward and mimics that in [15, Proposition 2.1]

$$\begin{aligned} & \overline{\mathsf{H}}^{h}(E) &\leq \quad \overline{\mathcal{P}}^{h}(E) \\ & & \lor \\ \mathcal{H}^{h}(E) &\leq \quad \mathsf{H}^{h}(E) &\leq \quad \mathcal{P}^{h}(E). \end{aligned}$$

Let $t \ge 0$ and h_t is the dimension function defined by

 $h_t(r) = r^t$.

In this case we will denote simply \mathcal{H}^{h_t} by \mathcal{H}^t , also \mathcal{P}^{h_t} will be denoted by \mathcal{P}^t , $\overline{\mathsf{H}}^{h_t}$ will be denoted by $\overline{\mathsf{H}}^t$ and H^{h_t} will be denoted by H^t . Now we define the Hausdorff dimension, packing dimension and Hewitt-Stromberg dimension of a set $E \subseteq \mathbb{R}^n$ respectively by

$$\dim_{H} E = \sup \left\{ t \ge 0, \quad \mathcal{H}^{t}(E) = +\infty \right\} = \inf \left\{ t \ge 0, \quad \mathcal{H}^{t}(E) = 0 \right\},$$
$$\dim_{P} E = \sup \left\{ t \ge 0, \quad \mathcal{P}^{t}(E) = +\infty, \right\} = \inf \left\{ t \ge 0, \quad \mathcal{P}^{t}(E) = 0 \right\}$$

and

$$\dim_{MB} E = \sup \left\{ t \ge 0, \ \mathsf{H}^t(E) = +\infty \right\} = \inf \left\{ t \ge 0, \ \mathsf{H}^t(E) = 0 \right\}.$$

It follows that

 $\dim_H(E) \leq \dim_{MB}(E) \leq \dim_P(E).$

Lemma 2.1. Let $E \subset \mathbb{R}^n$ and $t \ge 0$. Then

$$\overline{\mathsf{H}}^{t}(\overline{E}) \leq 2^{t} \overline{\mathsf{H}}^{t}(E),$$

where \overline{E} is the closure of *E*.

Proof. Let r > 0 and $\{B_i := B(x_i, r)\}_i$ be a covering of E and let $A \subset \overline{E}$. Now, we consider

$$I = \{i : B_i \cap A \neq \emptyset\}.$$

For each $i \in I$, let $y_i \in B_i \cap A$. Therefore, $B_i \subseteq B(y_i, 2r)$ and then $\{B(y_i, 2r)\}_i$ is a covering of A. It follows that

$$N_{2r}(A)(4r)^t \le 2^t N_r(E)(2r)^t.$$

Thus, $\overline{H}_0^t(A) \le 2^t \overline{H}_0^t(E) \le 2^t \overline{H}^t(E)$. Since *A* is arbitrarily, we get the desired result. \Box

We finish this section by a lemma which will be useful in the following.

Lemma 2.2. Let $\{E_n\}$ be a decreasing sequence of compact subsets of \mathbb{R}^n and $F = \bigcap_n E_n$. Then, for $t \ge 0$ and $\gamma > 1$, there exist n_0 such that

$$\overline{\mathsf{H}}^{\iota}(E_n) \leq \gamma^t \overline{\mathsf{H}}^{\iota}(F), \qquad \forall n \geq n_0.$$

Proof. Let $\delta > 0$ and $\{B_i := B(x_i, \delta)\}_i$ be any covering of F. We claim that there exists n_0 such that $E_n \subset U = \bigcup_i B(x_i, \gamma \delta)$, for all $n \ge n_0$. Indeed, otherwise, $\{E_n \setminus U\}$ is a decreasing sequence of non-empty compact sets, which, by an elementary consequence of compactness, has a non-empty limit set $(\lim E_n) \setminus U$. Then, for $t \ge 0$ and $n \ge n_0$,

$$\overline{\mathsf{H}}_{\gamma\delta}^{t}(E_{n}) = N_{\gamma\delta}(E_{n})(2\gamma\delta)^{t} \leq \gamma^{t}N_{\delta}(F)(2\delta)^{t} = \gamma^{t}\overline{\mathsf{H}}_{\delta}^{t}(F).$$

It follows, for all $n \ge n_0$, that

$$\overline{\mathsf{H}}_{0}^{r}(E_{n}) \leq \gamma^{t} \overline{\mathsf{H}}_{0}^{r}(F) \leq \gamma^{t} \overline{\mathsf{H}}^{r}(F).$$

$$(2.1)$$

Now, let $A \subseteq E_n$, we only have to prove that $\overline{H}_0^t(A) \leq \gamma^t \overline{H}^t(F)$. We may suppose that $F \subseteq A \subseteq E_n$. Indeed, otherwise,

$$\overline{\mathsf{H}}_{0}^{t}(A) \leq \overline{\mathsf{H}}^{t}(F) \leq \gamma^{t} \overline{\mathsf{H}}^{t}(F).$$

Thus, without loss of generality we may suppose that, $A = E_m$, for some $m \ge n$. Therefore, using (2.1), we have $\overline{H}_0^t(A) \le \gamma^t \overline{H}^t(F)$. \Box

3. Main results

.

We can see, from the definition, that estimating \overline{H}^t is much easier than estimating the Hewitt-Sttromberg measure H^t . It is therefore natural to look for relationships between these two quantities. The reader can also see [1, 8, 14, 22] for a similar result for Hausdorff and packing measures.

Lemma 3.1. Let *K* be compact set in \mathbb{R}^n and $t \ge 0$. Suppose that for every $\epsilon > 0$ and closed subset *E* of *K* one can find an open set *U* such that $E \subset U$ and $\overline{H}^t(U \cap K) \le \overline{H}^t(E) + \epsilon$, then

$$\mathsf{H}^{t}(K) = \overline{\mathsf{H}}^{t}(K).$$

Proof. Let $\epsilon > 0$ and let $\{E_i\}$ be a sequence of closed sets such that $K \subseteq \bigcup_i E_i$. Take, for each *i*, an open set U_i such that $E_i \subset U_i$ and

$$\overline{\mathsf{H}}^{t}(U_{i}\cap K)\leq \overline{\mathsf{H}}^{t}(E_{i})+2^{-i-1}\epsilon.$$

Since *K* is compact, the cover $\{U_i\}$ of *K* has a finite subcover. So we may use the fact that, for all $F_1, F_2 \subset \mathbb{R}^n$,

$$\overline{\mathsf{H}}^{t}(F_{1} \cup F_{2}) \leq \overline{\mathsf{H}}^{t}(F_{1}) + \overline{\mathsf{H}}^{t}(F_{2})$$

to infer that

$$\overline{\mathsf{H}}^{t}(K) \leq \sum_{i} \overline{\mathsf{H}}^{t}(U_{i} \cap K) \leq \sum_{i} (\overline{\mathsf{H}}^{t}(E_{i}) + 2^{-i-1}\epsilon) \leq \sum_{i} \overline{\mathsf{H}}^{t}(E_{i}) + \epsilon.$$

This is true for all $\epsilon > 0$ and $\{E_i\}$ such that $K \subseteq \bigcup_i E_i$. Thus

 $\mathsf{H}^t(K) \ge \overline{\mathsf{H}}^t(K).$

The opposite inequality is obvious. \Box

Theorem 3.2. Let $K \subset \mathbb{R}^n$ be a compact set and $t \ge 0$ such that $\overline{H}^t(K) < +\infty$. Then, for any closed subset E of K and any $\epsilon > 0$, there exists an open set U such that $E \subset U$ and

$$\overline{\mathsf{H}}^t(U\cap K)<\overline{\mathsf{H}}^t(E)+\epsilon.$$

Proof. For $n \ge 1$, define the *n*-parallel body E_n of *E* by

$$E_n = \{x \in \mathbb{R}^n, |x - y| < 1/n, \text{ for some } y \in E\}.$$

It is clear that E_n is an open set and $E \subseteq E_n$, for all n. Denote by \overline{E}_n the closure of E_n and let $\gamma > 1$. Using Lemma 2.2 and Lemma 2.1, there exists n such that

$$\overline{\mathsf{H}}^t(\overline{E}_n \cap K) \le \gamma^t \overline{\mathsf{H}}^t(E)$$

For $\epsilon > 0$, we can choose γ such that $\gamma^t \overline{H}^t(E) \leq \overline{H}^t(E) + \epsilon$. Finally, we get

$$\overline{\mathsf{H}}^{t}(E_{n} \cap K) \leq \overline{\mathsf{H}}^{t}(\overline{E}_{n} \cap K) \leq \overline{\mathsf{H}}^{t}(E) + \epsilon.$$

As a direct consequence, we get the following result.

Theorem 3.3. Let $K \subset \mathbb{R}^n$ be a compact set and $t \ge 0$. Assume that $\overline{H}^t(K) < +\infty$ then

$$\overline{\mathsf{H}}^{t}(K) = \mathsf{H}^{t}(K).$$

From Theorem 3.3, we immediately obtain the following corollary.

Corollary 3.4. Let $E \subset \mathbb{R}^n$ and $t \ge 0$

1. Assume that $0 < \overline{H}^t(E) < +\infty$. Then $0 < H^t(\overline{E}) < \infty$. In particular,

 $\dim_{\overline{MB}} E = \dim_{MB} \overline{E} = t,$

where
$$\dim_{\overline{MB}} E = \sup\left\{t \ge 0, \ \overline{H}^t(E) = +\infty\right\} = \inf\left\{t \ge 0, \ \overline{H}^t(E) = 0\right\}.$$

2. Assume that E is compact and $t > \dim_{MB} E$. Then either $\overline{H}^{\iota}(E) = 0$ or $\overline{H}^{\iota}(E) = +\infty$.

The following corollary shows that the theorems of Besicovitch [4] and Davies [5] for Hausdorff measures and the theorem of Joyce and Preiss [14] for packing measures does not hold for the Hewitt-Stromberg premeasure.

Corollary 3.5. There exists a compact set K and t > 0 with $\overline{H}^{t}(K) = +\infty$ such that K contains no subset with positive finite Hewitt-Stromberg premeasure.

Proof. Consider for $n \ge 1$, the set $A_n = \{0\} \bigcup \{1/k, k \le n\}$ and

$$K = \bigcup_{n} A_{n} = \{0\} \bigcup \{1/n, n \in \mathbb{N}\}.$$

Now, we will prove that $\dim_{\overline{MB}} K = 1/2$. For $n \ge 1$ and $\delta_n = \frac{1}{n+n^2}$, remark that

$$N_{\delta_n}(A_n) = n + 1$$

It follows that

$$\overline{\mathsf{H}}_{\delta_n}^{1/2}(K) \ge \overline{\mathsf{H}}_{\delta_n}^{1/2}(A_n) = \sqrt{2} \frac{n+1}{\sqrt{n+n^2}}$$

Thereby, $\overline{H}^{1/2}(K) > 0$ which implies that $\dim_{\overline{MB}} K \ge 1/2$. In the other hand, if $\overline{\dim}_p(K)$ denote the boxcounting dimension of *K*, i.e.,

$$\overline{\dim}_p(K) = \sup\{t; \ \overline{\mathcal{P}}^t(K) = +\infty\} = \inf\{t; \ \overline{\mathcal{P}}^t(K) = 0\}$$

then $\overline{\dim}_p(K) = \frac{1}{2}$ (see Corollary 2.5 in [8]) and thus

$$\dim_{\overline{MB}} K \le \overline{\dim}_p(K) = 1/2.$$

As a consequence, we have $\dim_{\overline{MB}} K = 1/2$. Take t = 1/3, it is cleat that $H^t(K) = 0$. Moreover, $\overline{H}^t(K) = +\infty$. It follows, for any subset F of K, that $\overline{H}^t(F) = 0$ or $+\infty$. Otherwise, assume that $0 < \overline{H}^t(F) < +\infty$. Then $0 < \overline{H}^t(\overline{F}) < +\infty$ and thus, by using Theorem 3.3, $0 < H^t(\overline{F}) < +\infty$, which is impossible since F is a subset of K. \Box

4. Compact sets of infnite Hewitt-Stromberg premeasure

Now, we discuss the compact sets of infnite Hewitt-Stromberg premeasure.

Theorem 4.1. Let *K* be a compact subset of \mathbb{R}^n ; $t \ge 0$ and $\overline{\mathsf{H}}^t(K) = +\infty$. Then, for any $\varepsilon > 0$; there exists a compact subset *F* of *K* such that $\overline{\mathsf{H}}^t(F) = \mathsf{H}^t(F)$ and

$$\mathsf{H}^t(F) \ge \mathsf{H}^t(K) - \epsilon.$$

Proof. The case $H^t(K) = +\infty$ is trivial, then we assume that $H^t(K) < +\infty$. Take a closed sets $\{F_i\}$ such that $K = \bigcup_i F_i$ and

$$\sum_{i} \overline{\mathsf{H}}^{t}(F_{i}) \le \mathsf{H}^{t}(K) + \frac{\epsilon}{2}.$$
(4.1)

Since we have $\sum_{i} \overline{H}^{t}(F_{i}) \geq H^{t}(K)$, there exists $m \in \mathbb{N}$ such that

$$\sum_{i=1}^{m} \overline{\mathsf{H}}^{t}(F_{i}) \ge \mathsf{H}^{t}(K) - \frac{\epsilon}{2}.$$
(4.2)

Therefore, from (4.1) and (4.2), we obtain

$$\sum_{i=m+1}^{+\infty} \overline{\mathsf{H}}^t(F_i) \le \varepsilon.$$
(4.3)

We condiser the set $F = \bigcup_{i=1}^{m} F_i$. Then, by the finite subadditivity of \overline{H}^t and (4.1), we have

$$\overline{\mathsf{H}}^t(F) \le \sum_{i=1}^m \overline{\mathsf{H}}^t(F_i) < +\infty.$$

Finally, using Theorem 3.3 we have $\overline{H}^{t}(F) = H^{t}(F)$ and, by (4.3), we get

$$\mathsf{H}^{t}(K) - \mathsf{H}^{t}(F) \le \mathsf{H}^{t}\Big(\bigcup_{i=m+1}^{+\infty} F_{i}\Big) \le \sum_{i=m+1}^{+\infty} \overline{\mathsf{H}}^{t}(F_{i}) \le \epsilon.$$

Remark 4.2. One can check that the proof of Theorem 3.3 and Theorem 4.1 works for every dimension function h and the corresponding Hewitt-Stromberg measure and premeasure H^h and \overline{H}^h repectively, provided that for every $\epsilon > 0$ there are $\delta > 0$ and $r_0 > 0$ such that

$$\frac{h((1+\delta)r)}{h(r)} < 1 + \epsilon \qquad \forall r < r_0$$

Especially, if $h(r) = x^t L(r)$ *where L is slowly varying in the sense of Karamata, that is,*

$$\lim_{r \to 0} \frac{L(ar)}{L(r)} = 1$$

for every a > 0 ([19]). Then, for every compact set K,

$$\overline{\mathsf{H}}^{n}(K) < +\infty \Longrightarrow \mathsf{H}^{h}(K) = \overline{\mathsf{H}}^{n}(K) \tag{4.4}$$

and if $\overline{H}^{h}(K) = +\infty$ then there exists a compact set $F \subseteq K$ such that

$$\overline{\mathsf{H}}^{n}(F) = \mathsf{H}^{h}(F) \text{ and } \mathsf{H}^{h}(F) \ge \mathsf{H}^{h}(K) - \epsilon.$$

$$(4.5)$$

Open problems :

1. We ask if (4.4) and (4.5) remain true for any dimension function *h* or even for *h* satisfies the doubling condition, that is, for all r > 0

 $h(2r) \le kh(r),$

for some positive constant *k*.

2. We ask if Theorem 3.3 remains true if the Hewitt-Stromberg measure of a set *E* is defined with

 $M_r(E) = \sup \{ \#\{I\} \mid (B(x_i, r))_{i \in I} \text{ is a family of disjoint closed} \\ \text{balls with } x_i \in E \}.$

instead of $N_r(E)$.

References

- [1] N. Attia, relative multifractal spectrum, Commun. Korean Math. Soc., 33 (2018), 459-471.
- [2] H.K. Baek and H.H. Lee, Regularity of d-measure, Acta Math. Hungar., 99 (1-2) (2003), 25-32.
- [3] H.K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci., 118 (2008), 273-279.
- [4] A.S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Indag. Math., 14 (1952), 339-344.
- [5] R.O. Davies, Subsets of finite measure in analytic sets, Indag Math., 14 (1952), 448-489.
- [6] G. A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998.
- [7] K.J. Falconer, Techniques in fractal geometry, Wiley, New York., 1997.
- [8] D.J. Feng, S. Hua, Z.Y. Wen, Some relations between packing pre-measure and packing measure, Bull. London Math. Soc., **31** (1999), 665-670.
- [9] O. Guizani and N. Attia, A note on the scalong properties of Hewitt-Stromberg measure. Filomat (2020), to appear (complete reference) [10] O. Guizani, A. Mahjoub and N. Attia, On the Hewitt Stromberg measure of product sets. Annali di Matematica Pura ed Applicata
- (2020), to appear (complete reference)
- [11] H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45-55.
- [12] H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295-307.
- [13] E. Hewitt and K. Stromberg. Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, (1965).
- [14] H. Joyce and D. Preiss, On the existence of subsets of positive finite packing measure, Mathematika 42 (1995), 14-24.
- [15] S. Jurina, N. MacGregor, A. Mitchell, L. Olsen and A. Stylianou. On the Hausdorff and packing measures of typical compact metric spaces, Aequat. Mat. 92 (2018), 709-735.
- [16] P. Mattila, Geometry of sets and Measures in Euclidian Spaces: Fractals and Rectifiability, Cambridge University Press, 1995.

- [17] M. E. Munroe, *Introduction to Measure and Integration*, Addison-Wesley, Reading, Mass., 1953.
 [18] Y. Pesin, *Dimension theory in dynamical systems, Contemporary views and applications*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, (1997).
- [19] E. Seneta. *Regylarity varying functions*, Lecture Notes in Mathematics **508** (1971).
 [20] C.A. Rogers, *Hausdorff Measures*, Cambridge University Press, London (1970)
- [21] B. S. Thomson, *Construction of measures in metric spaces*, J. London Math. Soc. 14 (1976), 21-24.
 [22] S. Wen, M. Wu. *Relations between packing premeasure and measure on metric space*, Acta Mathematica Scientia. 27 (2007), 137-144.