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Abstract. For an arbitrary compact set E ⊂ C we consider the Newton-Padé approximant and rational
approximation error of meromorphic function f and relate these to the generalized order and generalized
type of f . Our results generalize the various results of K. Reczek ([20],[21]) and Winiarski [28].

1. Introduction

Let f be a function holomorphic in a neighborhood of infinity except the point z = ∞. Following R.P.
Boas [6], we define the order of f at infinity as

ρ( f ) = lim sup
r→∞

log log M(r, f )
log r

, 0 ≤ ρ( f ) ≤ ∞.

If 0 < ρ( f ) < ∞, the type of f at infinity is defined by

σ( f ) = lim sup
r→∞

log M(r, f )
rρ

,

where M(r, f ) = || f ||C(0,r) = sup{| f (z)| : |z| = r}.
If ρ( f ) = 0 or ∞, the above definition of type is not valid. To refine it Juneja et al. ([15],[16]) have

introduced the concept of index-pair (p, q), p ≥ q ≥ 1 and studied the (p, q)-order and (p, q)-type in terms of
coefficients occurring in the Maclaurin series expansion of f .

Let E be a compact subset of the complex plane C of positive logarithmic capacity, and f a complex
function defined and bounded on E. For k ∈N, putting

En(E, f ) = || f − Tn||E,

where the norm ||.||E is the maximum norm on E and Tn is the nth Chebyshev polynomial of the best
approximation to f on E. It is well known that the rate at which the sequence {[En(E, f )]

1
n }
∞

n=0 → 0 depends
on the growth parameters order and type of the entire function.
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Bernstein [5] and Varga [27] had given the characterization of growth parameters of an entire function
f in terms of the sequence of polynomial approximation errors taken over E = [−1, 1]. Several authors like
Batyrev [4], Winiarski [28], Ibragimov and Shikhaliev [14], Giroux [9], Kasana and Kumar [17], Kumar [18]
and Ali et al. [2] and others considered the approximation on compact set E ⊂ C. For related work on
different approximation methods, we refer the readers to ([1],[10],[11]).

Let {zn}
∞

n=1 be a sequence of complex numbers and f is a function holomorphic in a neighborhood of the
set {zn : 1 ≤ n < ∞}. Consider the Newton development of f with respect to the sequence (zn):

f (z) =
∞∑

n=0

Cnwn(z).

Winiarski [28] had obtained the classical order and type in terms of Newton coefficients Cn. Reczek [21]
generalized the results of Winiarski [28] for the functions f ∈ Mm(C) (the class of meromorphic functions
whose poles are not greater than m) by replacing the Newton coefficients Cn by the coefficients of the
Newton-Padé approximants. Harfaoui et al. [12] studied (p, q)-growth of meromorphic functions in terms
of the Newton-Padé approximants and rational approximation errors. In this paper we will study the growth
properties of functions f ∈Mm(C) and generalize various results of Winiarski [28], Reczek ([20],[21]).

2. Generalized Growth

Let ξ : [a,∞)→ R for some a ≥ 0, such that ξ(x) is positive, strictly increasing, differentiable and tends
to ∞ as x → ∞. Then ξ is said to belong to the class L0 if for every real valued function ϕ(x) such that
ϕ(x)→ 0 as x→∞, ξ satisfies

lim
x→∞

ξ[(1 + ϕ(x))x]
ξ(x)

= 1

and belongs to the class Λ if for all c, 0 < c < ∞, we have the stronger condition

lim
x→∞

ξ(cx)
ξ(x)

= 1.

Using the generalized functions of the class L0 and Λ, Seremeta [23], obtained the following characteriza-
tions for the entire function f (z):

Theorem A. Let α(t) ∈ Λ, β(t) ∈ L0. Set F(t, c) = β−1[cα(t)]. If dF(t,c)
d(log t) = O(1), as t → ∞ for all c, 0 < c < ∞,

then for the entire function f (z) =
∑
∞

n=0 cnzn,

ρ = lim sup
r→∞

α(log M(r, f ))
β(log r)

= lim sup
n→∞

α(n)

β(log |cn|
−

1
n )
. (2.1)

Theorem B. Let α(t) ∈ L0, β(t) ∈ L0, γ(t) ∈ L0. Let ρ (0 < ρ < ∞) be a fixed number. Set F(t, σ, ρ) =
γ−1
{[β−1(σα(t))]

1
ρ }. Suppose that for all σ, 0 < σ < ∞, F satisfies:

(a). If γ(t) ∈ Λ and α(t) ∈ Λ, then dF(t,σ,ρ)
d(log t) = O(1) as t→∞,

(b). If γ(t) ∈ L0
−Λ or α(t) ∈ L0

−Λ, then limt→∞
d log F(t,σ,ρ)

d(log t) = 1
ρ .

Then we have

σ = lim sup
r→∞

α(log M(r, f ))
β[(γ(r))ρ]

= lim sup
n→∞

α( n
ρ )

β[γ(e
1
ρ |cn|

−
1
n )]ρ
.
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3. Newton-Padé Approximants

Padé approximants are rational functions of the type (m,n) that interpolate a function element at a given
point with order m + n + 1. These approximants were introduced for the exponential function by Hermite
[13]. Padé approximants have been an effective device in analytic number theory ([13],[19],[24],[25]) and
became an important tool in physical modelling and numerical analysis ([3],[7]). These also provide an
important link between theory of rational approximation and the field of orthogonal polynomials [26].

Padé approximant of the type (m,n) is the best rational approximant to the functions at one point. With
denominators of fixed degree Padé approximant converges uniformly to the approximated function in the
disc of meromorphy and the degree of denominators matches the number of poles of the function [8].

We denote by Rn,m the set of all rational functions, whose numerators and denominators are polynomials
of degrees not exceeding n and m respectively. Let the function fn,m satisfy the following conditions:
(a) fn,m ∈ Rn,m;
(b) f− fn,m

wn+m+1
is holomorphic at each point zi for 1 ≤ i < n +m + 1,

where wn(z) = Πn
j=1(z − ηn j ),n = 1, 2, . . . . ηn = (ηn0 , ηn1 , . . . , ηnn ) is the nth extremal points system of compact

set E of complex plane C (see [28], pp. 260).
For each couple (n,m) there exists at most one function satisfying the above conditions. It is called

the (n,m)-th Newton-Padé approximants of the function f with respect to the sequence {zn}
∞

n=1. We shall
consider the sequences of Newton-Padé approximants ( fn,m) with fixed m and n→∞. We denote

fn = fn,m =
pn

qn
, (3.1)

where

pn(z) =
n∑

i=0

pni z
i (3.2)

and

qn(z) = (z − zn,1). . . . .(z − zn,mn ),mn ≤ m,n ≥ n0, (3.3)

where zn,1, . . . , zn,mn are poles of the approximant fn. Then the polynomials pn and qn have no common
divisors of degree higher than zero. Also, assume that

|zn,1| ≤ · · · ≤ |zn,mn |. (3.4)

Now we have the following lemma:
Lemma 3.1. Let {zn}

∞

n=1 be a bounded sequence of complex numbers and let f be a function meromorphic
in C, holomorphic in a neighborhood of the set zn : 1 ≤ n < ∞. Suppose that f has exactly m poles in C,
called with their multiplicities. Then
(1). for almost every n there exists the approximant fn;
(2). the poles of fn tends to the poles of f when n→∞;
(3). lim supn→∞ fn = f (z) in C, except for the poles of f ;
(4). f can be extended to a function of the class Mm(C).

The above lemma is only a slight modification of the Saff theorem [22], so we omit the proof here.
The aim of the present paper is to obtain the coefficient characterization of generalized order and

generalized type of functions f ∈ Mm(C) in terms of coefficient of the development pnn of the (n,n)th

Newton-Padé approximants and the best rational approximation error on a compact subset ofC in supnorm.
Theorem 3.1. Let f ∈ Mm(C) and all the conditions of Lemma 3.1 satisfied with notations (3.1)-(3.4).

Then f has generalized order ρ if, and only if

lim sup
n→∞

α(n)

β[log |pnn|
−

1
n ]
= ρ. (3.5)
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Proof. Let f = φQ , where φ is an entire function and Q is a polynomial of the form Q(z) = (t− ξ1). . . . .(t−
ξk), k is the number of poles of f , then f can be extended to a function of the class Mm(C). The order and
type of φ are equal to the order and type of f . Using the Hermite formula from (3.1), we get

pnn =
1

2πi

∫
C(0,r)

φ(z)qn(z)
wm+n+1(z)

dz (3.6)

for r > s = sup{zk : k = 1, 2, 3, . . . }. We obtain the estimate

|pnn| ≤
r2m(rm + |zn,m|

m)M(r, φ)
min |wm+n+1(z)|

, |z| = r, (3.7)

where r is sufficiently large and M(r, φ) = ||φ||C(0,r) = sup{|φ(z)| : |z| = r}. Using the definition (2.1) of
generalized order ρ, for any given ε > 0 and r > r0(ε) we have

α[M(r, f )] ≤ β(log r)(ρ + ε). (3.8)

From (3.7) and (3.8) we get

|pnn| ≤
r2m(rm + |zn,m|

m)M(r, φ) exp[α−1
{ρβ(log r)}]

min |wm+n+1(z)|
, ρ = ρ + ε,

where |wn+m+1(z)| ≥ (r − s)n+m+1.
Above inequality holds for all r > r0(ε), we can choose

r = r(n) = exp[β−1
{
α(n)
ρ
}] = exp[F(n,

1
ρ

)],

substituting this value of r in the last inequality above, we obtain

|pnn| ≤ exp[−nF(n,
1
ρ

)] exp[α−1
{ρ
α(n)
ρ
}] +O(1)

≤ exp[−n{F(n,
1
ρ

) − 1}], as F(n,
1
ρ

)→∞ as n→∞.

It gives

log(|pnn|)−
1
n > F(n,

1
ρ

) − 1 = β−1
{ρ
α(n)
ρ
}{1 − (F(n,

1
ρ

))−1
}

or

β[log(|pnn|)−
1
n ]{1 − (F(n,

1
ρ

))−1
}
−1 >

α(n)
ρ
.

Since β ∈ L0 and (F(n, 1
ρ ))−1

→ 0 as n→∞, we get

lim sup
n→∞

α(n)

β[log(|pnn|)−
1
n ]
≤ ρ = ρ + ε.

Since εwas arbitrary, it gives

lim sup
n→∞

α(n)

β[log(|pnn|)−
1
n ]
≤ ρ. (3.9)
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In order to prove the reverse inequality in (3.9), let us put

lim sup
n→∞

α(n)

β[log(|pnn|)−
1
n ]
= ρ′.

Assume that 0 ≤ ρ′ < ∞. Then for a given ε > 0 and

|pnn| < exp[−nF(n,
1
ρ′ + ε

)]. (3.10)

Let us define the set Dθ, θ ∈ (0, 1) as [18]:

Dθ = ∪∞n=n0
∪

mn
i=1 B(zni , θ

n),

where B(a, r) = {z : |z − a| < r}.
Since limn→∞ |pnn|

1
n = 0. Hence the sequence { fn(z)}∞n=n0

converges if only z ∈ C \Dθ. Let z ∈ C \Dθ, assume
that there exists a sequence {nl} and a neighborhood U of the point z such that for every l the function fnl

has no poles in U. Then we have limn→∞ fn(z) = liml→∞ fnl (z) = f (z). This implies that limn→∞ fn(z) = f (z)
in C \Dθ except for at most m points. So we can choose a number R0 such that for every point

z ∈ (C \Dθ) \ B(0,R0), lim
n→∞

fn(z) = f (z). (3.11)

Let R0 be sufficiently large such that M(R, f ) is an increasing function for R > R0. Choose a number
R > s. Then there exists Rθ,R ≤ Rθ < R + dθ, dθ = 2m

1−θ , such that the set Dθ does not intersect the circle
C(0,Rθ). The sequence { fn(z)}∞n=n0

is uniformly convergent on C(0,Rθ). Then

M(R, f ) ≤M(Rθ, f ) ≤ || fn0 ||C(0,Rθ) +

∞∑
n=n0+1

|| fn − fn−1||C(0,Rθ)

or

M(R, f ) ≤ K1(Rθ)n +

∞∑
n=n0+1

|pnn|θ
−2mn(Rθ + s)m+n (3.12)

if R is large enough, then (Rθ + s) ≤ θ−mR. Now using (3.10) in (3.12) for n1 ≥ n0 we obtain

M(R, f ) ≤ K2Rn1 + (θ−mR)m
∞∑

n=n1

exp[−nF(n,
1
ρ′ + ε

)](θ−3mR)n, (3.13)

where K2 depends only on θ.
We now consider the function

h(z) =
∞∑

n=n1

θ−3mnzn exp[−nF(n,
1
ρ′ + ε

)].

From (3.13) we can conclude that the generalized order of h(z) ≥ the generalized order of f (z). If ρ1 denotes
the generalized order of h(z) then by (2.1) we have

ρ1 = lim sup
n→∞

α(n)

β[log(θ−3mn exp[−nF(n, 1
ρ′+ε )])

−
1
n ]
,

since

−
1
n

log(θ−3m) −
1
n

log[exp(nF(n,
1
ρ′ + ε

))] = F(n,
1
ρ′ + ε

) +O(1) ≃ β−1[
α(n)
ρ′ + ε

].
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Since α(x) ∈ ∆, we finally obtain

ρ1 = lim sup
n→∞

(ρ′ + ε)α(n)
α(n)

= ρ′ + ε.

Since ε > 0 was arbitrary, we get ρ′ = ρ1 ≥ ρ. Hence the proof is completed.

Theorem 3.2. Let α, β, γ ∈ L0 and 0 < ρ < ∞. Denote by F(x, σ, ρ) = γ−1
{[β−1(σα(x))]

1
ρ }. For 0 < σ < ∞,

suppose that the function F satisfies the conditions:
(i) If γ(x) ∈ ∆ and α(x) ∈ ∆, then dF(x,σ,ρ)

d log x = O(1) as x→∞;

(ii) If γ(x) ∈ L0
− ∆ or α(x) ∈ L0

− ∆, then limx→∞
d log F(x,σ,ρ)

d log x = 1
ρ .

Then the entire function f is of generalized type σ if, and only if

lim sup
n→∞

α( n
ρ )

β{[γ(e
1
ρ (|pnn|)−

1
n )]ρ}

= σ.

Proof. Let σ < ∞. Using the definition of generalized type for arbitrary ε > 0 and r > r′(ε), we have

M(r, f ) < exp[α−1
{(σ + ε)β((γ(r))ρ)}]. (3.14)

Taking into account (3.7) and (3.14) we obtain

|pnn| ≤
r2m(rm + |zn,m|

m) exp[α−1
{(σ + ε)β((γ(r))ρ)}]

min |wm+n+1(z)|
. (3.15)

Now choose r = r(n) = F( n
ρ ,

1
σ+ε , ρ), then for all sufficiently large values of n, we have

exp[α−1
{(σ + ε)β((γ(r))ρ)}] = exp[α−1

{α(
n
ρ

)}].

From (3.15) we have

|pnn| < exp(
n
ρ

){F(
n
ρ
,

1
σ + ε

, ρ)}−n +O(1)

or

F(
n
ρ
,

1
σ + ε

, ρ) < |pnn|
−

1
n e

1
ρ

or
1
σ + ε

α(
n
ρ

) < β{[γ(e
1
ρ (|pnn|)−

1
n )]ρ}.

Since ε > 0 is arbitrary, proceeding to limits we get

lim sup
n→∞

α( n
ρ )

β{[γ(e
1
ρ (|pnn|)−

1
n )]ρ}

≤ σ. (3.16)

Conversely, suppose that

lim sup
n→∞

α( n
ρ )

β{[γ(e
1
ρ (|pnn|)−

1
n )]ρ}

≤ σ1.

Then for a given ε > 0 and all n > n1,

|pnn| < exp(
n
ρ

){F(
n
ρ
,

1
σ1 + ε

, ρ)}−n. (3.17)
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Using (3.12) with (3.17) we get

M(R, f ) ≤ K2Rn1 + (θ−mR)m)
∞∑

n=n1+1

exp(
n
ρ

){F(
n
ρ
,

1
σ1 + ε

, ρ)}−n(θ−3mR)n. (3.18)

Now we consider the function H(z) defined by

H(z) =
∞∑

n=n1+1

exp(
n
ρ

){F(
n
ρ
,

1
σ1 + ε

, ρ)}−n(θ−3mn)zn =

∞∑
n=n1+1

bnzn.

Since F(t, σ, ρ)→∞ as t→∞, we have

lim
n→∞

[exp(
n
ρ

){F(
n
ρ
,

1
σ1 + ε

, ρ)}−n(θ−3mn)]
1
n = 0,

therefore, H(z) represents an entire function. From (3.18) we see that H(z) is an entire function of generalized
type σ′ ≥ σ. Applying Theorem B to the entire function H(z), we get

σ′ = lim sup
n→∞

α( n
ρ )

β{[γ(e
1
ρ (|bn|)−

1
n )]ρ}

. (3.19)

Now

e
1
ρ |bn|

−
1
n = (1 + 0(1))F(

n
ρ
,

1
σ1 + ε

, ρ),

since γ(n) ∈ L0, γ(e
1
ρ |bn|

−
1
n ) ≃ γ[F( n

ρ ,
1
σ1+ε
, ρ)]. Using above estimates in (3.19) we get σ′ = σ + ε, or σ′ ≥ σ.

Hence for arbitrary ε > 0, σ ≤ σ1 + ε i.e., σ ≤ σ1 + ε i.e., σ ≤ σ1. This completes the proof of the theorem.

4. Best Rational Approximation

Let E be a compact subset of the complex plane C such that Cap(E) > 0, and f a complex function
defined and bounded on E. For n ∈N, the best rational approximation error is defined as

en(E, f ) = inf
rn
|| f − rn||E,

where rn ∈ Rn,m. It is known [20] that if f is entire function then

lim
n→∞

[en(E, f )]
1
n = 0.

We now prove the following theorems.
Theorem 4.1. Let f ∈ Mm(C) and all the conditions of Lemma 3.1 satisfied with notations (3.1)-(3.4).

Then f has generalized order ρ if, and only if

lim sup
n→∞

α(n)

β[log{en(E, f )}−
1
n ]
= ρ. (4.1)

Proof. Taking into account the Poisson- Jensen formula, we have

log |
( f Qn − Pn)(z)

z2n+1 | =
1

2π

∫ 2π

0
log |

( f Qn − Pn)(Reiθ)
(Reiθ)2n+1

|
R2
− r2

R2 + r2 − 2rR cos(θ − ϕ)
dθ

+
∑
|bν |<R

log |
R2
− bνz

R(z − bν)
| −

∑
|aν |<R

log |
R2
− aνz

R(z − aν)
|,

(4.2)
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where z = reiϕ and aν and bν are the zeros and poles of f Qn − Pn, respectively. Let Qn(z) = Π(z − zν). Since
Pn is the nth Taylor polynomial to f Qn, and hence majorized by a constant times |Qn| near the origin. We
have on |w| = R : |Pn(w) ≤ Π(1 + |zν|)|(RK∗)n by the Walsh-Bernstein lemma. Following on the lines of Proof
of Theorem 4.3 of [12] for r < R and sufficiently large R we have

log |
( f Qn − Pn)(z)

z2n+1 | ≤ log(
r
R

)2n+1 + n log K∗ + log RnΠ(1 + |zν|) + K∗∗R
1
α

+
∑
|bν |≤2r

log 2R −
∑
|bν |≤2r

log ε,
(4.3)

where K∗,K∗∗ are constants and α < ρ−1.
Let us assume R = R(n) = exp[β−1

{
α(n)
ρ }] for sufficiently small r, subtracting log |Qn| from both sides we have

log |( f −
Pn

Qn
)(z)| ≤ log

r2n+1

[exp[β−1{
α(n)
ρ }]]

2n+1
+ n log K∗ − log δn

when |Qn(z)| ≤ δn. From above inequality we get

−
1
n

log(en(E, f )) ≥ 2 log r −
1
n

log r + (2 +
1
n

)β−1
{
α(n)
ρ
},

or

β[log(en(E, f ))−
1
n ] >

α(n)
ρ
.

Now proceeding to limits we get

lim sup
n→∞

α(n)

β[log{en(E, f )}−
1
n ]
≤ ρ.

Now assume that the opposite inequality is not true. Then we can choose a number 0 < ρ′ < ρ such that

en(E, f ) < exp[−nF(n,
1
ρ′

)]

for almost every n. Then

|| fn+1 − fn||E < 2 exp[−nF(n,
1
ρ′

)],n ≥ N0. (4.4)

Let η > 0 be smaller than the distance from zn, j to E for each j. Set

D = {z ∈ C : |z − zn, j| ≥ δ, 1 ≤ j ≤ m}.

There exists an integer N1 and a number C > 0 such that |qn(z)| ≥ C−1 if z ∈ D and n ≥ N1. Hence, we have

| fn(z) − fn−1(z)| ≤ C2
|pn(z)qn−1(z) − pn−1(z)qn(z)|. (4.5)

Since the sequence qn is convergent, therefore we have

||qn||E ≤M f or every n, (4.6)

where M is a positive constant. Then from (4.4) and (4.6) we get

||pnqn−1 − pn−1qn||E ≤ 2M2 exp[−nF(n,
1
ρ′

)],n ≥ N0.
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Let ρ′ < ρ′′ < ρ. Then there exists an integer N2 such that

||pnqn−1 − pn−1qn||E ≤ exp[−(n +m)F(n +m,
1
ρ′′

)],n ≥ N2. (4.7)

Now from (4.5) we obtain

| f (z)| ≤ | fN1 (z)| + C2
∞∑

n=N1+1

|pn(z)qn−1(z) − pn−1(z)qn(z)|. (4.8)

for z ∈ D.
In view of inequalities (4.7) and (4.8) we conclude that the generalized order of f is smaller than ρ, which
is a contradiction of the assumptions. Hence the proof is completed.

Theorem 4.2. If all conditions of Theorem 3.2 are satisfied. Then the entire function f is of generalized
type σ if, and only if

lim sup
n→∞

α( n
ρ )

β{[γ(e
1
ρ (en(E, f ))−

1
n )]ρ}

= σ.

Proof. Following the same reasoning as in the proof of Theorem 3.1 we can easily obtain the required
proof.

Remark 4.1. Taking α(t) = β(t) = log t in Theorems 3.1 and 4.1, we obtain the coefficient characterization
for the classical order of entire function f ∈ Mm(C) in terms of Newton-padé approximant and rational
approximation error respectively.

Remark 4.2. Taking α(t) = log[p−2] t, γ(t) = log[q−1] t and β(t) = t, p > q > 1 in Theorems 3.2 and 4.2 where
log[n] t = log log . . . log(t)(n − times). Then we obtain coefficient characterization for the (p, q)-type of entire
function f ∈Mm(C) in terms of Newton-padè approximant and rational approximation error respectively.
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