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Abstract. Left and right resolvents of left and right generalized Drazin invertible operators are introduced
in this paper. The construction of left and right resolvents allows us to find, in terms of the coefficients of
Laurent series, new representation results for left and right generalized Drazin inverses and the associated
spectral projections. Fundamental characterizations of left and right generalized Drazin invertible operators
are also obtained, using essentially the range, the quasi-nilpotent part and the analytic core.

1. Introduction and Preliminaries

LetH be a nontrivial complex Hilbert space equipped with an inner product ⟨., .⟩ and the corresponding
norm ∥.∥ . By M⊥ we denote the complement orthogonal of a subspace M ⊂ H . The set of all bounded linear
operators onH is B(H). Given A ∈ B(H),we denote byN(A), R(A) and σ(A) the kernel, the range and the
spectrum of A, respectively. A∗ is the adjoint operator of A. The identity operator will be denoted by I. The
restriction operator of A to M is denoted by AM and is such that AMx = Ax for all x ∈ M. The resolvent set
ρ(A) = C\σ(A) of A ∈ B(H) is the set of all complex number λ ∈ C such that A − λI is invertible in B(H).
The resolvent operator R (λ,A) = (A − λI)−1 is an analytic function on ρ(A) since it satisfies the resolvent
identity:

R (λ,A) − R
(
µ,A

)
=

(
λ − µ

)
R (λ,A) R

(
µ,A

)
, for all λ, µ ∈ ρ(A). (1)

We note in what follows Aλ = A − λI if A ∈ B(H) and λ ∈ C. If Aλ is not bijective but does possess a left
(resp. right) inverse, we can consider the left (resp. right) resolvent. Let A ∈ B(H) and Ω be an open set in
the complex plane C, the function Rl : Ω ×B(H)→ B(H) (resp. Rr : Ω ×B(H)→ B(H)), is said to be a left
(resp. right) resolvent of the operator A on Ω if the following conditions are satisfied:

(1) Rl (λ,A) Aλ = I (resp. AλRr (λ,A) = I) for all λ ∈ Ω;
(2) Rl (.,A) (resp. Rr (.,A) ) satisfies the resolvent identity 1, for all λ, µ ∈ Ω.
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As an immediate consequence of the definition Rl (.,A) and Rr (.,A) are analytic on the hole Ω as they
satisfy the resolvent identity. Left and right resolvents are special cases of the generalized resolvent that
has been widely used in many fields such as spectrum theory and Fredholm operators theory, see e.g [4].

An operator A ∈ B(H) is bounded below if there exists some c > 0 such that c ∥x∥ ≤ ∥Ax∥ , for every
x ∈ H . It is known that A is bounded below if and only if it is injective with closed range. Let us recall that
in the Hilbert spaces setting, A is left invertible if and only if A is bounded below and A is right invertible
if and only if A is surjective. A is said to be quasi-nilpotent if the spectrum σ(A) consists of the set {0} . The
approximate point spectrum σap(A) and the surjective spectrum σsu(A) of A are defined respectively by:

σap(A) = {λ ∈ C : Aλ is not bounded below}

and

σsu(A) =
{
λ ∈ C : Aλ is not surjective

}
.

Lemma 1.1. ([1]) Let A ∈ B(H), then A is bounded below (resp. surjective) if and only if A∗ is surjective (resp.
bounded below).

Since (A − λI)∗ = A∗−λI, then, using the notationσ(A) for the set
{
λ : λ ∈ σ(A)

}
, it follows from Lemma 1.1,

that σap and σsu are dual to each other in the sens that σap(A∗) = σsu(A) and σsu(A∗) = σap(A). σap(A) and σsu(A),
are non-empty compact subsets of C and the boundary ∂σ(A) ⊆ σsu(A) ∩ σap(A) ⊆ σ(A) = σsu(A) ∪ σap(A).

We say that A is completely reduced by the pair (M,N) , denoted as (M,N) ∈ Red (A) or A = AM⊕AN, if M
and N are two closed A-invariant subspaces ofH such thatH =M⊕N (that isH =M+N and M∩N = {0}).
In such case, it is easily seen thatN(A) = N(AM)⊕N(AN), R(A) = R(AM)⊕R(AN) and An = An

M ⊕An
N, for all

n ∈N.Moreover, A is bounded below (resp. surjective) if and only if AM and AN are bounded below (resp.
surjective). We have respectively, σap(A) = σap(AM) ∪ σap(AN) and σsu(A) = σsu(AM) ∪ σsu(AN).

The quasi-nilpotent partH0(A) of an operator A ∈ B(H) is defined byH0(A) =
{
x ∈ H : lim

n→∞
∥Anx∥1/n = 0

}
.

The analytic core of A, denoted by K (A), is the set of all x ∈ H for which there exist δx > 0 and a sequence
(xn)n∈N in H satisfying x0 = x, Axn+1 = xn and ∥xn∥ ≤ δn

x ∥x∥ for all n ∈ N. The basic properties of H0(A)
and K (A) are given in [1]. In particular, H0(A) and K (A) are (not necessarily closed) subspaces of H ,
N(A) ⊂ H0(A); for every x ∈ H , x ∈ H0(A) if and only if Ax ∈ H0(A); A(K (A)) = K (A); if M is a closed
subspace ofH and A(M) =M then M ⊂ K (A);H0(A) = H if and only if A is quasi-nilpotent. If A is bounded
below, thenH0(A) = {0} , if A is quasi-nilpotent, thenK (A) = {0} and if A is surjective thenK (A) = H .

The concept of generalized Drazin invertibility on a Banach space was introduced by Koliha in [5]. It is
defined as follows :

Definition 1.2. An operator A ∈ B(H) is generalized Drazin invertible if there is an element A1D ∈ B(H) such
that:

AA1D = A1DA, A1DAA1D = A1D and A
(
I − AA1D

)
is quasi-nilpotent onH

A1D is called the generalized Drazin inverse of A.

If A is generalized Drazin invertible then A1D exists and is unique, P = I−AA1D is the spectral projection
of A corresponding to {0} , A + P is invertible and AP = PA is quasi-nilpotent. It is well known that the
generalized Drazin inverse of A exists if and only if 0 is not an accumulation point of σ(A), or equivalently,
if and only if H0(A) and K (A) are both closed and H = K (A) ⊕ H0(A), in such case AK (A) is invertible
and AH0(A) is a quasi-nilpotent operator if H0(A) , {0}, see [6]. If A = AK (A) ⊕ AH0(A) is the described

decomposition, then A1D =
(
AK (A)

)−1
⊕ 0H0(A) and there exists a punctured neighborhood Ω of 0 in C such

that:

R(λ,A) = −
∞∑

n=0

λ−n−1AnP +
∞∑

n=0

λn
(
A1D

)n+1
, λ ∈ Ω. (2)
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Remark 1.3. Since the definition above requires the existence of a quasi-nilpotent operator (i.e an operator having
{0} as spectrum) then we can not have dimH = 0, this justifies the exclusion of the trivial space H = {0} at the
beginning.

In addition, if A ∈ B(H) is generalized Drazin invertible, it is not accurate to say that AH0(A) is quasi-nilpotent
since H0(A) is allowed to be {0}. But we have σ

(
AH0(A)

)
⊂ {0} instead of σ

(
AH0(A)

)
= {0}, since σ

(
AH0(A)

)
= {0}

means that 0 ∈ σ (A), and in this case, invertible operators can not be generalized Drazin invertible which is completely
false according to the definition 1.2.

We think it is important to mention this imprecision here, as it appears in several papers dealing with left and
right generalized Drazin invertible operators.

Now, consider two classes of operators, called left generalized Drazin invertible operators and right
generalized Drazin invertible operators, introduced by Miloud, Benharrat and Messirdi in [7] which extends
the class of generalized Drazin invertible operators. This two classes are defined as follows :

Definition 1.4. We say that A ∈ B(H) is left generalized Drazin invertible if H0(A) is closed and complemented
with an A-invariant closed subspace M ⊂ H such that A(M) is closed.

The pair (M,H0(A)) is called a left generalized Drazin decomposition of A and denoted by (M,H0(A)) ∈ lRed(A).

Definition 1.5. We say that A ∈ B(H) is right generalized Drazin invertible if K (A) is closed and complemented
with an A-invariant closed subspace N ⊂ H such that N ⊆ H0(A).

The pair (K (A),N) is called a right generalized Drazin decomposition of A and denoted by (K (A),N) ∈ rRed(A).

The following theorem gives some equivalent characterizations.

Theorem 1.6. ([2], [8]) Let A ∈ B(H), then the following assertions are equivalent:
1) A is left (resp. right) generalized Drazin invertible;
2) there is a pair (M,N) ∈ Red(A) such that AM is bounded below (resp. surjective) and σ (AN) ⊂ {0} ;
3) there exists a projection P ∈ B (H) such that AP = PA is quasi-nilpotent and A + P is bounded below (resp.

surjective).
4) there exist two operators L (resp. R),Q ∈ B(H) such that Q is quasi-nilpotent,

ALA = LA2 = A −Q and LAL = L2A = L.
(resp. ARA = A2R = A −Q and RAR = AR2 = R).

We say that L (resp. R) is a left (resp. right) generalized Drazin inverse of A (not necessarily unique).

A{l1D} (resp. A{r1D}) denotes the set of all left (resp. right) generalized Drazin inverses of A.

Remark 1.7. 1) A ∈ B(H) is generalized Drazin invertible if and only if A is both left and right generalized Drazin
invertible. In such case we have A{l1D} = A{r1D} =

{
A1D

}
.

2) If (M,H0(A)) ∈ lRed(A) and R (AM) is dense in M, then A is generalized Drazin invertible.
3) Assertion (3) in Theorem 1.6 involves (N (P) ,R (P)) ∈ lRed (A) (resp. ∈ rRed (A)) as A is left (resp. right)

generalized Drazin invertible. In particular R (P) = H0 (A) and K (A) ⊂ N (P) (resp. R (P) ⊂ H0 (A) and
K (A) = N (P)).

4) The link between assertions (3) and (4) in Theorem 1.6, keeping same notations, is given by :

P = I − LA (resp. P = I − AR),
Q = AP.

for some L ∈ A{l1D} (resp. R ∈ A{r1D}). At the opposite of the generalized Drazin decomposition, a left (resp. right)
generalized Drazin decomposition of A if it exists is not necessarily unique.
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5) If A = AM ⊕ AN is a reduction of a left (resp. right) generalized Drazin invertible operator A ∈ B(H) as
described in the assertion (2) in Theorem 1.6 and if AM has a left (resp. right) inverse Al (resp. Ar) on M, we obtain:

Al
⊕ 0N ∈ A{l1D}

(resp. Ar
⊕ 0N ∈ A{r1D}).

6) If A is a left (resp. right) generalized Drazin invertible operator then straightforward arguments give:

R (A) +H0(A) is closed (resp. R (A) +H0(A) = H),
K (A) +H0(A) is closed (resp. K (A) +H0(A) = H).

Various expressions and applications of the resolvent R (λ,A) are known in the literature where A is
generalized Drazin invertible operator see e.g. [9] and [3]. In this work we extend results of Djordjevic and
Stanimirovic [3], where we investigate the existence of the left (resp. right) resolvents of left (resp. right)

generalized Drazin invertible operators in Hilbert spaces by means of the operators Aλ
(
A∗
λ
Aλ

)−1
A∗
λ

(resp.

A∗
λ

(
AλA∗

λ

)−1
Aλ). Then a representation for the left (resp. right) generalized Drazin inverses and spectral

projections, in terms of the coefficients of Laurent series of the left (resp. right) resolvent, is established in
this paper.

After giving in section 2 some preliminary results which our investigation will need, we present, in
section 3, criteria for the existence of the left and the right generalized Drazin inverses, but also we give
explicit expressions of the left and right resolvents and corresponding left and right generalized Drazin
inverses. In addition, new characterizations of the left and right generalized Drazin invertibility are stated
by establishing that the existence criteria presented are not only sufficient conditions, but also necessary
ones. This result will be also investigated in order to formulate a second characterization of the left and
right generalized Drazin invertibility. This last characterization is given essentially via the range, the
quasi-nilpotent part and the analytic core.

2. Some useful results

The following lemma states the duality between the left and right generalized Drazin invertibility.

Lemma 2.1. ([2]) Let A ∈ B(H) then A is left (resp. right) generalized Drazin invertible, if and only if A∗ is right
(resp. left) generalized Drazin invertible, and if (M,N) ∈ lRed (A) (resp. (M,N) ∈ rRed (A)) then (N⊥,M⊥) ∈
rRed (A∗) (resp. (N⊥,M⊥) ∈ lRed (A∗)), in particular,K (A∗) = H0(A)⊥ (resp. H0(A∗) = K (A)⊥).

Lemma 2.2. Let A ∈ B(H) be left (resp. right) generalized Drazin invertible, then:

(R(A) +H0(A))⊥ = K (A∗) ∩N(A∗)
(resp. (K (A) ∩N(A))⊥ = R(A∗) +H0(A∗)).

Proof. In the left generalized Drazin invertibility case,H0(A) and R(A) +H0(A) are closed inH . Since A∗ is
right generalized Drazin invertible,K (A∗) is also closed inH . Thus,

(K (A∗) ∩N(A∗))⊥ = K (A∗)⊥ +N(A∗)⊥ = K (A∗)⊥ + R(A)

= H0(A) + R(A) = R(A) +H0(A).

The second equation is simply the dual of the first one.

The following properties of left and right generalized Drazin invertible operators, established by Miloud
et al. in [7], will be required in the next section. We include a proof for the sake of illustrations.
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Proposition 2.3. Let A ∈ B(H). If A is left (resp. right) generalized Drazin invertible, then 0 is not an accumulation
point of σap (A) (resp. σsu (A))

Proof. Suppose that A is left generalized Drazin invertible. If (M,N) ∈ lRed(A), then, since σap(A) =
σap(AM)∪σap(AN), we have 0 < σap(AM) and σap(AN) ⊂ {0}, then 0 is at most an isolated point of σap(A) which
also means that 0 is not an accumulation point of σap (A) .

We may use duality to deduce the result for right generalized Drazin invertible operators.

3. Left and right resolvents of left and right generalized Drazin invertible operators

Here, our first main objective is to investigate the left and the right generalized Drazin inverses via the
left and the right resolvents in the algebra B(H). The idea, to describe the left and the right resolvents, is
to use Proposition 2.3 and some classical results on operators of type A∗A and AA∗ where A ∈ B(H). The
operator A∗A is an important technical tool in operator theory, we will show its role in the characterization
of left and right generalized invertibility. The operator A∗A is self-adjoint, N(A∗A) = N(A) and if R(A) is
closed inH ,we have R(A∗A) = R(A∗).

Lemma 3.1. Let A ∈ B(H) be bounded below (resp. surjective). Then,
1) A∗A (resp. AA∗) is invertible in B(H).
2) Al = (A∗A)−1 A∗ (resp. Ar = A∗ (AA∗)−1) is a left (resp. right) inverse of A.
3) AAl = PR(A) (resp. ArA = PR(A∗)) is the orthogonal projection ofH onto R(A) (resp. R(A∗) = N(A)⊥).

Proof. According to Lemma 1.1, we show the results for A bounded below, the dual case is obtained by
replacing A by its adjoint.

1) If A is bounded below, sinceH = N(A∗) ⊕ R(A), then A∗
R(A) is injective and so A∗A is injective too, on

the other hand:

R(A∗) = A∗ (R(A)) = R(A∗A) = H .

So, A∗A is surjective, and then bijective and by the closed graph theorem (A∗A)−1 is bounded.
Assertions (2) and (3) are easy to verify since (AAl)

2 = AAl, (AAl)
∗ = AAl, R(AAl) = R(A) and if A is

replaced by A∗ we obtain that ArA is an orthogonal projection ofH onto R(A∗).

To simplify our notations, we denote for A ∈ B(H) and λ ∈ ρap (A) = C\σap(A) (resp. λ ∈ ρsu (A) =

C\σsu(A)), Aλ,l =
(
A∗
λ
Aλ

)−1
A∗
λ

and PA,λ,l = AλAλ,l (resp. Aλ,r = A∗
λ

(
AλA∗

λ

)−1
and PA,λ,r = Aλ,rAλ). PM,N

denotes a bounded projection according to the decomposition H = M ⊕ N such that R(PM,N) = M and
N(PM,N) = N,when N =M⊥, PM,N is simply denoted PM.

Aλ,l (resp. Aλ,r) is a left (resp. right) inverse of Aλ, and PA,λ,l (resp. PA,λ,r) is an orthogonal projection of
H onto R(Aλ) (resp. R(A∗

λ
)).

Lemma 3.2. Let A ∈ B(H), Ω ⊂ ρap (A) be open and L : Ω → B(H) be a function such that L (λ) Aλ = I, then L
satisfies the resolvent identity on Ω if and only ifN(L (λ)) is contant on Ω.

Proof. The necessity of the condition is obvious. For the sufficiency, suppose that there is a closed subspace
N ∈ H such that N(L (λ)) = N for every λ ∈ Ω. Then, since L (λ) Aλ = I we have N ∩ R(Aλ) = {0}, on the
other hand:

x = (x − ALx) + (ALx)

which means that N + R(Aλ) = H , thus N ⊕ R(Aλ) = H . Now, for every x ∈ H and λ, µ ∈ Ω we have
L (λ) L

(
µ
)

AµAλ = I, then L (λ) L
(
µ
)

is a left inverse of AµAλ. Furthermore, N(L (λ) L
(
µ
)
) = L

(
µ
)−1 (N) =
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N ⊕ Aµ (N), then:

L
(
µ
)

L (λ)
(
N ⊕ Aµ (N)

)
= L

(
µ
)

L (λ) Aµ (N)

= L
(
µ
)

L (λ)
(
Aλ −

(
µ − λ

)
I
)

(N)
= L

(
µ
) (

I −
(
µ − λ

)
L (λ)

)
(N)

= L
(
µ
)

(N) = {0} .

Thus, L (λ) L
(
µ
)

and L
(
µ
)

L (λ) have same kernels, and since AµAλ = AλAµ we have L (λ) L
(
µ
)
= L

(
µ
)

L (λ),
which means that L

(
µ
)

an L (λ) commutes. Now we have:(
λ − µ

)
L (λ) L

(
µ
)
= L (λ) L

(
µ
) (

Aµ − Aλ
)

= L (λ)
(
I − L

(
µ
)

Aλ
)

= L (λ) − L
(
µ
)

L (λ) Aλ
= L (λ) − L

(
µ
)
.

Which gives the result.

Corollary 3.3. Let A ∈ B(H), Ω ⊂ ρsu (A) be open and R : Ω → B(H) be a function such that AλR (λ) = I, then
R satisfies the resolvent identity on Ω if and only if R(R (λ)) is constant on Ω.

Proof. Indeed, R(R (λ)) constant⇔N(R (λ)∗) constant.

Proposition 3.4. Let A ∈ B(H) be left generalized Drazin invertible operator. Then,

lim
λ→0

PA,λ,l = PR(A)+H0(A).

Proof. From Lemma 2.2, (R(A) +H0(A))⊥ = K (A∗) ∩ N(A∗) and it follows that N
(
PR(A)+H0(A)

)
= K (A∗) ∩

N(A∗). Since A is left generalized Drazin invertible, we deduce from Proposition 2.3 and Lemma 3.1, that
there exists r > 0 such that PA,λ,l is an orthogonal projection with R(PA,λ,l) = R(Aλ), N(PA,λ,l) = R(Aλ)⊥ and
H = R(Aλ)⊕R(Aλ)⊥ = R(Aλ)⊕N(A∗

λ
), 0 < |λ| < r. Since λ , 0 and σ

(
AH0(A)

)
⊂ {0}, then Aλ (H0(A)) = H0(A)

that isH0(A) ⊂ R(Aλ). On the other hand, we have for all x ∈ H and 0 < |λ| < r :

PA,λ,lAx = PA,λ,lAλx + λPA,λ,lx = Aλx + λPA,λ,lx.

Then, since
∥∥∥PA,λ,l

∥∥∥ = 1 we have lim
λ→0
λPA,λ,lx = 0 and hence lim

λ→0
PA,λ,lAx = Ax, inH .

Let x ∈ K (A∗)∩N(A∗), then A∗x = 0 and there exist δx > 0 and a sequence (xn)n∈N inH satisfying x0 = x,
A∗xn+1 = xn and ∥xn∥ ≤ δn

x ∥x∥ for all n ∈N. Thus,

PA,λ,lx = Aλ
(
A∗
λ
Aλ

)−1
A∗x − λAλ

(
A∗
λ
Aλ

)−1
x = −λAλ

(
A∗
λ
Aλ

)−1
x

= −λAλ
(
A∗
λ
Aλ

)−1
A∗x1 = −

(
λPA,λ,lx1 + λ

2
Aλ

(
A∗
λ
Aλ

)−1
x1

)
= −

(
λPA,λ,lx1 + λ

2
PA,λ,lx2 + λ

3
Aλ

(
A∗
λ
Aλ

)−1
x2

)
= ... = −

(
PA,λ,l

[
λx1 + λ

2
x2 + ... + λ

n
xn

]
+ λ

n+1
Aλ

(
A∗
λ
Aλ

)−1
xn

)
.

Then we have:

∥∥∥PA,λ,lx
∥∥∥ ≤ δn

x |λ|
n+1

∥∥∥∥Aλ
(
A∗
λ
Aλ

)−1∥∥∥∥ + ∑
1≤ j≤n

|δxλ|
j

 ∥x∥ .
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So if r < 1
δx

, then lim
n→∞
δn

x |λ|
n+1

∥∥∥∥∥Aλ
(
A∗
λ
Aλ

)−1∥∥∥∥∥ = 0, and taking the limits in last inequality we have:∥∥∥PA,λ,lx
∥∥∥ ≤ ∥x∥

∑
j≥1

|δxλ|
j

≤
δx |λ| ∥x∥
1 − δx |λ|

.

Then, lim
λ→0

∥∥∥PA,λ,lx
∥∥∥ = 0. Finally, lim

λ→0
PA,λ,lx = PR(A)+H0(A)x, for all x ∈ H . At this level we have proved that

P0 = PR(A)+H0(A) is the point-wise limit of PA,λ,l as λ → 0. Now, we will show that it is in fact its uniform
limit. Indeed, since H = (K (A∗) ∩N(A∗)) ⊕ A(M) ⊕ H0(A) where (M,H0(A)) ∈ lRed(A), we can define
the three bounded projections P1,P2 and P3 onto K (A∗) ∩ N(A∗), A(M) and H0(A) respectively, such that
N(Pi) = R(P j) ⊕ R(Pk), i , j, i , k, j , k and i, j, k ∈ {1, 2, 3}. As AM is left invertible on M, let LM be a left
inverse of AM on M, then:∥∥∥PA,λ,lx − P0x

∥∥∥ =
∥∥∥(PA,λ,l − P0

)
(P1x + P2x + P3x)

∥∥∥
≤

δP1x |λ|

1 − δP1x |λ|
∥P1x∥ +

∥∥∥λPA,λ,lLMP2x
∥∥∥ + ∥P3x − P3x∥

≤

(
δP1x |λ|

1 − δP1x |λ|
∥P1∥ + |λ| ∥LM∥ ∥P2∥

)
∥x∥ .

Moreover, sinceK (A∗) is closed and A∗ (K (A∗)) = K (A∗) then by the open mapping theorem A∗
K (A∗) is open,

that is there exists c > 0 such that B1
⊂ A∗

(
cB1

)
, where B1 is the unit closed ball, then for every x ∈ K (A∗)

there is some x1 ∈ K (A∗) such that A∗x1 = x and ∥x1∥ ≤ c ∥x∥. So, by induction, there exists for all n ≥ 1,
some xn+1 ∈ K (A∗) such that A∗xn+1 = xn and ∥xn+1∥ ≤ c ∥xn∥, which involves that ∥xn+1∥ ≤ cn+1

∥x∥. Then, if
x0 = x, and C = max {1, c}, we have ∥xn∥ ≤ Cn

∥x∥. The argument used above shows that if r < 1
C we have:

sup
x∈H\{0}

∥∥∥PA,λ,lx − P0x
∥∥∥

∥x∥
≤

C |λ|
1 − C |λ|

∥P1∥ + |λ| ∥LM∥ ∥P2∥ .

This means that lim
λ→0

PA,λ,l = P0 = PR(A)+H0(A) uniformly.

Proposition 3.5. Let A ∈ B(H) be a left generalized Drazin invertible operator. Then there exists a punctured
neighborhoodV of 0 in C such that:

PA,λ,l
(
I − P0

(
I − PA,λ,l

))−1 = PR(Aλ),K (A∗)∩N(A∗), for all λ ∈ V.

Proof. As lim
λ→0

P0
(
I − PA,λ,l

)
= 0 inB(H), then there exists a small enough punctured neighborhoodV of 0 in

C such that
∥∥∥P0

(
I − PA,λ,l

)∥∥∥ < 1, for all λ ∈ V. Thus, I−P0
(
I − PA,λ,l

)
is boundedly invertible and the inverse

is given by the Neumann series:

(
I − P0

(
I − PA,λ,l

))−1 =

∞∑
n=0

(
P0

(
I − PA,λ,l

))n , λ ∈ V.

Since
(
I − PA,λ,l

)n PA,λ,l = 0, for all n ≥ 1 and λ ∈ V, we get:

(
I − P0

(
I − PA,λ,l

))−1 PA,λ,l =

∞∑
n=0

(
P0

(
I − PA,λ,l

))n PA,λ,l = PA,λ,l

and [
PA,λ,l

(
I − P0

(
I − PA,λ,l

))−1
]2
= PA,λ,l

(
I − P0

(
I − PA,λ,l

))−1 .
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Furthermore,

PA,λ,l
(
I − P0

(
I − PA,λ,l

))−1 PA,λ,l = PA,λ,l,

And since I − P0
(
I − PA,λ,l

)
is invertible then:

R

(
PA,λ,l

(
I − P0

(
I − PA,λ,l

))−1
)
= R

(
PA,λ,l

)
(3)

= R(Aλ), for all λ ∈ V.

On the other hand, since (I − P0) P0
(
I − PA,λ,l

)
= 0 for all n ≥ 1,we have:

P0PA,λ,l
(
I − P0

(
I − PA,λ,l

))−1

=
[(

P0PA,λ,l + I − P0
)
− I + P0

] (
I − P0

(
I − PA,λ,l

))−1

= I − (I − P0)
(
I − P0

(
I − PA,λ,l

))−1

= I −
∞∑

n=0

(I − P0)
(
P0

(
I − PA,λ,l

))n

= I − (I − P0) = P0, λ ∈ V.

So,N
(
PA,λ,l

(
I − P0

(
I − PA,λ,l

))−1
)
⊂ N (P0) .

In addition, let x ∈ N (P0) ∩ R(PA,λ,l),

∥x∥ =
∥∥∥(I − P0) PA,λ,lx

∥∥∥ ≤ ∥∥∥(I − P0) PA,λ,l

∥∥∥ ∥x∥ , λ ∈ V.
If x , 0 we will have

∥∥∥((I − P0)) PA,λ,l

∥∥∥ ≥ 1, which is absurd since lim
λ→0

∥∥∥((I − P0)) PA,λ,l

∥∥∥ = 0. Therefore,

N (P0) ∩ R(PA,λ,l) = {0} and N
(
PA,λ,l

(
I − P0

(
I − PA,λ,l

))−1
)
= N (P0) , for all λ ∈ V. Consequently, N (P0) ⊕

R(PA,λ,l) = H ,where R(PA,λ,l) = R(Aλ) andN (P0) = K (A∗) ∩N(A∗), for all λ ∈ V.

Let us now consider the operator PA,λ,l = PA,λ,l
(
I − P0

(
I − PA,λ,l

))−1. We obtain, by virtue of Proposition
3.5, the following corollary.

Corollary 3.6. Let A ∈ B(H) be a left generalized Drazin invertible operator. Then there exists a punctured
neighborhoodV of 0 in C such that for all λ, µ ∈ V :

PA,λ,lPA,µ,l = PA,λ,l.

Proof. We know, from Proposition 3.5, thatN
(
PA,λ,l

)
= N (P0) , so for all λ, µ ∈ V :

PA,λ,l

(
I − PA,µ,l

)
= 0

This completes the proof.

Theorem 3.7. Let A ∈ B(H) be left generalized Drazin invertible. Then there exists a punctured neighborhood V
of 0 in C such that the operator RlD (λ,A) = Aλ,lPA,λ,l satisfies the following conditions for all λ, µ ∈ V :

1) RlD (λ,A) Aλ = I;
2) RlD (λ,A) − RlD

(
µ,A

)
=

(
λ − µ

)
RlD

(
µ,A

)
RlD (λ,A) ;

That is RlD (λ,A) is a left resolvent for A onV.

Proof. By virtue of formula 3, there exists a punctured neighborhood V of 0 in C such that PA,λ,lAλ = Aλ
for all λ ∈ V. Thus,

1)

RlD (λ,A) Aλ = Aλ,lPA,λ,lAλ
= Aλ,lAλ = I, λ ∈ V.
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We also obtain:

AλRlD (λ,A) = AλAλ,lPA,λ,l (4)
= PA,λ,lPA,λ,l = PA,λ,l, λ ∈ V.

2) We have since PA,λ,l is a projection RlD (λ,A)PA,λ,l = RlD (λ,A), which means thatN (P0) ⊂ N (RlD (λ,A)).
On the other hand, from formula 4 we deduce that N (RlD (λ,A)) ⊂ N (P0). So, N (RlD (λ,A)) = N (P0)
and now we can apply Lemma 3.2 to deduce that RlD (.,A) satisfies the resolvent identity on a punctured
neighborhoodV of 0 in C.

From the resolvent identity, we deduce immediately the continuity of the operator-valued function
RlD (λ,A) onV, so lim

µ −→
µ∈V\{λ}

λ
RlD

(
µ,A

)
= RlD (λ,A) . Thus, for all λ ∈ V,

d
dλ

RlD (λ,A) = lim
µ −→
µ∈V\{λ}

λ

RlD
(
µ,A

)
− RlD (λ,A)
µ − λ

= lim
µ −→
µ∈V\{λ}

λ
RlD

(
µ,A

)
RlD (λ,A)

= RlD (λ,A) lim
µ −→
µ∈V\{λ}

λ
RlD

(
µ,A

)
= (RlD (λ,A))2 ,

Theorem 3.8. Let A ∈ B(H) be left generalized Drazin invertible, then the residue Res
(
λ−1RlD (λ,A) , 0

)
of λ 7→

λ−1RlD (λ,A) at 0 is a left generalized Drazin inverse of A, i.e. Res
(
λ−1RlD (λ,A) , 0

)
∈ A{l1D}.

Proof. As RlD (λ,A) is analytic, then RlD (λ,A) admits inV a Laurent series expansion around 0, given by:

RlD (λ,A) =
∞∑

n=−∞

λnAn (5)

where An are bounded linear operators onH and and the series
∞∑

n=−∞
λnAn converges by the operator norm

in H . Using resolvent identity, we see that for λ, µ ∈ V and positively-oriented small circles Γ,Γ′ ⊂ V
enclosing 0, we have, supposing Γ′ is of small radius than Γ :

AnAp =

(
1

2πi

∫
Γ

RlD (λ,A)
λn+1 dλ

) (
1

2πi

∫
Γ′

RlD
(
µ,A

)
µp+1 dµ

)
=

1

(2πi)2

∫
Γ

∫
Γ′

RlD (λ,A) RlD
(
µ,A

)
λn+1µp+1 dµdλ

=
1

(2πi)2

∫
Γ

∫
Γ′

RlD (λ,A) − RlD
(
µ,A

)
λn+1µp+1 (

λ − µ
) dµdλ

since λ , µ. And then:

AnAp =
1

(2πi)2

∫
Γ

∫
Γ′

RlD (λ,A) − RlD
(
µ,A

)
λn+2µp+1

(
1 − µλ

) dµdλ. (6)
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Define τn =

{
1 if n ≥ 0
0 elsewhere . Then we have:

∫
Γ

∫
Γ′

RlD (λ,A)

λn+2µp+1
(
1 − µλ

)dµdλ =

∫
Γ

RlD (λ,A)
λn+2

∫
Γ′

µ−p−1

1 − µλ
dµdλ (7)

=

∫
Γ

RlD (λ,A)
λn+2

(
2πiτp

λp

)
dλ

= 2πiτp

∫
Γ

RlD (λ,A)
λn+p+2 dλ

= (2πi)2 τpAn+p+1.

On the other hand:∫
Γ

∫
Γ′

RlD
(
µ,A

)
λn+2µp+1

(
1 − µλ

)dµdλ =

∫
Γ′

R
(
µ,A

)
µp+1

∫
Γ

λ−n−2(
1 − µλ

)dλdµ (8)

=

∫
Γ′

R
(
µ,A

)
µp+1

(
2πiτ−n−1

µn+1

)
dµ

= 2πiτ−n−1

∫
Γ′

R
(
µ,A

)
µn+p+2 dµ

= (2πi)2 τ−n−1An+p+1.

Substituting 7 and 8 in 6 we get:

AnAp =
(
τp − τ−n−1

)
An+p+1 (9)

=
(
ϕn + ϕp

)
An+p+1

with ϕn =

{
1
2 if n ≥ 0
−

1
2 elsewhere

. Hence, for n = p = −1 we obtain:

A−1A−1 = −A−1,

thus −A−1 is a projection and for all n ∈N, n ≥ 1,

(A−1)n = (−1)n−1 A−1.

Furthermore, since RlD (λ,A) Aλ = I and AλRlD (λ,A) = PA,λ,l are analytic onV,we get:

PA,λ,l =

∞∑
n=−∞

λnAλAn =

∞∑
n=−∞

λn (AAn − An−1) , (10)

I =

∞∑
n=−∞

λnAnAλ =
∞∑

n=−∞

λn (AnA − An−1) . (11)

The singular parts of the two previous series are necessarily zero:

∞∑
n=1

λ−n (AA−n − A−n−1) = 0,
∞∑

n=1

λ−n (A−nA − A−n−1) = 0.

So,

I = A0A − A−1 and AA−n = A−nA = A−n−1 for all n ≥ 1.
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We show by induction that, for all n ∈N,

A−n−1 = AnA−1. (12)

Since A0A−1 = A−1A0 = 0 and I = A0A − A−1,we can write:

A0 = A0 (A0A − A−1) = A0A0A = (A0A − A−1) A0 = A0AA0.

Thus,

A0 = A0A0A = A0AA0,

AA0A = A + AA−1, A0AA = A + A−1A,

and

A0AA − A = A−1A = AA−1 = AA0A − A.

Consequently, it follows from Theorem 1.6 that A0 is a left generalized Drazin inverse of A if AA−1 is
quasi-nilpotent. Indeed,

(AA−1)n = An (A−1)n = (−1)n−1 AnA−1 = (−1)n−1 A−n−1, n ≥ 1

moreover the convergence of
∞∑

n=1
λ−nA−n onV implies that ∥A−n∥ < |λ|

n as n→∞, so:

lim
n→∞

∥∥∥(AA−1)n
∥∥∥1/n
= lim

n→∞
∥A−n−1∥

1/n
≤ lim

n→∞
|λ|1+1/n ,

as V is a small enough punctured neighborhood of 0, we can assume that it is included in the open unit
disc of center 0,which gives finally lim

n→∞
|λ|1+1/n = |λ| and then

lim
n→∞

∥∥∥(AA−1)n
∥∥∥ 1

n
≤ min
λ∈V
|λ| = 0.

It is clear that A−1 is the residue of RlD (λ,A) and A0 is that of λ−1RlD (λ,A) at 0, i.e. A−1 = Res (RlD (λ,A) , 0)
and A0 = Res

(
λ−1RlD (λ,A) , 0

)
.

Remark 3.9. By formula 9 we get:

An+1 = AnA0 for all n ≥ 0

Then we conclude by induction that:

An = An+1
0 for all n ≥ 0,

and substituting 12 into 5, we obtain:

RlD (λ,A) =
∑
λn

n≥0

An+1
0 +

∑
n≥1

λ−nAn−1A−1.

So, we derive an expression for a left resolvent analogous to formula 2.
Now let (M,N) ∈ lRed (A), P = PN,M and L be a left generalized Drazin inverse of A such that P = I − LA.

We have LM (AM − λIM) = IM − λLM, then for sufficiently small |λ|, LM (AM − λIM) is invertible and then we can
construct an analytic function S (λ,A) on a punctured neighborhoodV of 0 in C such that:

S (λ,A) = (LM (AM − λIM))−1 LM ⊕ (AN − λIN)−1

=
(
(LM (AM − λIM))−1

⊕ (AN − λIN)−1
)

(LM ⊕ IN)

= (L (A − λI) (I − P) + (A − λI) P)−1 (L + P)
= (L (I − P) Aλ + PAλ)−1 (L + P)
= (LAλ + PAλ)−1 (L + P)
= ((L + P) Aλ)−1 (L + P) .
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The relation S (λ,A) Aλ = I is now obvious, and

S (λ,A) =

∑
n≥0

λnLn+1
M

 ⊕
−∑

n≤−1

λnA−n−1
N


=

∑
n≥0

λnLn+1 (I − P) +
∑
n≤−1

(
−λnA−n−1P

)
=

∑
n≥0

λnLn+1
−

∑
n≤−1

λnA−n−1P.

SinceN(S (λ,A)) = N(L+ P) for all λ ∈ V, then by Lemma 3.2 S (.,A) satisfies the resolvent identity onV. On the
other hand,

lim
λ→
λ∈V

0
AλS (λ,A) = lim

λ→
λ∈V

0

[
(AM − λIM) (IM − λLM)−1 LM ⊕ (AN − λIN) (AN − λIN)−1

]
= AMLM ⊕ IN

Now, since (N(A−1),R(A−1)) ∈ lRed (A) and if we take L = A0 and P = −A−1 we find:

RlD (λ,A) = ((A0 − A−1) Aλ)−1 (A0 − A−1)

So, we have proved the following main result.

Theorem 3.10. Let A ∈ B(H) be a left generalized Drazin invertible operator, then :

RlD (λ,A) = ((A0 − A−1) Aλ)−1 (A0 − A−1)

on a punctured neighborhoodV of 0 in C.

We now give a link between the residue of RlD (λ,A) and the spectral subspacesH0(A) andK (A).

Theorem 3.11. Let A ∈ B(H) be left generalized Drazin invertible, then:

H0(A) = R (Res (RlD (λ,A) , 0)) andK (A) ⊂ N (Res (RlD (λ,A) , 0)) .

Proof. The statement is an immediate consequence of (N(A−1),R(A−1)) ∈ lRed (A) .

We state similar results for right generalized Drazin invertible operators. Let RrD (λ,A) = PA,λ,rAλ,r,
where:

Aλ,r = A∗
λ

(
AλA∗λ

)−1
, PA,λ,r = Aλ,rAλ, Q0 = lim

λ→0
PA,λ,r,

PA,λ,r =
(
I −

(
I − PA,λ,r

)
Q0

)−1 PA,λ,r.

And let

A0 = Res
(
λ−1RrD (λ,A) , 0

)
,

A−1 = Res (RrD (λ,A) , 0) .

Then we have the following result:

Theorem 3.12. Let A ∈ B(H) be a right generalized Drazin invertible operator. Then there exists a punctured
neighborhoodV of 0 in C such that the operator RrD (λ,A) satisfies the following six properties for all λ, µ ∈ V :

1) AλRrD (λ,A) = I;
2) RrD (λ,A) − RrD

(
µ,A

)
=

(
λ − µ

)
RrD

(
µ,A

)
RrD (λ,A) ;

That is RlD (λ,A) is a right resolvent for A onV, and
3) A0 ∈ A{r1D};
4) A−1 = AA0 − I
5) RlD (λ,A) = (A0 − A−1) (Aλ (A0 − A−1))−1

6) R (A−1) ⊂ H0(A) andN (A−1) = K (A).
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Proof. All is an immediate consequence of the duality between left and right generalized Drazin invertibil-
ity.

From the preceding theorems, we get the following corollary.

Corollary 3.13. Let A ∈ B(H) be a generalized Drazin invertible operator, then:

A1D = Res
(
(λAλ)−1 , 0

)
,

R

(
Res

(
(Aλ)−1 , 0

))
= H0(A) andN

(
Res

(
(λAλ)−1 , 0

))
= K (A).

Remark 3.14. For a left generalized Drazin invertible operator A ∈ B(H) we have first proved that the limit
lim
λ→
λ∈V

0
PA,λ,l exists. Moreover, to derive an explicit formula for a left generalized Drazin inverse of A, we have used

only the fact that the limit lim
λ→
λ∈V

0
PA,λ,l exists, and then we have constructed a left resolvent so that its residue is

a left generalized Drazin inverse of A. So, if we apply also the duality, we have proved in fact the following new
characterization:

Theorem 3.15. Let A ∈ B(H), then A is left (resp. right) generalized Drazin invertible if and only if there is a
punctured neighborhoodV of 0 in C such that the limit lim

λ→
λ∈V

0
PA,λ,l (resp. lim

λ→
λ∈V

0
PA,λ,r) exists.

Lemma 3.16. Let A,B ∈ B (H) be two bounded below (resp. surjective) operators having same ranges (resp. kernels)
then:

A (A∗A)−1 A∗ = B (B∗B)−1 B∗ (resp. A∗ (AA∗)−1 A = B∗ (BB∗)−1 B).

Proof. A (A∗A)−1 A∗ (resp. A∗ (AA∗)−1 A) is an orthogonal projection that depends only on R (A) (resp.
N (A)).

Theorem 3.17. Let A ∈ B(H), then the following statements are equivalent:
1) A is left generalized Drazin invertible;
2)H0(A) and R(A) +H0(A) are closed inH .

Proof. Assertion (6) of Remark 1.7 asserts that (1) implies (2). It remains to show that (2)⇒(1). Suppose
thatH0(A) and R(A) +H0(A) =W are closed inH . AH0(A)⊥ is injective sinceN(AH0(A)⊥ ) = N(A)∩H0(A)⊥ ⊂
H0(A) ∩H0(A)⊥ = {0} . Furthermore,

A(H0(A)⊥) +H0(A) ⊂ R(A) +H0(A)
⊂ A

(
H0(A) ⊕H0(A)⊥

)
+H0(A)

⊂ A(H0(A)⊥) +H0(A)

hence, R(A) +H0(A) = A(H0(A)⊥) +H0(A). Moreover, since x ∈ H0(A) ⇔ Ax ∈ H0(A) then A(H0(A)⊥) ∩
H0(A) = {0}, so let us define the operator S by:

S : R(A) +H0(A) −→ H0(A)⊥

Ax + y 7−→ x; x ∈ H0(A)⊥, y ∈ H0(A).

If (Axn+yn, xn)n∈N is a sequence in the graph of S which converges to (z, x) inH×H , it’s clear that x ∈ H0(A)⊥,
(Axn)n∈N converges to Ax and

(
yn

)
n∈N converges to an element y ∈ H0(A) with z = Ax + y. So, S is closed

between the Hilbert spaces R(A) +H0(A) andH0(A)⊥, it is then necessarily continuous.
Consequently, SA(H0(A)⊥) is continuous and if (Axn)n∈N is a sequence in A(H0(A)⊥) which converges

to y ∈ H , then (SAxn)n∈N = (xn)n∈N converges to an element x ∈ H0(A)⊥. So, (Axn)n∈N converges to
Ax = y ∈ A(H0(A)⊥). This shows that A(H0(A)⊥) is closed inH ,AH0(A)⊥ is bounded below and the continuity
of the projection P0 = PA(H0(A)⊥),H0(A) ∈ B(W) since R(A) +H0(A) = A(H0(A)⊥) ⊕ H0(A). Furthermore, the
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below boundedness of AH0(A)⊥ implies that there is a constant a > 0 such that for all x ∈ H0(A)⊥ and for any
λ ∈ C, |λ| < a

∥0W⊥⊕P0∥
, ∥Ax∥ ≥ a ∥x∥, then:

∥(0W⊥ ⊕ P0) Aλx∥ = ∥Ax − λ (0W⊥ ⊕ P0) x∥
≥ (a − |λ| ∥0W⊥ ⊕ P0∥) ∥x∥ .

Thus, P0Aλx , 0 for all x ∈ H0(A)⊥\ {0} and then we have Aλ(H0(A)⊥) ∩ H0(A) = {0} . It’s clear that
AH0(A)⊥ + IH0(A) is injective with closed range, this operator is then bounded below, therefore there is a
constant b > 0 such that:

∥Sλx∥ ≥ (b − |λ|) ∥x∥

for all x ∈ H and for any λ ∈ C, |λ| < b,where Sλ =
(
AH0(A)⊥ ⊕ IH0(A)

)
− λI. On the other hand,

R(Sλ) = R(Aλ) = Aλ
(
H0(A)⊥

)
+H0(A)

which shows that Aλ (H0(A)⊥) +H0(A) is closed for |λ| < b. It now remains to show that lim
λ −→

0<|λ|<b
0

PA,λ,l exists.

Indeed, since Sλ is bounded below an has the same range as Aλ,we deduce, by continuity of Sλ and Lemma
3.16, that:

PA,λ,l = Sλ(S∗λSλ)
−1S∗

λ
,

lim
λ −→

0<|λ|<b
0

PA,λ,l = lim
λ→0

Sλ(S∗λSλ)
−1S∗

λ
= S0(S∗0S0)−1S∗0.

So, by Theorem 3.15 A is left generalized Drazin invertible.

Theorem 3.18. Let A ∈ B(H), then the following statements are equivalent:
1) A is right generalized Drazin invertible;
2)K (A) is closed inH andK (A) +H0(A) = H .

Proof. Again assertion (6) of Remark 1.7 asserts that (1) implies (2). It remains to show that (2)⇒(1). IfK (A)
is closed inH andK (A)+H0(A) = H , thenK (A)∩N(A) is closed and AK (A)−λIK (A) is surjective for |λ| < c,
c > 0. Let x ∈ H0(A) such that Aλx = y ∈ K (A). If 0 < |λ| < c,we have:

x =
Ax − y
λ

=
A

(Ax−y
λ

)
− y

λ
=

A2x
λ2 −

Ay
λ2 −

y
λ

= ... =
Anx
λn −

n∑
j=1

A j−1y
λ j , n ∈N.

As x ∈ H0(A), then lim
n→∞

Anx
λn = 0 and x = −

∞∑
j=1

A j−1 y
λ j . Since y ∈ K (A) and K (A) is closed we deduce that

x ∈ K (A). Thus we observe that if x ∈ H0(A) and y ∈ K (A) are such that x + y ∈ N(Aλ), then Aλx ∈ K (A)
and x ∈ K (A), so x + y ∈ K (A) andN(Aλ) ⊂ K (A) for |λ| < c.

Let Tλ ∈ B(H) be the operator
(
AK (A) ⊕ IK (A)⊥

)
− λI. Since T0 is surjective, we can assume c < 1 and

then Tλ is surjective for |λ| < c. We have N(Tλ) = N(Aλ) ⊂ K (A) for |λ| < c. It now remains to show that
lim
λ −→

0<|λ|<c
0

PA,λ,r exists. Indeed, since Tλ is surjective having the same kernel as Aλ, we deduce, by continuity of

Tλ and Lemma 3.16, that:

PA,λ,r = T∗
λ
(TλT∗λ)

−1Tλ,

lim
λ −→

0<|λ|<c
0

PA,λ,r = lim
λ→0

T∗
λ
(TλT∗λ)

−1Tλ = T∗0(T0T∗0)−1T0,

therefore A is right generalized Drazin invertible.
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Remark 3.19. 1) Recalling duality principle between left and right generalized Drazin invertibility, one may con-
jecture after Theorem 3.17, that A is right generalized Drazin invertible if and only if K (A) and N(A) ∩ K (A) are
closed inH , which is then equivalent to the only condition that K (A) is closed. Unfortunately, this is not true as if
A is the right shift thenK (A) = {0} and 0 is an accumulation point of σsu (A) .

2) Recalling duality principle between left and right generalized Drazin invertibility, one may conjecture after
Theorem 3.18, that A is left generalized Drazin invertible if and only if H0(A) is closed and K (A) ∩ H0(A) = {0} ,
which is then equivalent to the only condition thatH0(A) is closed. Unfortunately, this is not true as if A is compact
with an infinite spectrum, thenH0(A) is closed and 0 is an accumulation point of σap (A) .

The approach used along this paper allows us to conjecture the following characterizations that seem
dual to each other :

Conjecture 3.20. Let A ∈ B(H), then:

1. A is left generalized Drazin invertible if and only if R(A) +H0(A) is closed andK (A) ∩H0(A) = {0} .
2. A is right generalized Drazin invertible if and only ifK (A) +H0(A) = H andK (A) ∩N(A) is closed.

Example 3.21. 1) The left-shift on l2 :

L (x1, x2, x3, ...) = (x2, x3, ...)

and the right-shift on l2 :

R (x1, x2, x3, ...) = (0, x1, x2, x3, ...)

are mutual adjoints. The spectra σ(L) and σ(R) are the closed unit disk. R is injective bounded linear operator on l2

but not surjective. Thus, R is left invertible with left inverse the left shift operator L. So, R (resp. L) is a left (resp.
right) generalized Drazin invertible operator on l2 and L ∈ R{l1D} (resp. R ∈ L{r1D}). Then:

LR = I and R − λI = R − λLR = (I − λL) R.

Further, the resolvent RlD (λ,R) = (I − λL)−1 L is given by the Neumann series
∞∑

n=0
λnLn+1 whenever |λ| < ∥L∥−1 .

2) Let A ∈ B
(
l2
)

be such that Ax =
(

x3
1 , x4,

x5
2 , x6,

x7
3 , ...

)
for every x = (xn)n∈N∗ ∈ l2. Let

0
x =

(
0,

0
x2, 0,

0
x4, 0; ...

)
,

and for every k ∈N define
k
x =

(
k
xn

)
n∈N∗

such that:

k
x2i = 0, 1 ≤ i ≤ k

k
x2i+2k =

0
x2i, i ≥ 1

k
x2i+1 = 0, i ≥ 0.

Then we have : A
k+1
x =

k
x, for all k ≥ 0 and

∥∥∥∥∥k
x
∥∥∥∥∥ = ∥∥∥∥0

x
∥∥∥∥, thus

0
x ∈ K (A), that is M =

{
x = (xn)n∈N∗ ∈ l2 : x2n−1 = 0

}
⊂

K (A). On the other hand, for x = (x1, 0, x3, 0, x5, ...) we have:

Akx =
(

0!x2k+1

k!
, 0,

1!x2k+3

(k + 1)!
, 0,

2!x2k+5

(k + 2)!
, ...

)
.

So, ∥∥∥Akx
∥∥∥ 1

k
≤ (k!)−

1
k ∥x∥

1
k .

Then, x ∈ H0 (A) , that is N =
{
x = (xn)n∈N∗ ∈ l2 : x2n = 0

}
⊂ H0 (A) . But, l2 = M ⊕N, then, l2 = K (A) +H0 (A),

and sinceK (A) ∩N = {0} ,K (A) =M is closed. So by Theorem 3.18, A is right generalized Drazin invertible.
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