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Abstract. In this article, we concentrate on the Szdsz-Jakimovski-Leviatan operators imposed by Appell
polynomials using g-calculus. We analyze the classical Szasz-Jakimovski-Leviatan-Kantorovich and derive
the approximation results connected to the non-negative parameters ¢ € [}, ®) in g-analogue. In order to
combining with the earlier investigation by utilizing the Korovkin’s theorem we study the local as well
as global approximation theorems in terms of uniform modulus of continuity of order one and two. We
calculate the rate of convergence by using of Lipschitz-maximal functions. Moreover, the Voronovskaja-type
approximation theorem is also calculated here.

1. Introduction and Preliminaries

Due to the rapid development of the Appell polynomials [3] defined in 1880, an advance technique of

Appell polynomials have been attempted by the mathematician Jakimovski and Leviatan in 1969 [8] by the
identity

P)e™ =Y plx)af, (1)
k=0

which have been received more significant attention with the expression Bi(x) = Z};:o ai(r%_jj)! (r € N) and
P(w) = Y52 axw*, P(1) # 0 and Szdsz-Jakimovski-Leviatan-operators given by Wood, [29]

1 = k
Wi(f;x) = P)e(ry) kZ:;Pk(rx)f(;), 2)
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where P(1) # 0, P(a) = Y12, bxa®, Pr(x) = ZI;:O bj('r%}j)! (r € N) and % > 0. Further for more precisely, if

take P(1) = 1 in (2) then the classical Sz4sz operators [28] obtained. Later on, the great achievement in

manufacturing techniques of Appell polynomials , which because of being provided with an improved

performance of Appell polynomials and introduced by Al-Salam (see [2, 11]) in g-calculus by initiating the
x tll

generating functions P,(t) = }, Prrq[n_]qw P,(1) # 0. Al-Salam, proposed a model of the family of g-Appell
n=0 ’
polynomials by

r

Ppy() = Z[ i ] P, g, (re N)
q

k=0

and g-differential, Dq,x(Pm(x)) = [r]yPr-1,4(x), r =1,2,..., where Py 4(x) is a non zero constant. Furthermore,
Dq,x(PLq(x)) = [1]4Po4(x) = Poy and Py(t)e,(tx) = ). Prlq(x)ﬁyl,, 0 < g < 1. These types of approaches
r=0 7

were successfully identified the great achievement and high efficiency corresponding with the earlier
classical Appell polynomials [3]. To understand the better information regrading the above mathematical
polynomials we review the basics of g-calculus. For each non-negative integer r, the g-integer is defined as

1-q"
= 1

[, = { =" 7% forreNand [0], = 0.
1, g=1

7

For |g] <1, the g-factorial [r],! is defined by

1 (r=0)
M=y w,  cen. )
k=1

In the standard approach the exponential functions for g-calculus:

Eq(X) = Z [k—]q' (4)
k=0

For 0 < |g| < 1, the g-Jackson integral from 0 to u € R, given by [7, 9]

[ o =ut -0y s,
i=0

and the g-Jackson integral on a general interval [u,v] given by

fl:vf(x)dqx = jo‘” f)ydyx — fou F()d,x.

For more concerned about g-calculus, especially, their notations and formula we prefer to see [7, 9, 10]).
In 1950, Szasz gave a comprehensive investigation of positive linear operators for the set of all continuous
function f on [0, c0), and rapidly there are various model of Szdsz operators studied by mathematician (see
[20, 25]). The Szész Jakimovski and Leviatan types model are also typically represented by the researcher
for example, Mursaleen et al., studied the model of g-analogue of Jakimovski-Levitian operators [17] and
the model of Stacu Jakimovski-Levitian-Durmeyer operators [18], Alotaibi et al., studied the model of g-
Jakimovski-Leviatan-Beta operators [1], Nasiruzzaman et al., studied by including the Dunkl generalization,
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the model of Szész-Jakimovski-Leviatan-Beta [23], Szdsz-Jakimovski-Leviatan [21] and Szasz- ]akimovski-
Leviatan-Kantorovich [22]. For the set of all continuous f € Co[0, 00) = {f € C[0,) : f(t) = O(t®)} and all
x €[0,00), with®>7r, reN, P(1) # 0, ¢ >0, the Szasz-Jakimovski-Leviatan-Beta operators [23] given by,

(k+2g9k)’ (5)

U@_MMMZMHf

and the Szasz-Jakimovski-Leviatan-Kantorovich operators [22] given by

k+1+2k,9k

K (fix) = l)e ) ZPk fmo: f(Hdt. (6)

In this work our more concentrates on the recent investigations [21, 22] and by initiating the g-analogue by
impose the presence of Dunkl parameter ¢ for the interval [3, o) we study the approximation properties of
Szész-Jakimovski-Leviatan-Kantorovich operators given by [22]. By Combining with the results of [21, 22]
we get the our new results in g-analogue are more effective rather than the earlier. We utilizing the Korovkin’s
theorem and study the local as well as global approximation theorems in terms of uniform modulus of
continuity of order one and two. We calculate the rate of convergence by using of Lipschitz-maximal
functions and also obtain the Voronovskaja-type approximation theorems. For more related concepts we
present here to see the published article [14-16].

2. The g-variant of Kantorovich operators involving the Appell polynomials

In this section, our main aim is to construct the g-variant of recent investigation of Kantorovich positive
linear operators induced by the Appel polynomial, which were explained in [22]. We suppose all classes of
continuous and nondecreasing function f on [0, o) denoted by Co[0, o). For all 0 < g <1 and f € Co|[0, o)
if we take Co[0,00) = {f € C[0,00) : f(t) = O(t?)} whenever t — o0, and x € [0,00) C R, @ > r with
reN, P,(1) #0and ¢ € [%, o), then our new operators are defined by:

[r+2¢6r +1]q
[rlg

[r]y rq([f’]qx)
rq(f %) P (1)€ q([r]qx) Z‘ ! qlr+2:0rlg f(t)d t, (7)

[rlg

where forall¥=0,1,2,3,-- the 0, given as

87 - 0 % r E {OI 4 7 6/ }I (8)
1 ifref{1,3,5,7,---},
and the g-structure of Dunkl exponential and their recursion we know

st xV > q# xv
ecq(¥) = , X€[0,00), Ecy4(x)= , x€[0,00) ©)
- ; Veq () - ; Vea ()

1- q2g6V+1+v+1

mﬂﬂh( = ﬁ#w vENU(O) 7,00 = 1. (10)

In the studies of equality (7), if we take g = 1, then we direct go through the results of published article
by [22]. In addition, if we put Py;(1) = 1 and apply the extensive properties of Appell polynomials, then
we directly go through the published article by [19]. Thus we say that, in this article our results are more
extensive compared to [19, 22] and have the importance for further research area.
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Lemma 2.1. Forall g € (0,1) let we consider the polynomial
o0 tr
Py(t)ecq(ty) = Z Pm(#)m- (11)
r=0

Then for t = 1 and u = [r];x, we get following identities:

ZM = Py(1)ecy(Ir]yx),

r=0 [T’]q!

= p
}]m##%ﬁ = ([P W)x + Py(1)) ecg(Ir]),
r=0 :

& Py([r])
Zyﬂf—EﬂT—
S Py([r])
Zyﬂf—FﬂT—

- 4Pr,q([7]qx)
Zyﬂf—ﬂﬂr—

([r12P, (1) + 2071, P (1)x + P}/ (1)) ecg([r]g2),

(3P, (D + B[P (1) + B[], Py (1)x + Py (1)) ec g([r]y2)

([r13Pa (D + 43Py (1) + 6[12P) (1)
+4[FG P ()x + PP(1)) e q([r]%)-
Lemma 2.2. Let ¢ > 5and 0 < g <1, for r € IN, then we get that
[2c+7]y = ¢*[rlg + 1+q[2c = 1], [2c+7+1]; = 1+q[2c +7;;

[2c + 72 = g2 +24% (1 + ql2c — 1],) [y + 1+ 2g12¢ - 1], + ¢*[2¢ - 1]

[2¢ + 113 = % [r + 4% (3 + 3g[2¢ — 1],) [rI2 + 4% (3 + 6g[2¢ — 1], + 3¢°[2< — 112) [1],
+1+2g[2¢ — 1], + 3¢°[2¢ - 117 + ¢°[2c - 11;

[2¢ + 713 = %[l + 4% (4 + 4q12¢ — 11,) /L] + 4* (6 + 1249[2¢ — 1], + 64%[2¢ — 112) [1]?
+ 0% (4 + 11126 — 1], + 12¢%[2¢ — 112 + 4¢°[2¢ - 113) [1],

+1+3q[2¢ = 1], + 5¢°[2¢ — 11 + 49°[2¢ — 17 + 4*[2¢ - 1];.

Lemma 2.3. Let q € (0,1) and we use the equality [1 + r + 2¢60,]; = 1 + q[r + 2¢0,];, then we get that

[14+r+2¢6r]

ITH At [1+7r+2c60,], [r+2c6,], 1

e G M,
[1+r+2¢Or]g
[rlq 1
td;t = ——— (1 + 2g[r + 2¢6,],),
\f;[wlzlcgr]q q [Z]Q[T]g( q[ g r]ﬂ)
Tlg

£2d,t = L (1 +3qlr +2¢6,], + 3¢°[r +2c0,12),

s LI
[1+r+2¢0rlq
M s, 1 2 2 3 3
waon rdgt = —[4]q[r]3 (1 +4qlr +2¢0,]; + 647[r + 2¢O, [; + 49°[r + ZCQr]q) p
[1+rq+2g9y]q

] 1
ﬁ " Pdt= BLIT (1 +5q[r +2¢60,]; + 104°[r + 2¢6,1; + 104°[r + 2¢6,]; + 5¢°[r + 2g9,]3) :
T qlrly
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Lemma 2.4. For the test function f(t) = t/, if j = 0,1,2,3,4, the operators L;,(+; -) have the following equalities:

1 L,Lx = 1,
C o 142q+2¢7[2c 1], 292 ( Pi(1) )
@ Lyl = eLr, 12, i)
@) L,(t%x) = ! 5 (1437 +3¢°(1 + [2c - 1],) + 69°[2c - 1], + 34*[2c - 112)
(31,12
3q1+2g ) ~ ( P;(l) )
+[3]q[r]q (1+2g+29°[2¢ = 1], [x + R
3P0 (, 2P)(1) P/(1)
B, ( 1,2, [r]zpqu)]
4) L:q(t3;x) = L 3 (1 +4q + 64% + 4g° + 4g*(1 + 3 + 299)[2¢ — 1],
: 41,013

+64*(1 +2q)[2¢ - 112)

[41] (49"% (1 + 39 + 3¢% + 34%(1 + 29)[2¢ - 1]) + 3¢°[2< - 112)

[1 P(1) ]
X|—x+
2 [rP,(1)
2P)(1) P ]

1 2+4¢ L
[4] (6q (1 +2q +2¢%[2¢ - 1]q))([r]q [r12P,(1) [r];pq(l)

4q3+6c 3pP(1) 2 3Py (1) . py(1)
4, [r]q P,(1)" [P (1) [r13P,(1) )

(5) L% =

! . (1 +5¢ +10g% + 104> + 54* + 54°(1 + 4q + 4¢* + 3¢°)[2¢c — 1],
(51,1715

+504(2 + 69 + 5¢7)[2¢ — 117 +104°(1 + 2q)[2¢ — 1]3 + 5¢°[2¢ — 1]‘;)

5 14+2¢
?5] (1449 + 607 + 44> + (4 + 12 + 1126 - 1],
q

4 2 6 3 1 P’;(l)
+60*(1 +2q)[2¢ — 112 + 44°[2¢ - 11}) T TR
q a1

+

2+4¢

10g
Bl
1, 2B P
X —2 3 X+ n
[l [r] Py(1) [rlgPe(1)
10 q3+6c
G (1 + 29+ 24%[2¢ - 1],)
(1 2, P, 3P P;”(l)]
X| — 3 X~ + 3 X+ 1
[V]q [r]5P4(1) [r3Pq(1)  [r]gPq(1)
St (4, AP 6PEQ) ,AP) PR
xX-+
[5], [ [r]sP (1) [r]2Pq(1) [rlqu(l) [r]“P (1)]

(1+37 +3¢% + 31 + 2q)[2¢ — 1], + 3¢*[2c - 1)

+
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Proof. For the prove of results we taking into account the results from Lemmas 2.1, 2.2 and 2.3. Let f(t) = 1,

then

[r+2c0r+1]q
. 1. [l Pyg([rlgx) Il
Eralli2) Pﬂmmm@Z [, ﬁﬁhdﬂ

[r]q Z r,q([r]qx) 1

Py(Mec,(Irlyx) & Il Tl
= 1.
If f(t) = t, then
7] e
ey q z
Eralt) Pﬂmmmmz o ﬁmﬁ a
_ [r]q rq r]qx
= Pq(l)eg,q([rqu) Z [7’]q [z]q[ ]2 (1 + 24[1’ + 2€9r]q)
1 Py 4([r]gx) 2
- 121,11, P, (D)e., ([1%) ZO; q[r]ng (1 +29 + 2°[2¢ — 1], + 29"+ [r]q)
_ 1+29+2¢%2c - 1], 2qt+2¢ )
- B R e (P  PiD) ecs )
_ T+29+2¢7[2¢ - 1], . 2q'+2¢ ( . P(1) )
[Z]q[r]q [Z]q [r]qpq(l) .
And for f(t) = 2,
o 7, Mmm B
L5 = 5 (1)€c q([r]qx) Z o Jur [Z]OJq Fdyt

rq([r]qx) 1
P (1)3; q([r]qx) Z q [3]11[7’]2

(1 +3qlr +2¢6,]; + 3¢°[r + 2c6,12)

_ 1 1q([7]qx)
- [3]q[7]3,Pq(1)€g,q([7]qx)Z‘ (115!

r=0
x (1 +39 +34%(1 + [2¢ - 1],) + 64°[2¢ — 1], + 3q*[2c — 1]?)

1 - Pr,q([r]qx) 1+2¢ 5 _
'%wwm%mm;% 0 (202720 -1)
3P+ <Pyl

T BLIEP,(ecy(re0) =[]

= 1 (1+37+342(1 + [2c — 1],) + 64°[2c — 1], + 34°[2c - 112)

[31,[r17
3qt+ae 5o ( Pi(1) )
+[3] i (1+29+2g9°[2c - 1]y) |x (1,2,

3g21+e) 2P (1) Py (1)
+Bh( [m<>+m%ﬂJ

Similarly in the view of Lemmas 2.1, 2.2 and 2.3 we easily get the results for f(t) = £ and f(t) = t*. O
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Lemma 2.5. Operators L, have the following properties for the central moments (t —x)1ifn=1,2,4:
P 14 8 prop n
2 1+2¢
( 1 - 1) X+ _1_
[z]q [z]q[r]q
3 2(1+¢) 4 14+2¢
q s B 1) 2

O L, (t=-x);x)

(1 +2q +24°[2c - 1], + 2q1+2§1ﬂ)
! P,(1))’

@ L,(t-2%x) = (

[3]q [2],
7(1)
1+42¢ 219 - _ 1
[3]q[r]q ( (1 +29+29°[2¢ - 1]; + ZqP (1)))95
(1+2 +24%[2¢ — 1), - 29"+ q(l))
[21q[ A\ T eree T P,(1)

[3] (1 39 + 397 + 3¢°[2c — 1], + 60°[2c — 1], + 34*[2c — 112
glr

4301 (1+ 29 + 272 - ”q)% 7 z((l)))

. ) 1 1 1 1
3) .Er,q((t—x)zlzx) _ x4+o(@]x3+O(@]x2+O([r]q)x+0[[r]3).

3. Approximations in weighted space

Here we want to give the approximations in weighted spaces and for this purpose, we apply the
analogous of P.P. Korovkin’s theorem. We go along with the well-known GadZiev [5] results and look back
on weighted spaces and to obtain the uniform approximations we proceed with the assumptions ®(x) =
1 + @%(x) and x — ®(x) such kind of continuous and strictly increasing functions, where lim,_,., ®(x) =
In addition, we suppose all bounded functions class be By[0, 00) and satisfying the analogues:

Bo[0, 00) = {g : lg(x)| < M,P(x)}, (12)

where the equipped norm on g is defined by

B lg(x)|
llglle = so};) o)

More precisely, we take Co[0, 00) = Bg[0, 0) N C[0, o), and Co[0, o) is the subset of C[0, ). Additionally,
take into consideration from [5] the sequence of positive linear operators {/,},»1 acting from Co[0, o) to
Bo[0, 0) satisfying

(13)

[JH(®@; x)] < MD(x),

where M > 0, and constant, and for all m € IN,

Col0, ) = {g € Co[0, ) : )}grolo % = ¢, exists and finite}. (14)

Theorem 3.1. Forall f € Us () Col0, ), and Uy = { f+ such that (J;f( )) is convergent when x — oo} the operators
L, satisfying

L,(f;x)=f,

where = stands for uniform convergence for all compact subset of [0, co).
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Proof. For the prove of results asserted by Theorem 3.1, we take into account the Lemma 2.4, and use the
analogues of Korovkin’s Theorem by [12], then simply enough to verify for all « = 0,1,2

L:,q(tk;x) — x*, is uniformly on compact subset of [0, c0),

It is obvious, to see from Lemma 2.4, for all x = 0,1, 2 the lim,_, L;,q(l;x) =1, lime L;/q(t; x) = x and
lim, 0 £;,(#*; ) = x* which gives the prove Theorem 3.1. [

Theorem 3.2. [5, 6] Operators {K,},>1 acting from Co[0, o) to Bo[0, 00) and verifies that lim,_,e || K, (£*) — x|l = 0.
Then for every f € C3[0,00), m € IN it satisfying

lim [IK,(f) = fllo = 0.

Theorem 3.3. Let the operators L:,q acting from Col0, 00) to B[O, 00) and satisfies lim, o IIL:,q(t") - x"lp = 0.
Then for any g € C{[0, 00), m € N it follows that

lim [|£;, () - gllo = 0.
Proof. We use Theorem 3.2 and well-known Korovkin’s theorem enough to show
lim [|.£;,(t*) = x"llo =0, x=0,1,2.
r—oo

From the Lemma 2.4, we easily get that

£, Lo -11

1£;,(1) = 1llo = sup 00

x€[0,00)
Take k¥ = 1, then

|£;,(t:%) =]
x€[0,00) q)(x)
2q1+2g
2, ’

1£;,(8) — xllo

sup ——
xe[O,Io)o) (D(x)

P/(1
(1 +2q+ 297 [2c — 1], + 2q1+2‘:£)‘ .

T h 00 |21, X6y

Take r — oo, then ||.£;,q(t) —x|lp — 0. For x = 2, we get

L, (#5x) - 22|

1L () - *lle = su
& ¢ xe[O,IZO) O(x)
%2 3q2(1+;) '
= sup —r —
ety ©() | 3],

+ sup —— (3ql+2C (1 +2q +2[2¢ — 1], + 24%)»
x€[0,00) (D(x) [3]q[r]q 1 Pq(l)

_l (1 +3q + 3¢ + 3¢°[2¢ — 1], + 6q°[2¢ — 1], + 3q*[2¢ — 1]5)

i 1,2

su -
xe[Op Q)(x)

,0)

Thus if as r — oo, then we have ||.£:/q(t2) - X*lp—0. O
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Theorem 3.4. Let £ € Cg[0, ), m € IN, then for any A € [0, o) then operators L}, satisfies the equality

) 125,65 ) — €()
1m su _ =
e oy (@)

Proof. Taking into account the inequality |£(x)| < ||€]lo®(x) then for any positive number x, obvious that

i |L3 (%) — €(0) B IL:,q(Z’;X)—é’(X)IJr 1£3,(6;x) = €(x)
m su _— < sup —m—m——— sup—mMmM
o oy (@@ T @) eE T (@@t
< 1L, (60) ~ (@)
1L, (1+ £ ) = £(%)| 16|
Hiflosup =G TSP o)
= K + ¥ + K, (suppose).
Thus
5, = sup 1O (o 10I®E) 1l 5)

<su < .
o @) 2P @) T @)
From Lemma 2.4, it follows that

y L1+ t2; x)
msup ———— =
e ()

Now a given €* > 0, exists a positive r; € IN with r > r; which verifying the inequality

+ 1.

L (1+1t% At
sup 4 X) < (P(x0))" €
ey D) o 3

Forr>nr

L,A+850 |l €
76 =Wlle SuP — oyt = ey T3 (16

We take in account of (15) and (16), we see

¢ €
TG+ K5 < 2% + 3
Choose x very large, such that % < <, then get
TG+ IG < 25*, forr >r. 17)
Similarly, for r > r, we have
K = 145,60 — €cto < 5 18)

Lastly, we take r3 = max(ry, 2) and take (17) as well as (18), thus we see

|L;.,(€;x) = £(x)] .
sup ——————— <€,
oy (@)

which completes the proof. [
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Definition 3.5. For all uniformly continuous function f € C[0, c0), the usual modulus of continuity is given by:

' (f;0) = sup [f(x1) = f(x2)l, X1, X2 € [0, ),
Ix1=x2l<0*
G = f<;c2>|<(1+"‘2(S “') W' (38, (19)

Theorem 3.6. [26] If the sequences of positive linear operators {P},>1 acting from [a,b] — Clc, d] such that [c,d] C
[a,b], then

1. for all ¢ € Cla,b] and x € [c,d], it satisfies that
IPr(@;x) =) < lp@)lIPy(1;x) -
+{Pi2) + 5 VBE =050 VP (035,
2. forall ¢’ € Cla, b] and x € [c,d], one has
IPr(@; ) =) < lp)IIPH(L;x) = 1] + | ()lIP(t = x; %)

P ((t - x); x){\/P @) + —\/p (—2x }a) (@56,

Theorem 3.7. Take f € Co[0, 00) and x € [0, co) C R, then operators L3, have the property:

1Ly (f52) = O < Zw*(f 8 (x ))

where q = q, with 0 < g, < 1and 6" = \/6:,qy(x) = \/-E:,q,((t - X)?; X).
Proof. We apply the expression of Theorem 3.6 and Lemma 2.4, we easily get here:
* 1 % 2 % * *
L) = O < 4 Lo (€= 050 L3, G0 (£35)
HFOIL, (1) = 11+ { £3, (15,

choose, 6" = \/5, 0 \/.E;,q,((f —x)%;x), gives our result. [
Theorem 3.8. Tuke the positive sequence q = q, with 0 < g, < 1, then for all ¢ € C{[0, c0), we have the property

L5, 5 = 90 < |0 (O] 197 (01 + 207, (e (975 \for, )

where 5* = \/6;,qy(x) = \/Lijy((t —x)%; x) and

Q (x) q:+25 -1 x+#(1+2 +2 2[2 _1] +2 142¢ q,(l))
i, 2, g, 75T T m )

Proof. In the view of the Lemmas 2.4, 2.5 and Theorem 3.6, obvious to get that
1L (50 =Y < 1L, (L3) = @)+ [ @IL, (= x0)

+L3, (=250 L, 60 + 5 Lo (=030 050,

choose, 6" = \/6,,% (x) = \/L;,q,((t — x)%; x), then our result is proved. [0
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For prove the another theorem in weighted modulus of continuity we use the results from [4] and for an
arbitrary ¢ € Cj[0, 00), m € N U {0} one has

lp(x + 1) — @(x) |

o' (p;6) =  su , 20
(®:9) xe[O,oo),li::lISé* 1+ u2)(1+x2) (20)
and weighed modulus of continuity satisfying the equality lims o @*(¢@; 6*) = 0, and
| t_ X | *\2 2 2 * LSH
() — () < 2{1 + —— |1+ (@))A + )1+ (t = 1))’ (p; "), (21)

where t, x € [0, ).

Theorem 3.9. Suppose ¢ € Cg[0, ), then for any x € [0,00) and g = g, 0 < g, < 1 operators L3, satisfy the
inequality

L, (p;x) - /
sup | /ﬂr(qlo j)xz (P(x)‘ < C(l +Ar,q,(g))Q(@; A,,q,(g)),

X€ [O/Ar,qy ©)

where C =22+ Cy + VC2) > 0, for Cy > 0 and C, > 0, and are constants while, A, () depends on parameter c.

Proof. In the view of the inequality (20), (21) and on the positive linear operators £, we apply the Cauchy-
Schwarz inequality, then

|Z;.,. (0: %) = ()]

<2(1+ ()21 + ) (g;6) {1 v L, (t-0%2)+ L, ((1 +(t-2?) Lt g*x |;x)} . 22)

On simplify we have

. [t—x|
Lmv(a* (1+(t—x)2)'x)
. [t—x| 1 .
= erqv ((t - x)z 5* ,x) + g_[:rrqy (| t— X |,x)

[N

1 Y i
< (L:,q, ((f - x)4;x))2 {Lﬁrqr (%,x)} + 61 (L:/qy(t - x)z;x)
= é (L:,q,(t — X)z}x)% {1 + 5 [L;/qy ((t— x)4;x)} . (23)

From Lemma 2.5, we easily see that

L, (- )% %) < A (©) (0 +x+1) < Ci(x + 1) as r — oo, (24)

L, (- x)%x) < B,,q,(g)(x4 +20+x2+x+1) < Co(x +1)* as r — oo, (25)
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where C; > 0 and C, > 0 and are constants.

3q2(1+g) 4 q1+25
A, (0) = max — +13,
() {{[m% 21,

1+2g
{ [3] qr [r]qy

(1)
_ 1+25 qr
{ 2.0 (1 +2q, + qu [2¢ - 1], —2¢ qu(l))}

Py, (1)
1+2g, +2q2[2¢ — 1], +2qp (1)) ,
qr

{BmM%

{B%Vﬁ
Br,q, (C) = max {ar,q,/ br,q,/ Crq,7r dr,q,} ’

where Arg, = @) ([r}?), br,q, =0 (ﬁ)/ Crg = O (ﬁ)/ dr,q, ) ( [l )
Thus from inequality (22), we get

L, (@0 —p@] < 201+ E1 + D (@8 [1+ L, (= x)%x)

+é (‘E:,q,(t - x)z;x)% {1 + \/-m}]

< 201+ () + ) (@;67) [1 +Ci(x+ 1Y
+é Ar,q,(g)(x + 1) {1 + \/C_Q(X + 1)2}] .

Choose 6" = /A;;,(c) and if take the supremum x € [0, A4, (c)), then easily get our complete result. [J

1+3q, +3q; +3q7[2¢ — 1], + 647[2¢ — 1], + 3q7[2¢ - 1] )}

Py (1) Py (1)
9 (1 +2g, +22[2¢ = 1] ) 5 + 3209 = ) ,
R O A X0

r

4. Direct approximation results of £} g

In the present part we follow the space of K-functional and Lipschitz spaces and then give the approxi-
mation properties of our new operators (7)

Definition 4.1. For every 6" > 0, and f € C[0, o), the properties of K-functional defined by:
Ko (f;6) = inf {(IIf = Plicyioe) + " 197 llcypo0) : W, W' € C3[0,0)}, (26)

C’(‘D[O, o) ={f: f €Cp[0,00),k € IN; such that lim f((

x—»oo

X)
0 = ¢ < oo} (27)
For an absolute and positive constant C one proved that

K (f;67) < Clmin(L, &) fllcyfoe) + w3(f; VO,
where w}(f; 6%) denotes the second order modulus of continuity given by

wy(f;07) = sup sup |f(x+2u) —2f(x+p) + f(x)]. (28)

0<u<o* x€[0,00)
While, the first order modulus of continuity is given by
w'(f;0") = sup sup |f(x+u)— f(x) (29)

0<u<o* x€[0,00)
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Theorem 4.2. Let Y, 4(x) = g + BT (1 +2q+2¢%[2¢ — 1], +2¢"+% ;8; ), then for all W € C3 [0, o), we define

an auxiliary operator K, such that
Ko (%) = L3, (W) + W(x) = W (Y, (0)). (30)
Ifwe take g = q,, 0 < g, <1, then, for any W € C[0, o) operators (30) satisfying the property
2
76,0 (52) = W) { £, (6= 9%2) + (B @) | 1097 1

where 6;, (x) is defined by Theorem 3.7 and

FESI o A) P (1+2q,+zq e 1), + 200
w 21, 21,111, r 7 P,M)

Proof. For any W € C3[0, ), it is easy to verify that K, (Lx) =1and

Ko (%) = Ly (850) +x = (Yw’_(x)) = x.

We have
| L5 (W50 <l W1
and
|5 (W30) <] Ly (W50 |+ 1 W) |+ W (X ()| <3101 (1)

Take W € C30, c0), then from Taylor series expansion we get that

t
W) = W) + (- D () + f (- )W (p)do.

Therefore, on operating K, , we get

Krg, (W x) — W(x) ( f (t = )W (p)de; x ) g, (= 6 0) W' (x)

%, ( f (t - )V (p)dg; x)

t X
L. ( f (t—¢)qo”(<p)d¢;x)+ f (x = @)¢”" (p)de; x

rar (%)
[ (@ - ) e

c, ( f (- )V (@)dg; x)

rqr (X)
f (Y () = ) ‘If”«p)dw‘ :

|5, (Wix) — P() | <

+

We know the inequality

<=0

t
f (- )W (@)




Md. Nasiruzzaman et al. / Filomat 37:1 (2023), 67-84 80

and
Yr,qr(x) 2
[ (- 9) v < (B, 00) 1971,
where
2q1+2g ( P’ (1)
By () = | =— - 1|x+ 1+2g, +2q2[2¢ = 1], +2g,"
(%) ( 21, 2l [, |2 2ee = e 2075
Thus we get

% . * 2. 2 12
5, (V;2) — W) |< {LW (¢t = %) + (B0 ) } RAT
This gives the complete proof. [

Theorem 4.3. Suppose q = q,, 0 < g, < 1 and W € C3[0, c0), then for each f € Co[0, 00) operators L, have the

property by
1 2
M [a)z { 1 3 \/ 07, (x) + (BW, (x)) }

. 1/, 2
#min {15 1 (8,0 + (B0 @) )} 1llcuo |
+° (1B, ()])
where B, ;,(x) defined by Theorem 4.2 and 07, (x) is given in Theorem 3.7.

IN

L, (fi0) = f(x)]

Proof. We take into account the Theorem 4.2 and suppose W € C3[0, o), then for each given f € Co[0, %)
we get that

| £, (%) — )|

762,020~ F@) + £ (X1, () - )]
|56, (f = 50| + |5, (@50) - P ()|

W) - 0]+ |F (X0, ) - £)
4| f =W +o" (f;|Br0,@)])
#5100+ (Bg ) 1w 1

Apply the Infimum value for all W € C3 [0, o) and use of (26), it is obvious to get that

4Ky {f, i (5:,%(3() + (Br,qr (X))2)}
+w* (f, Br,qr(x)D

M [w; {f; % \/6;‘%- () + (Brg (X))z}

+min {1 ; 411 (6:,% (x) + (Br,q, (X))z)} Ilf ||c®[o,oo)]
+° (f3]814,()]).

IA

IA

IA

L, (fix) = f)

IA

We get the prove here. [
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The present part has tried to present the approximation results in local direct estimates for the operators L},
by (7). The study of the characteristic of Lipschitz-maximal function containing the parameters x1, x> > 0
and & € (0,1]. From [24], we easily recall the basic results of Lipschitz-maximal function such that

Lips, = {f € Co[0,00) : [f(t) = f(x)] < M = - x, telo, oo)},
(X132 + )Yox + 1)2

where M is a positive constant .

Theorem 4.4. Suppose £ € Lipfw verifying the equality (??), then for q = qr, 0 < q, <1 operators L}, hold the
property

1L, (%) — £(x) < M 7 ) )é
* ;X)) — X S e
v ® ((X1x2 + X2X)
where 0y, (x) is obtained by Theorem 3.7.

Proof. Let{ € Lipfw for any 0 < £ < 1, then first we want to prove the results will be true for £ = 1, and the

we show it for 0 < & < 1. If x1, x2 > 0, then obvious to get that (x1x? + xox + #)7/2 < (122 + x2x)"'/2. Thus
in order to apply the well-known results of Cauchy-Schwarz inequality, obvious to write here

1L7g, (6x) = L0l < 1L, (16(E) — €l x)] + E(x) | £
|t — x]
T\ + pox + )2

< M + o) 2L, (1t - x5 %)

* _ 1/2
< ML (=07 (arx + o020

:,q, :,q,(l;x) - 1|

<L

/

Thus due to above detailed mathematical explanation our statement is valid for £ = 1. Now we establish
the validation of statement for 0 < £ < 1. In addition to prove it we apply the monotonicity property to
L7, and use Holder’s inequality

L, 60—l < L, (6() - @)];x)
< (£, (160 - €I 52) (£,00) 7
« 2., 3
< i)
< MOax® + o)L, (-2 ;x)}%
< MO+ ) R (L, (- 975 v)’

_ M( 5, (x) )
(1x® + xox) ] 7

which gives the proof. [

Here we try to present the anther local direct approximation results for the operators L7 . Let the
function y € Cp[0, ), 0 < & <1and t,x € [0, 00), from [13] we recall that
t) —
CUZr(X} X)= sup M (32)

by, telo,0) | X |
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Theorem 4.5. For all y € Cp[0, 00) and x € [0, ), if g =gq,, 0 < g, <1, then

<
2

£, 06%) = x()] < (55, (0))° w06 %),

where w(x; x) is given by and 6; , (x) is defined by Theorem 3.7.

Proof. To prove it we use Holder inequality, thus we get
L, (60— x| < L, (x(®) - x@)];)
W (G0 | Ly, (1t = x5 )

¢ £
We062) (L, 1) T (L (1t = 5))°

&
= w60 (L, (E-0%x)) .

This gives the complete proof here. [

IA

IA

IA

5. Voronovskaja-type approximation results

In this portion, we obtain the quantitative approximation by use of Voronovskaja-type theorem for our
operators L}, (f; x) defined by equality (7):

Theorem 5.1. For all x € [0, 00) C R and ¢ € Cg[0, o), operators L:,q satisfying that

) }+2g 3 3(1+§) 4 }+2g (x)
R | N E ek el e

where @’ (x) and ¢” (x) belongs to Co[0, 00), and g = q,, 0 < g, < 1.

Proof. For any ¢(x) € Ce[0, 0), the Taylor’s series expansion give us

, s (=) 2
P(t) = p(x) + @' ()t —x) + @ (X)T +(t—x)" Sx(1), (33)

where S5.(t) denoted for remainder term containing in [0, c0) and satisfying S.(t) — 0 when f — x. On
operating £} to (33), and by the consequence of Cauchy-Schwarz inequality, we see

(p// (X)
2
(PN (X)
2
4 L5 (= 0%52) L3, (S200)5 ).

Since we have lim,_, -E:,q,(sx(t); x) = 0, therefore

L, (9:0) - p(x) ' ()L, (E—xx) + L;, (=% + Ly, ((F= 2)*S:(t); %)

IA

O ()L, (=0 + T L (- 0)%0)

lim{ £, (= x)2S.(t); )} = 0.

Therefore, we have

@"(x)
2

im(L;, (i) -9} = ¢'()lim {z::,q,(t—x,-xn £, (x5

+L5, (£ = 2)2S4(1); %))
Which gives the desired prove. O
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Inspired by Theorem 5.1 we directly conclude the below corollary.

Corollary 5.2. For all ¢ € C[0, o), it satisfies that

1+2¢

lim | £7, (<P;x)—(p(X)—( ?Zlq —1)Xfp’(x)+(

3] 2]

3 2(1+¢) 4 1+2¢ ”
2]

6. Conclusion

In our study we investigate the approximation in g-variant of recent studied by [21, 22]. We directly
apply the basic definitions and properties of g-calculus and introduced the g-variant of [22] the Kantorovich
Szész-Mirakjan-operators involving the Appell induced by the parametric variant of Dunkl generalizations.
These types of approximation results are better generalized version of published article rather than the ear-
lier study demonstrations investigated by [19, 21, 22, 27] Finally, we have discuss the global approximation,
local direct approximations, Lipschitz-type approximations, rate of convergence and Voronovskaja-type
approximation theorems of our new operators.
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