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Abstract. For k ≥ 0, 0 ≤ γ ≤ 1, and some convolution operator 1, the object of this paper is to introduce
a generalized family TUn

p(1, γ, k, b, α) of p-valently analytic functions of complex order b ∈ C \ {0} and
type α ∈ [0, p). Apart from studying certain coefficient, radii and subordination problems, we prove that
TU

n
p(1, γ, k, b, α) is convex and derive its extreme points. Moreover, the closedness of this family under the

modified Hadamard product is discussed. Several previously established results are obtained as particular
cases of our theorems.

1. Introduction

LetD := {ξ : |ξ| < 1} be the open unit disk. An analytic function f : D→ C is said to be p-valent (p ∈N)
in D if it takes each of its values at most p times in D. If p = 1, then it is said to be univalent in D. The
function f (ξ) = ξ is univalent while f (ξ) = ξ2 is 2-valent. For some important problems and recent works
in the theory of p-valent functions, we refer to [4, 5, 9, 13, 14, 22–24, 26, 27, 29, 40] and the references therein.
For n, p ∈N, letAp(n) be the famiy of analytic p-valent functions f : D→ C of the form

f (ξ) = ξp +

∞∑
j=n+p

a jξ
j. (1)

Set A := A1(1). A function f ∈ Ap(n) is in the family S∗n(p, α) of p-valently starlike functions of order
α ∈ [0, p) if and only if ℜ

(
ξ f ′(ξ)/ f (ξ)

)
> α, ξ ∈ D. The class S∗1(p, α) = S∗(p, α) was introduced in [28].

A function f ∈ Ap(n) is in the family Cn(p, α) of p-valently convex functions of order α if and only if
ℜ

(
1 + ξ f ′′(ξ)/ f ′(ξ)

)
> α, ξ ∈ D. Furthermore, f ∈ Ap(n) is in the family Kn(p, α) of p-valently close-to-

convex functions of order α if and only if there exists h ∈ S∗n(p, α) such thatℜ
(
ξ f ′(ξ)/1(ξ)

)
> α, ξ ∈ D. Since

h(ξ) = ξp is a member of S∗n(p, α), it follows that a function f ∈ Ap(n) which satisfies ℜ
(

f ′(ξ)/ξp−1
)
> α

in D is a member of the class Kn(p, α). We note that, S∗ := S∗1(1, 0), C := C1(1, 0) and K := K1(1, 0) are,
respectively, the families of starlike, convex and close-to-convex functions inD.
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Functions of complex order.
A function f ∈ Ap(n) is in the familyS∗n(p, b, α) of p-valently starlike functions of complex order b (b ∈ C\{0})

and type α ∈ [0, p) inD if

ℜ

(
p +

1
b

(
ξ f ′(ξ)

f (ξ)
− p

))
> α.

Further, let f ∈ Cn(p, b, α) ⇐⇒ z f ′ ∈ S∗n(p, b, α).

k-uniformly starlike functions.
Extending the classes introduced in [8, 16, 21, 30, 31], Kanas and Wisniowska [20] introduced the family

of k-uniformly starlike functions as

k − ST :=
{

f ∈ A :ℜ
(
ξ f ′(ξ)

f (ξ)

)
> k

∣∣∣∣∣ξ f ′(ξ)
f (ξ)

− 1
∣∣∣∣∣} , k ≥ 0.

In geometrical terms, f ∈ k − ST if and only if Q f (D) ⊂ Ωk, where Q f (ξ) = ξ f ′(ξ)/ f (ξ) and Ωk is the conic
regionΩk :=

{
(x, y) : x2 > k2

(
(x − 1)2 + y2

)
, x > 0

}
. Further, f ∈ k−UC, the corresponding k-uniformly convex

family, if and only if z f ′ ∈ k − ST . Several generalizations and unifications of these families have been
introduced into the literature for which we refer to [3, 12, 18, 19, 25, 35, 36, 44] and the references therein.

Definition 1.1 (Hadamard Product). For f (ξ) = ξ +
∑
∞

j=2 a jξ j and 1(ξ) = ξ +
∑
∞

j=2 b jξ j, the Hadamard product
(or convolution) of f and 1, denoted by f ∗ 1, is defined as

( f ∗ 1)(ξ) = ξ +
∞∑
j=2

a jb jξ
j, ξ ∈ D.

The convex function p(ξ) := ξ/(1 − ξ) = ξ +
∑
∞

n=2 ξ
n plays the role of identity element under the operation

of Hadamard product. Using Hadamard product, Aouf et al. [6, 7] introduced the family Sγ(1, α, k) as

Sγ(1, α, k) :=
{

f ∈ A :ℜ
(
Φγ( f , 1, ξ) − α

)
> k

∣∣∣Φγ( f , 1, ξ) − 1
∣∣∣} ,

where

Φγ( f , 1, ξ) :=
ξ( f ∗ 1)′(ξ) + γξ2( f ∗ 1)′′(ξ)

(1 − γ)( f ∗ 1)(ξ) + γξ( f ∗ 1)′(ξ)
, ξ ∈ D, (2)

with k ≥ 0, 0 ≤ γ ≤ 1, −1 ≤ α < 1, and the function 1 given by

1(ξ) = ξ +
∞∑
j=2

b jξ
j (b j ≥ 0; ξ ∈ D). (3)

The authors in [7] discussed several characteristic properties of a subfamily of Sγ(1, α, k). Recently, Bukhari
et al. [10] extended the idea of Aouf et al. [7] to introduce a new analytic function-family U(1, γ, b, k)
involving complex order. For b ∈ C \ {0}, Bukhari et al. [10] definedU(1, γ, b, k) as

U(1, γ, b, k) :=
{

f ∈ A :ℜ
(
1 +

1
b

(
Φγ( f , 1, ξ) − 1

))
> k

∣∣∣∣∣1b (
Φγ( f , 1, ξ) − 1

)∣∣∣∣∣} ,
where Φγ( f , 1, ξ) and 1(ξ) are given by (2) and (3), respectively.

Motivated by the above works, in this paper, we extend U(1, γ, b, k) to introduce a novel family
U

n
p (1, γ, k, b, α) consisting of p-valently analytic functions of complex order b and type α with initial Taylor

coefficients missing. We define this function family as follows:
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Definition 1.2. Let f ∈ Ap(n) be defined as in (1). Let k ≥ 0, γ ∈ [0, 1], b ∈ C \ {0}, and α ∈ [0, p). Then
f ∈ Un

p (1, γ, k, b, α), if for some 1 ∈ Ap(n) given by

1(ξ) = ξp +

∞∑
j=n+p

b jξ
j (b j ≥ 0). (4)

satisfying ( f ∗ 1)(ξ) , 0 we have

ℜ

(
p +

1
b

(
Φγ( f , 1, ξ) − p

))
> k

∣∣∣∣∣1b (
Φγ( f , 1, ξ) − p

)∣∣∣∣∣ + α. (5)

Functions with negative coefficients.
Let Tp(n) denote the subfamily ofAp(n) whose members are of the form

f (ξ) = ξp
−

∞∑
j=n+p

a jξ
j, a j ≥ 0. (6)

The class T1(1) = T was introduced by Silverman [34] and later on studied extensively by a number of
authors including the ones in [3, 35, 36, 45–47]. The importance of the classT ⊂ A in the theory of univalent
functions is due to the fact that some conditions which are only sufficient for the members of A prove to
be both necessary and sufficient for the members of T . The coefficient characterization makes several
computations in T manageable which can be very messy and difficult for the whole ofA.

The Family TUn
p(1, γ, k, b, α).

We now define the family TUn
p(1, γ, k, b, α) by

TU
n
p(1, γ, k, b, α) :=Un

p (1, γ, k, b, α) ∩ Tp(n). (7)

This paper studies several geometric and analytic properties of the family TUn
p(1, γ, k, b, α). In Section 2,

apart from solving the coefficient problem, we determine the radius of close-to-convexity, starlikeness, and
convexity for the members of TUn

p(1, γ, k, b, α). Section 3 proves that the family TUn
p(1, γ, k, b, α) is convex

and investigates its extreme points. A subordination problem involving the concept of subordinating factor
sequences is discussed in Section 4. In Section 5, we prove that the familyTUn

p(1, γ, k, b, α) is closed under the
modified Hadamard product. Finally, Section 6 summarizes the paper and provides certain future prospects.

2. Coefficient and Radii Problems

Theorem 2.1. Let f (ξ) be of the form (6) and 1(ξ) be as in (4). Let k ≥ 0, 0 ≤ γ ≤ 1, 0 ≤ α < p, and b ∈ C \ {0}.
Then f ∈ TUn

p(1, γ, k, b, α) if and only if

∞∑
j=n+p

(
(k + 1)( j − p) + (p − α)|b|

)[
1 + γ( j − 1)

]
a jb j ≤ (p − α)

[
1 + γ(p − 1)

]
|b|. (8)

Proof. Let f ∈ TUn
p(1, γ, k, b, α), then (5) holds. Upon using the series forms (6) and (4) in the expression (2),

and then letting ξ→ 1− along the real axis, we obtain

p −
1
|b|


∑
∞

j=n+p( j − p)[1 + γ( j − 1)]a jb j

[1 + γ(p − 1)] −
∑
∞

j=n+p[1 + γ( j − 1)]a jb j


>

k
|b|


∑
∞

j=n+p( j − p)[1 + γ( j − 1)]a jb j

[1 + γ(p − 1)] −
∑
∞

j=n+p[1 + γ( j − 1)]a jb j

 + α.
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A simplification of the above expression yields the desired inequality (8). Conversely, assume that (8) holds.
Then, in view of Definition 1.2, it is sufficient to prove that the inequality

k
∣∣∣∣∣1b (
Φγ( f , 1, ξ) − p

)∣∣∣∣∣ −ℜ (1
b

(
Φγ( f , 1, ξ) − p

))
≤ p − α (9)

holds for each ξ ∈ D. For ξ ∈ ∂D, the boundary ofD, we have

k
∣∣∣∣∣1b (
Φγ( f , 1, ξ) − p

)∣∣∣∣∣ −ℜ (1
b

(
Φγ( f , 1, ξ) − p

))
≤

(k + 1)
∣∣∣Φγ( f , 1, ξ) − p

∣∣∣
|b|

.

The last expression of the above inequality is bounded above by p − α provided (8) holds. Applying
maximum modulus principle, we establish that the inequality holds true for each ξ ∈ D whenever (8)
holds.

Corollary 2.2. Let f (ξ) be given by (6). If f ∈ TUn
p(1, γ, k, b, α), then

a j ≤
(p − α)[1 + γ(p − 1)]|b|

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j
, ( j ≥ n + p). (10)

The equality in (10) is attained for f (ξ) given by

f (ξ) = ξp
−

(p − α)[1 + γ(p − 1)]|b|(
(k + 1)( j − p) + (p − α)|b|

)
[1 + γ( j − 1)]b j

ξ j, ( j ≥ n + p). (11)

Remark 2.3. The condition (8) is only sufficient for the familyUn
p (1, γ, k, b, α),

Definition 2.4 (Radius Problems). Let F and G be two subfamilies of A. Then the F -radius of G, denoted by
RF (G), is the largest number ρ (0 < ρ < 1) such that r−1 f (rξ) ∈ F for all f ∈ G, where 0 < r ≤ ρ. The problem of
finding the number ρ is called a radius problem. Further, if we can find an f0 ∈ G such that r−1 f0(rξ) < F whenever
r > ρ, then the number ρ is said to be sharp.

Goodman [15, Chapter 13] listed, systematically, several radii results concerning some classical subfamilies
of S. For some recent works on radius problems, we refer to [1, 2, 11, 49] and the references therein. In
the following theorems, we find the radii of p-valent close-to-convexity, starlikeness, and convexity for the
members of the family TUn

p(1, γ, k, b, α).

Theorem 2.5. Let f (ξ) defined in (6) be a member of TUn
p(1, γ, k, b, α) and let 1(ξ) be of the form (4). Then f (ξ) is

p-valently close-to-convex of order δ (0 ≤ δ < p) in |ξ| < r1, where

r1 := inf
j≥n+p


(

p − δ
j

) (
(k + 1)( j − p) + (p − α)|b|

)
[1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|


1/( j−p)

.

The result is sharp for f (ξ) defined in (11).

Proof. Let f ∈ TUn
p(1, γ, k, b, α). Then it is easy to etablish that the inequality

∣∣∣ f ′(ξ)/ξp−1
− p

∣∣∣ ≤ p − δ holds
whenever |ξ| < r1.

Theorem 2.6. Let f (ξ) defined by (6) be in the class TUn
p(1, γ, k, b, α) and let 1(ξ) be of the form (4). Then f (ξ) is:

(i) p-valently starlike of order δ (0 ≤ δ < p) in |ξ| < r2, where

r2 := inf
j≥n+p


(

p − δ
j − δ

) (
(k + 1)( j − p) + (p − α)|b|

)
[1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|


1/( j−p)

,
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(ii) p-valently convex of order δ (0 ≤ δ < p) in |ξ| < r3, where

r3 := inf
j≥n+p


(

p − δ
j( j − δ)

) (
(k + 1)( j − p) + (p − α)|b|

)
[1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|


1/( j−p)

.

Both the results are sharp for f (ξ) defined in (11).

Proof. (i). The result is proved by verifying that
∣∣∣ξ f ′(ξ)/ f (ξ) − p

∣∣∣ ≤ p − δ for |ξ| < r2. On using the fact that
f (ξ) is p-valently convex⇐⇒ ξ f ′(ξ)/p is p-valently starlike, the proof of (ii) follows immediately.

3. Convexity and Extreme points of TUn
p(1, γ, k, b, α)

Theorem 3.1. Let the functions fi (i = 1, 2, . . . ,m) be defined as

fi(ξ) = ξp
−

∞∑
j=n+p

a j,iξ
j (a j,i ≥ 0; n, p ∈N).

Suppose that fi ∈ TUn
p(1, γ, k, b, α) for all 1 ≤ i ≤ m. Then the function h given by

h(ξ) =
m∑

i=1

λi fi(ξ),

λi ≥ 0,
m∑

i=1

λi = 1

 ,
also belongs to the family TUn

p(1, γ, k, b, α).

Proof. Since fi ∈ TUn
p(1, γ, k, b, α), it follows from Theorem 2.1 that

∞∑
j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]
(p − α)[1 + γ(p − 1)]|b|

a j,ib j ≤ 1, (1 ≤ i ≤ m). (12)

From the definition of h(ξ), we have

h(ξ) =
m∑

i=1

λi fi(ξ) = ξp
−

∞∑
j=n+p

 m∑
i=1

λia j,i

 ξ j = ξp
−

∞∑
j=n+p

d jξ
j,

where d j =
∑m

i=1 λia j,i, j ≥ n + p. Now, in view of (12),

∞∑
j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]
(p − α)[1 + γ(p − 1)]|b|

d jb j ≤

m∑
i=1

λi = 1.

Therefore, by Theorem 2.1, we conclude that h ∈ TUn
p(1, γ, k, b, α).

Theorem 3.2. If f ∈ TUn
p(1, γ, k, b, α), then f (ϵξ)/ϵp ∈ TUn

p(1, γ, k, b, α), where 0 ≤ ϵ ≤ 1.

Extreme Points.
LetX be a topological vector space overC and suppose that U ⊂ X. Then U is convex if sx1+ (1−s)x2 ∈ U,

whenever x1, x2 ∈ U and s ∈ (0, 1). The closed convex hull H(U) of U is the intersection of all closed convex sets
containing U. A point u ∈ U ⊂ X is said to be an extreme point of U if it can not be written as u = sx+ (1− s)y
for distinct x1, x2 ∈ U and 0 < s < 1. Let E(U) be the set of all extreme points of U. Since the family
TU

n
p(1, γ, k, b, α) is convex, we determine its extereme points. The following lemma will be useful.
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Lemma 3.3 ([32]). Let X be a topological vector space. If ∅ , Ω ⊂ X is compact, then Ω ⊂ H(E(X)). Further, if Ω
is convex in X, then Ω = H(E(X)).

Theorem 3.4. Let f1(ξ) = ξp and

f j(ξ) = ξp
−

(p − α)[1 + γ(p − 1)]|b|
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

ξ j, j ≥ n + p,

where k ≥ 0, 0 ≤ γ ≤ 1, 0 ≤ α < p, b ∈ C \ {0} and ξ ∈ D. Then f ∈ TUn
p(1, γ, k, b, α if and only if

f (ξ) = ϑ1 f1(ξ) +
∞∑

j=n+p

ϑ j f j(ξ), (13)

where ϑ1 ≥ 0, ϑ j ≥ 0 for all j ≥ n + p and ϑ1 +
∑
∞

j=n+p ϑ j = 1.

Proof. Let f (ξ) be of the form (13), then

f (ξ) = ϑ1 f1(ξ) +
∞∑

j=n+p

ϑ j f j(ξ) = ξp
−

∞∑
j=n+p

Φ jξ
j,

where

Φ j = ϑ j
(p − α)[1 + γ(p − 1)]|b|

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j
.

Since
∞∑

j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]
(p − α)[1 + γ(p − 1)]|b|

Φ jb j ≤ 1,

it follows from Theorem 2.1 that f ∈ TUn
p(1, γ, k, b, α). Conversely, suppose that f (ξ) defined by (6) is a

member of the family TUn
p(1, γ, k, b, α). Then

a j ≤
(p − α)[1 + γ(p − 1)]|b|

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j
, ( j ≥ n + p).

Setting

ϑ j =
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]

(p − α)[1 + γ(p − 1)]|b|
a jb j

and ϑ1 = 1 −
∑
∞

j=n+p ϑ j, it can be easily seen that f (ξ) is expressible as (13).

Let us define the set U as

U :=
{

f j(ξ) : f1(ξ) = ξp and f j(ξ) = ξp
− κ jξ

j, j ≥ n + p
}
. (14)

where κ j := (p−α)[1+γ(p−1)]|b|
[(k+1)( j−p)+(p−α)|b|][1+γ( j−1)]b j

. Clearly U is a subset of E
(
TU

n
p(1, γ, k, b, α)

)
, the set of extreme points

of TUn
p(1, γ, k, b, α). Also, from Theorem 3.4, we conclude that TUn

p(1, γ, k, b, α) = H(U). Using the fact that
U is compact and then applying Lemma 3.3, the following result follows:

Theorem 3.5. The set U given by (14) is the set of extreme points of the function family TUn
p(1, γ, k, b, α), that is,

E
(
TU

n
p(1, γ, k, b, α)

)
= U.
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4. Subordination Problem

Definition 4.1 (Subordination). Let f1 be analytic and f2 be univalent in D. Then we say that f1 is subordinate
to f2 inD, written as f1 ≺ f2, if and only if f1(0) = f2(0) and f1(D) ⊂ f2(D).

Definition 4.2 (Subordinating factor sequence). A sequence {s j}
∞

j=1 inC is called a subordinating factor sequence
if for every convex univalent function

h(ξ) = ξ +
∞∑
j=2

c jξ
j, (ξ ∈ D) (15)

we have the subordination
∑
∞

j=1 s jc jξ j
≺ h(ξ), ξ ∈ D, c1 = 1.

Lemma 4.3 ([50, Theorem 2]). The sequence {s j}
∞

j=1 is a subordinating factor sequence if and only if ℜ(1 +
2
∑
∞

j=1 s jξ j) > 0.

Theorem 4.4. Let f ∈ TUn
p(1, γ, k, b, α) be as in (6) and let

τ =
[n(k + 1) + (p − α)|b|][1 + γ(n + p − 1)]bn+p

2
{
(p − α)[1 + γ(p − 1)]|b| + [n(k + 1) + (p − α)|b|][1 + γ(n + p − 1)]bn+p

} .
Then for every convex h(ξ) given by (15) we have(

τ f (ξ)/ξp−1
)
∗ h(ξ) ≺ h(ξ), ξ ∈ D. (16)

Furthermore,

ℜ

(
ξ1−p f (ξ)

)
> −1/2τ, ξ ∈ D. (17)

If p and n are odd, then the constant factor τ in (16) and (17) is best possible.

Proof. From the representations (6) and (15) of the functions f (ξ) and h(ξ), respectively, we have
(
τ f (ξ)/ξp−1

)
∗

h(ξ) = τ
(
ξ −

∑
∞

j=n+p+1 a j−1c jξ j
)
=

∑
∞

j=1 d jc jξ j,where

d j :=


τ, j = 1
0, 2 ≤ j ≤ n + p
−τa j−1, j ≥ n + p + 1.

Thus, in view of Definition 4.2, it follows that the expression (16) will hold true if {d j}
∞

j=1 is a subordinating
factor sequence. In view of Lemma 4.3, the sequence {d j} is a subordinating factor sequence if we show that
ℜ(1 + 2

∑
∞

j=1 d jξ j) > 0. Consider the functionΨ( j) given byΨ( j) =
(
(k + 1)( j − p) + (p − α)|b|

)
[1 + γ( j − 1)]b j,

j ≥ n + p. It is easy to verify that Ψ( j) is an increasing function of j and hence Ψ( j) ≥ Ψ(n + p), j ≥ n + p.
Therefore for |ξ| = r < 1, we obtain after some simplifications that

ℜ

1 + 2
∞∑
j=1

d jξ
j

 =ℜ
1 + 2τξ − 2

∞∑
j=n+p

τa jξ
j+1

 ≥ 1 − r > 0

Hence the subordination result (16) is established. Now taking h(ξ) = ξ/(1 − ξ) in the subordination (16)
and noting that this function mapsD ontoℜ(w) > −1/2, the result (17) follows easily. For the sharpness τ,
consider the function

f0(ξ) = ξp
−

(p − α)[1 + γ(p − 1)]|b|
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]bn+p

ξn+p,

which is a member of TUn
p(1, γ, k, b, α). Thus from (16), we have τ f0(ξ)/ξp−1

≺ ξ/(1 − ξ). Moreover, it can
be easily verified that if p and n are odd then for ξ = −1, ( f0(ξ)/ξp−1) = −1/2τ. This proves that the constant
factor τ cannot be improved further.
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5. Closedness under modified Hadamard product

For x = 1, 2 and n, p ∈N, define

fx(ξ) = ξp
−

∞∑
j=n+p

a j,xξ
j (a j,x ≥ 0; x = 1, 2). (18)

The modified Hadamard product of the functions f1 and f2, denoted by f1 ⊛ f2, is defined as

( f1 ⊛ f2)(ξ) = ξp
−

∞∑
j=n+p

a j,1a j,2ξ
j.

Theorem 5.1. Let the functions fx(ξ), x = 1, 2, be defined as in (18). If f1, f2 ∈ TUn
p(1, γ, k, b, α), then f1 ⊛ f2 ∈

TU
n
p(1, γ, k, b, β), where

β ≤ p −
n(k + 1)(p − α)2[1 + γ(p − 1)]|b|

[n(k + 1) + (p − α)|b|]2[1 + γ(n + p − 1)]bn+p − (p − α)2[1 + γ(p − 1)]|b|2
.

The result is sharp for the functions fx(ξ) given by

fx(ξ) = ξp
−

(p − α)[1 + γ(p − 1)]|b|
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

ξ j, (x = 1, 2; j ≥ n + p).

Proof. We will make use of the technique adopted by the authors in [33]. Accordingly, we need to determine
the largest β so that

∞∑
j=n+p

[(k + 1)( j − p) + (p − β)|b|][1 + γ( j − 1)]b j

(p − β)[1 + γ(p − 1)]|b|
a j,1a j,2 ≤ 1. (19)

Since fx(ξ) ∈ TUn
p(1, γ, k, b, α) for x = 1, 2, the inequalities

∞∑
j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|
a j,1 ≤ 1 (20)

and
∞∑

j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|
a j,2 ≤ 1. (21)

hold in light of Theorem 2.1. By means of the well known Cauchy-Schwarz inequality, we obtain from (20)
and (21) that

∞∑
j=n+p

[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

(p − α)[1 + γ(p − 1)]|b|
√

a j,1a j,2 ≤ 1. (22)

Therefore, the inequality (19) will hold true if

[(k + 1)( j − p) + (p − β)|b|]
(p − β)

a j,1a j,2 ≤
[(k + 1)( j − p) + (p − α)|b|]

(p − α)
√

a j,1a j,2 ,

that is, if√
a j,1a j,2 ≤

[(k + 1)( j − p) + (p − α)|b|]
(p − α)

×
(p − β)

[(k + 1)( j − p) + (p − β)|b|]
, (23)
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for j ≥ n + p. Also from (22), we obtain

√
a j,1a j,2 ≤

(p − α)[1 + γ(p − 1)]|b|
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

, ( j ≥ n + p). (24)

Thus, in view of (24), the inequality (23) will hold true if

(p − α)[1 + γ(p − 1)]|b|
[(k + 1)( j − p) + (p − α)|b|][1 + γ( j − 1)]b j

≤
[(k + 1)( j − p) + (p − α)|b|]

(p − α)

×
(p − β)

[(k + 1)( j − p) + (p − β)|b|]
,

for j ≥ n + p. On simplification, the above expression yields

β ≤ p −
(k + 1)( j − p)(p − α)2[1 + γ(p − 1)]|b|

[(k + 1)( j − p) + (p − α)|b|]2[1 + γ( j − 1)]b j − (p − α)2[1 + γ(p − 1)]|b|2
.

For j ≥ n + p, define the function M( j) as

M( j) = p −
(k + 1)( j − p)(p − α)2[1 + γ(p − 1)]|b|

[(k + 1)( j − p) + (p − α)|b|]2[1 + γ( j − 1)]b j − (p − α)2[1 + γ(p − 1)]|b|2
.

It can be observed that M( j + 1) > M( j) for j ≥ n + p with n, p ∈ N. Therefore, we have β ≤ M(n + p). This
completes the proof.

6. Conclusion

In this paper, we use Hadamard product to introduce a novel family TUn
p(1, γ, k, b, α) of p-valently

analytic functions with missing initial Taylor coefficients and involving complex order. Several interesting
geometric and analytic properties of this family are discussed. Since TUn

p(1, γ, k, b, α) is a generalization to
several other recently introduced function families, the earlierly proved results can be easily obtained as
special cases. In particular, setting p = 1 and α = 0, we obtain the results of Bukhari et al. [10].

In light of the recent works of Srivastava et al. [41–43, 48], we note that the results presented in this
paper has several future prospects for q-extensions. Moreover, we reiterate that by applying some obvious
parametric and argument variations, the q-extensions can easily (and possibly trivially) be translated into the
corresponding results for the (p, q)-analogues (0 < q < p ≤ 1), the additional parameter p being redundant.
For comprehensive details, we refer to the survey-cum-expository review article Srivastava [38, p. 340]
(also see Srivastava [37, 39]) which encourage and motivate significant further developments on q-calculus
and other related topics.
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