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Abstract. We study hypersurfaces isometrically immersed in a trans-S-manifolds in order to find out
under what conditions they could inherit the structure of the ambient manifold and so, to obtain new
examples of such trans-S-manifolds. Mainly, we investigate this situation depending the behaviour of the
second fundamental form of the immersion.

1. Introduction

Riemannian manifolds with a complementary structure adapted to the metric have been widely studied,
for instance, almost complex and almost contact manifolds. More in general, K. Yano [12] introduced the
notion of f -structure on a (2n+s)-dimensional manifold as a tensor field f of type (1,1) and rank 2n satisfying
f 3 + f = 0. Almost complex (s = 0) and almost contact (s = 1) structures are well-known examples of f -
structures. Riemannian manifolds endowed with an f -structure compatible with the metric satisfying
certain additional conditions are called metric f -manifolds. In this context, almost-Hermitian manifolds
(s = 0) and almost contact metric manifolds (s = 1) are metric f -manifolds.

For metric f -manifolds, D.E. Blair [3] defined K-manifolds (and particular cases of S-manifolds and C-
manifolds). Then, K-manifolds are the analogue of Kaehlerian manifolds in the almost complex geometry
and S-manifolds (resp., C-manifolds) of Sasakian manifolds (resp., cosymplectic manifolds) in the almost
contact geometry.

Recently, P. Alegre, L.M. Fernández and A. Prieto-Martı́n [1] have introduced a new class of metric
f -manifolds called trans-S-manifolds because, when s = 1 they actually are trans-Sasakian manifolds (see
[10]). This class contains many types of metric f -manifolds studied in the literature: S-manifolds and
C-manifolds of D.E. Blair, homothetic s-th Sasakian manifolds of I. Hasegawa, Y. Okuyama and T. Abe [7]
f -manifolds of Kenmotsu type introduced by M. Falcitelly and A.M. Pastore [5] and generalized Kenmotsu
manifolds of L. Bhatt and K.K. Dube [2] and A. Turgut Vanli and R. Sari [11]. In [1] more examples of
trans-S-manifolds are given by using generalized D-conformal deformations and warped products as tools.

The purpose of this paper is to study if an oriented and isometrically immersed hypersurface in a trans-
S-manifold inherits the property of being trans-S. In general, the answer is negative. Thus, we consider the
particular case of hypersurfaces tangent to all the structure vector fields and we investigate the situation
depending the behaviour of the second fundamental form of the immersion, that is, if the hypersurface is
totally geodesic, totally umbilical, totally f -geodesic, totally f -umbilical or pseudo-umbilical. Finally, we
study the case of hypersurfaces normal to one of the structure vector fields.
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2. Trans-S-manifolds

A (2n+ s)-dimensional Riemannian manifold (M, 1) endowed with an f -structure f (that is, a tensor field
of type (1,1) and rank 2n satisfying f 3 + f = 0 [12]) is said to be a metric f -manifold if, moreover, there exist s
global vector fields ξ1, . . . , ξs on M (called structure vector fields) such that, if η1, . . . , ηs are the dual 1-forms
of ξ1, . . . , ξs, then

fξi = 0; ηi ◦ f = 0; f 2 = −I +
s∑

i=1

ηi ⊗ ξi;

1(X,Y) = 1( f X, f Y) +
s∑

i=1

ηi(X)ηi(Y), (1)

for any X,Y ∈ X(M) and i = 1, . . . , s. The distribution on M spanned by the structure vector fields is denoted
by M and its complementary orthogonal distribution is denoted by L. Consequently, TM = L ⊕ M.
Moreover, if X ∈ L, then ηi(X) = 0, for any i = 1, . . . , s and if X ∈ M, then f X = 0.

Let F be the 2-form on M defined by F(X,Y) = 1(X, f Y), for any X,Y ∈ X(M). Since f is of rank 2n, then

η1 ∧ · · · ∧ ηs ∧ Fn , 0

and, particularly, M is orientable. A metric f -manifold is said to be a metric f -contact manifold if F = dηi, for
any i = 1, . . . , s.

The f -structure f is said to be normal if

[ f , f ] + 2
s∑

i=1

ξi ⊗ dηi = 0,

where [ f , f ] denotes the Nijenhuis tensor of f . If f is normal, then [6]

[ξi, ξ j] = 0, (2)

for any i, j = 1, . . . , s.
A metric f -manifold is said to be a K-manifold [3] if it is normal and dF = 0. In a K-manifold M, the

structure vector fields are Killing vector fields [3]. A K-manifold is called an S-manifold if F = dηi, for any
i and a C-manifold if dηi = 0, for any i. Note that, for s = 0, a K-manifold is a Kaehlerian manifold and, for
s = 1, a K-manifold is a quasi-Sasakian manifold, an S-manifold is a Sasakian manifold and a C-manifold is
a cosymplectic manifold. When s ≥ 2, non-trivial examples can be found in [3, 7]. Moreover, a K-manifold
M is an S-manifold if and only if

∇Xξi = − f X, X ∈ X(M), i = 1, . . . , s,

where ∇ denotes the Riemannian connection associated with 1 and it is a C-manifold if and only if:

∇Xξi = 0, X ∈ X(M), i = 1, . . . , s.

It is easy to show that in an S-manifold,

(∇X f )Y =
s∑

i=1

{
1( f X, f Y)ξi + ηi(Y) f 2X

}
, (3)

for any X,Y ∈ X(M) and in a C-manifold:

∇ f = 0. (4)
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A (2n + s)-dimensional metric f -manifold M is said to be an almost trans-S-manifold if it satisfies

(∇X f )Y =
s∑

i=1

[
αi{1( f X, f Y)ξi + ηi(Y) f 2X}

+ βi{1( f X,Y)ξi − ηi(Y) f X}
]
,

(5)

for certain smooth functions αi, βi, i = 1....s, on M and any X,Y ∈ X(M). If, moreover, M is normal, then it is
said to be a trans-S-manifold.

So, if s = 1, a trans-S-manifold is actually a trans-Sasakian manifold.
Observe that condition (5) does not imply normality. In fact, in [1] it is proved that an almost trans-S-

manifold M is a trans S-manifold if and only if

∇Xξi = −αi f X − βi f 2X, (6)

for any X ∈ X(M) and any i = 1, . . . , s.

3. Hypersurfaces of trans-S-manifolds.

Though all this section, let (M̃, f̃ , ξ̃1, . . . , ξ̃s, η̃1, . . . , η̃s, 1) be a metric f -manifold and let M be an oriented
and isometrically immersed hypersurface in M̃ such that N denotes the unit normal vector field of M in M̃
and the structure vector fields ξ̃1, . . . , ξ̃s−1 are tangent to M. Put ξ̃s = λξs + µN, where ξs is a unit tangent
vector field to M. Then,

λ = η̃s(ξs); µ = η̃s(N); λ2 + µ2 = 1. (7)

Firstly, we are going to suppose that λ , 0. Then,

ξs+1 = −
1
λ

f̃ N

is a unit vector field tangent to M such that f̃ξs = µξs+1. Now, we define s− 1 vector fields on M by ξix = ξ̃ix ,
for any x ∈M and

ηi(X) = η̃i(X), i = 1, . . . , s − 1,

ηs(X) = −
1
λ
η̃s(X), ηs+1(X) = 1(X, ξs+1),

f X = f̃ X − ληs+1(X)N + µηs+1(X)ξs − µηs(X)ξs+1,

(8)

for any X ∈ X(M). Then, it is straightforward to prove that

(M, f , ξ1, . . . , ξs+1, η1, . . . , ηs+1, 1)

is also a metric f -manifold with rank( f ) = rank( f̃ ) − 2. Moreover, given X,Y ∈ X(M), we have that

f̃ 2X = f 2X − ηs+1(X)ξs+1 − µ
2ηs(X)ξs + λµηs(X)N (9)

and:

1( f̃ X, f̃ Y) = 1( f X, f Y) + µ2ηs(X)ηs(Y) + ηs+1(X)ηs+1(Y). (10)

For M, the Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + σ(X,Y); ∇̃XN = −AX, (11)
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for any X,Y ∈ X(M), where now ∇̃ (resp.,∇) denotes the Riemannian connection of M̃ (resp., M) and σ and A
are the second fundamental form of the immersion and the shape operator associated with N, respectively,
related by σ(X,Y) = 1(AX,Y)N.

By using (8) and (11), we compute that, given X,Y ∈ X(M):

(∇̃X f̃ )Y =(∇X f )Y − ληs+1(Y)AX
− µηs+1(Y)∇Xξs + µηs(Y)∇Xξs+1

− {X(µηs+1(Y)) + µηs+1(∇XY)}ξs

+ {X(µηs(Y)) + µηs(∇XY) + λ1(AX,Y)}ξs+1

+ {X(ληs+1(Y)) + ληs+1(∇XY)}N + σ(X, f Y)
− µηs+1(Y)σ(X, ξs) + µηs(Y)σ(X, ξs+1).

(12)

Now, suppose that M̃ is an almost trans-S-manifold with characteristic functions (α̃1, . . . , α̃s, β̃1, . . . , β̃s).
If µ , 0, we observe that M can not be an almost trans-S-manifold too. Thus, we are going to consider that
µ = 0, that is, that λ = 1 and all the structure vector fields are tangent to the hypersurface. Moreover, we
denote by αi and βi the restrictions of the characteristic functions to M. Then, from (12) and taking into
account (8), (9) and (10), we deduce

(∇X f )Y =
s∑

i=1

{αi1( f X, f Y)ξi + ηs+1(X)ηs+1(Y)ξi

+ ηi(Y) f 2X − ηs+1(X)ηi(Y)ξs+1)
+ βi(1( f X,Y)ξi − ηi(Y) f X)}
+ ηs+1(Y)AX − 1(AX,Y)ξs+1,

(13)

for any X,Y ∈ X(M) and consequently, M is neither, in general, an almost trans-S-manifold.
Regarding the normality condition (6), from (8) and (11) we obtain, for any X ∈ X(M),

∇Xξi = − αi f X + βi(ηs+1(X)ξs+1 − f 2X),
ηi(AX) = − αiηs+1(X),

(14)

for any i = 1, . . . , s and, by using (5):

∇Xξs+1 = f AX −
s∑

i=1

βiηs+1(X)ξi. (15)

Therefore, it seems interesting to study if M can be an almost trans-S-manifold depending on the
behaviour of the shape operator. Firstly, we consider that the hypersurface M is totally geodesic in M̃, that
is, A ≡ 0. Then, from (13), we can prove the following theorem.

Theorem 3.1. Let M be a totally geodesic hypersurface tangent to the structure vector fields of an almost trans-S-
manifold M̃, with characteristic functions α̃i, β̃i, i = 1, . . . , s. Then, M is an almost trans-S-manifold if and only if
α̃i = 0, for any i and, in such a case, its characteristic functions are αi = 0, βi, for i = 1, . . . , s and αs+1 = βs+1 = 0.

Now, if M̃ is a trans-S-manifold, from (14) and (15) we deduce:

Corollary 3.2. A totally geodesic hypersurface M tangent to the structure vector fields of a trans-S-manifold M̃ is a
trans-S-manifold if and only if M̃ is a C-manifold. In this case, M is also a C-manifold.

If M is totally umbilical, that is, if A = hI, being h a differentiable function, a direct expansion of (13)
shows that it is not an almost trans-S-manifold. Therefore, it seems necessary to use a variation of these



P. Alegre et al. / Filomat 37:1 (2023), 107–113 111

concepts concerning the shape operator, more related to the structure. In this context, following the ideas
introduced by Ornea [9] for S-manifolds, we say that an hypersurface M of a (almost) trans-S-manifold M̃ is
totally f -geodesic (resp., totally f -umbilical) if the distribution L = {X ∈ X(M)/ηi(X) = 0, i = 1, . . . , s} is totally
geodesic (resp., totally umbilical), that is, if σ(X,Y) = 0 (resp., σ(X,Y) = 1(X,Y)V, being

V =
(
1 +

s
2n − 1

)
H),

where H denotes the mean curvature vector field, for any X,Y ∈ L.
In other words, since for any X,Y ∈ X(M) we have that f̃ 2X, f̃ 2Y ∈ L, by using (1) the hypersurface is

totally f -geodesic if and only if

σ(X,Y) =
s∑

i=1

(ηi(X)σ(Y, ξi) + ηi(Y)σ(X, ξi))

−

s∑
i, j=1

ηi(X)η j(Y)σ(ξi, ξ j)

(16)

and, by using (8), it is totally f -umbilical if and only if

σ(X,Y) =
s∑

i=1

(ηi(X)σ(Y, ξi) + ηi(Y)σ(X, ξi))

−

s∑
i, j=1

ηi(X)η j(Y)σ(ξi, ξ j) + 1( f̃ X, f̃ Y)V

=

s∑
i=1

(ηi(X)σ(Y, ξi) + ηi(Y)σ(X, ξi))

−

s∑
i, j=1

ηi(X)η j(Y)σ(ξi, ξ j)

+ (1( f X, f Y) + ηs+1(X)ηs+1(Y))V.

(17)

Then, a totally f -umbilical submanifold is totally f -geodesic if and only if it is minimal. On the other
hand, it is easy to show that any totally f -geodesic submanifold is minimal and totally f -umbilical.

Now, suppose that M̃ is a trans-S-manifold. From (6) and the second equation of (14), we get that

σ(X, ξi) = −αiηs+1(X)N,

for any X ∈ X(M) and i = 1, . . . , s. Consequently, σ(ξi, ξ j) = 0, for any i, j and formulas (16) and (17) become
to

AX = −
s∑

i=1

αi(ηi(X)ξs+1 + ηs+1(X)ξi) (18)

and

AX = −
s∑

i=1

αi(ηi(X)ξs+1 + ηs+1(X)ξ) − h f̃ 2X, (19)

respectively, for any x ∈ X(M), where h = 1(V,N).
Therefore, for totally f -geodesic hypersurfaces of a trans-S-manifold, we have:
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Theorem 3.3. Let M be a totally f -geodesic hypersurface tangent to the structure vector fields of a trans-S-manifold
M̃ with characteristic functions α̃i, β̃i, i = 1, . . . , s. Then, M is an almost trans-S-manifold with characteristic
functions αi, βi, for i = 1, . . . , s and αs+1 = βs+1 = 0. Moreover, M is a trans-S-manifold if and only if βi = 0, for any
i = 1, . . . , s.

Proof. From (13), a direct expansion using (18) gives that M is an almost trans-S-manifold with such
characteristic functions. Now, from (14) and (15) we conclude the proof.

For totally f -umbilical hypersurfaces of a trans-S-manifold, by using a similar reasoning from (19), we
can prove:

Theorem 3.4. Let M be a totally f -umbilical hypersurface tangent to the structure vector fields of a trans-S-manifold
M̃ whit characteristic functions α̃i, β̃i, i = 1, . . . , s. Then, M is an almost trans-S-manifold with characteristic
functions αi, βi, for i = 1, . . . , s and αs+1 = −h, βs+1 = 0. Moreover, M is a trans-S-manifold if and only if βi = 0, for
any i = 1, . . . , s.

Next, let M̃ an S-manifold, that is, a trans-S-manifold with characteristic functions α̃i = 1 and β̃i = 0, for
i = 1, . . . , s. An hypersurface M tangent to the structure vector fields of M̃ is said to be pseudo-umbilical [4] if
its shape operator satisfies

AX = −h1 f̃ 2X + h2ηs+1(X)ξs+1 −

s∑
i=1

(ηi(X)ξs+1 + ηs+1(X)ξi), (20)

for any X ∈ X(M), where h1 and h2 are differentiable functions on M. Pseudo-umbilical hypersurfaces of
S-manifolds correspond to η-umbilical real hypesurfaces of Kaehlerian manifolds [8] (for more details and
examples, the mentioned paper [4] can be consulted). Then, by using (13), (20) and the properties of the
structures, we have the following theorem.

Theorem 3.5. Any pseudo-umbilical hypersurface of an S-manifold is a trans-S-manifold with characteristic func-
tions αi = 1, βi = 0, for i = 1, . . . , s and αs+1 = −h1, βs+1 = 0.

Now, we are going to consider the case λ = 0 and so, µ = 1. Consequently, the structure vector field ξs

is normal to the hypersurface. In this context, we define s − 1 vector fields on M by ξix = ξ̃ix , for any x ∈ M
and

ηi(X) = η̃i(X), f X = f̃ X. (21)

for any i=1,. . . , s and X ∈ X(M). Then,

(M, f , ξ1, . . . , ξs−1, η1, . . . , ηs−1, 1)

is also a metric f -manifold with rank( f ) = rank( f̃ ). Moreover, given X,Y ∈ X(M), we have that

f̃ 2X = f 2X and 1( f̃ X, f̃ Y) = 1( f X, f Y). (22)

It is necessary to point out that any hypersurface of M̃ normal to the structure vector field ξ̃s is an
invariant submanifold because η̃s( f X) = 0, for any X ∈ X(M). On the other hand, if dη̃s = F (for instance,
if M̃ is a metric f -contact manifold or, in particular, an S-manifold) it can be proved that an hypersurface
M normal to ξs should be an anti-invariant submanifold. So, in such a case, there are no hypersurfaces
satisfying the required condition.

By using the same notations as above. we can prove:

Theorem 3.6. Let M be an hypersurface normal to the structure vector field ξs of a (almost) trans-S-manifold with
characteristic functions α̃1, . . . , α̃s, β̃1, . . . , β̃s. Then, M is a (almost) trans-S-manifold with characteristic functions
α1, . . . , αs−1, β1, . . . , βs−1.
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