Nonlinear mixed Jordan triple *-derivations on Standard operator algebras

Nadeem ur Rehman ${ }^{\text {a }}$, Junaid Nisar ${ }^{\text {a }}$, Mohd Nazim ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India

Abstract

Let \mathfrak{A} be a standard operator algebra on an infinite dimensional complex Hilbert space \mathcal{H} containing identity operator I, which is closed under the adjoint operation. Suppose that $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is the nonlinear mixed Jordan triple $*$ - derivation. Then δ is an additive $*$-derivation.

1. Introduction

Let \mathfrak{A} be an *-algebra over the complex field \mathbb{C}. For $S, T \in \mathfrak{M},[S, T]_{*}=S T-T S^{*}$ and $S \bullet T=S T+T S^{*}$ denotes the skew Lie product and Jordan *- product of S and T respectively. In several research domains, the skew Lie product and Jordan *- product are becoming increasingly relevant, and its study has attracted several author's attention, see [1-4,6,8-15]. An additive map $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is called an additive derivation if $\delta(S T)=\delta(S) T+S \delta(T)$ for all $S, T \in \mathfrak{A}$. If $\delta\left(S^{*}\right)=\delta(S)^{*}$ for all $S \in \mathfrak{A}$ then δ is additive *-derivation. Let $\delta: \mathfrak{A} \rightarrow \mathfrak{M}$ be a mapping (without the additivity assumption). We say ψ is a nonlinear *-Lie derivation or nonlinear Jordan $*$ - derivation if

$$
\delta\left([S, T]_{*}\right)=[\delta(S), T]_{*}+[S, \delta(T)]_{*}
$$

or

$$
\delta(S \bullet T)=\delta(S) \bullet T+S \bullet \delta(T)
$$

holds for all $S, T \in \mathfrak{A}$ respectively. With the nonlinear Jordan $*$ - derivation and nonlinear skew Lie derivations in mind, we can continue to grow them in a natural manner. A map $\delta: \mathfrak{H} \rightarrow \mathfrak{H}$ is said to be a nonlinear Jordan triple *-derivation or skew Lie triple derivation if

$$
\delta(S \bullet T \bullet U)=\delta(S) \bullet T \bullet U+S \bullet \delta(T) \bullet U+S \bullet T \bullet \delta(U)
$$

or

$$
\delta\left(\left[[S, T]_{*}, U\right]_{*}\right)=\left[[\delta(S), T]_{*}, U\right]_{*}+\left[[S, \delta(T)]_{*}, U\right]_{*}+\left[[S, T]_{*}, \delta(U)\right]_{*}
$$

[^0]for all $S, T, U \in \mathfrak{A}$ respectively. In this paper, we will look into nonlinear mixed Jordan triple *-derivations on standard operator algebras. A map $\delta: \mathfrak{A} \rightarrow \mathfrak{A}$ is said to be a nonlinear mixed Jordan triple *-derivation if
$$
\delta\left([S, T]_{*} \bullet U\right)=[\delta(S), T]_{*} \bullet U+[S, \delta(T)]_{*} \bullet U+[S, T]_{*} \bullet \delta(U)
$$
for all $S, T, U \in \mathfrak{M}$. We prove that δ is a nonlinear mixed Jordan triple $*$ - derivation on standard operator algebras if and only if δ is an additive $*$-derivation.

2. Notation and Preliminaries

Throughout this paper, \mathcal{H} represents a Banach space over \mathbb{F}, where \mathbb{F} is the real field \mathbb{R} or the complex field $\mathbb{C} . \mathcal{B}(\mathcal{H})$ represents the algebra of all bounded linear operators on \mathcal{H}. By $\mathcal{F}(\mathcal{H})$ we mean the subalgebra of bounded finite rank operators. It is to be noted that $\mathcal{F}(\mathcal{H})$ forms a *-closed ideal in $\mathcal{B}(\mathcal{H})$. An algebra $\mathfrak{A} \subset \mathcal{B}(\mathcal{H})$ is said to be standard operator algebra in case $\mathcal{F}(\mathcal{H}) \subset \mathfrak{A}$. An operator $P \in \mathcal{B}(\mathcal{H})$ is said to be a projection provided $P^{*}=P$ and $P^{2}=P$. An algebra \mathfrak{A} is said to be prime if $A \mathfrak{A} B=0$ implies either $A=0$ or $B=0$. It is to be noted that every standard operator algebra is prime and its centre is $\mathbb{F} I$, where \mathbb{F} is either \mathbb{R} or \mathbb{C}. Any operator $S \in \mathcal{B}(\mathcal{H})$ can be expressed as $S=\mathfrak{R}(S)+i \mathfrak{I}(S)$, where $\mathfrak{R}(S)=\frac{S+S^{*}}{2}$ and $\mathfrak{I}(S)=\frac{S-S^{*}}{2 i}$. Both $\mathfrak{R}(S)$ and $\mathfrak{I}(S)$ are self disjoint.

The following known results will help us in our proof:
Lemma 2.1. [7, Lemma 2.1] Let \mathfrak{A} be a standard operator algebra with the identity operator I on a complex Hilbert space which is closed under the adjoint operation. If $S T=T S^{*}$ holds true for all $T \in \mathfrak{U}$, then $S \in \mathbb{R} I$.

Lemma 2.2. [5, Problem 230] Suppose \mathfrak{A} is a Banach algebra with the identity I. For any $S, T \in \mathfrak{A}$ and $\lambda \in \mathbb{C}$, if $[S, T]=\lambda I$, then $\lambda=0$.

3. Main Result

Now take a projection $P_{1} \in \mathfrak{H}$ and let $P_{2}=I-P_{1}$. We write $\mathfrak{A}_{j k}=P_{j} \mathfrak{A} P_{k}$ for $j, k=1,2$. Then by the Peirce decomposition of \mathfrak{A}, we have $\mathfrak{A}=\mathfrak{A}_{11} \oplus \mathfrak{A}_{12} \oplus \mathfrak{H}_{21} \oplus \mathfrak{A}_{22}$. Note that any operator $S \in \mathfrak{A}$ can be expressed as $S=S_{11}+S_{12}+S_{21}+S_{22}$ and $S_{j k}^{*} \in \mathfrak{H}_{k j}$ for any $S_{j k} \in \mathfrak{A}_{j k}$.

Theorem 3.1. Let \mathfrak{A} be a standard operator algebra on an infinite dimensional complex Hilbert space \mathcal{H} containing identity operator I, which is closed under the adjoint operation. Suppose that $\delta: \mathfrak{H} \rightarrow \mathfrak{H}$ satisfies $\delta\left([S, T]_{*} \bullet U\right)=$ $[\delta(S), T]_{*} \bullet U+[S, \delta(T)]_{*} \bullet U+[S, T]_{*} \bullet \delta(U)$ for all $S, T, U \in \mathfrak{A}$. Then δ is an additive *-derivation.

This section's major aim is to prove our main theorem by proving several lemmas.
Lemma 3.2. $\delta(0)=0$.
Proof. It is obvious that
$\delta(0)=\delta\left([0,0]_{*} \bullet 0\right)=[\delta(0), 0]_{*} \bullet 0+[0, \delta(0)]_{*} \bullet 0+[0,0]_{*} \bullet \delta(0)=0$.

Lemma 3.3. For every $S_{11} \in \mathfrak{A}_{11}, T_{12} \in \mathfrak{A}_{12}, U_{21} \in \mathfrak{A}_{21}, V_{22} \in \mathfrak{H}_{22}$, we have

$$
\delta\left(S_{11}+T_{12}+U_{21}+V_{22}\right)=\delta\left(S_{11}\right)+\delta\left(T_{12}\right)+\delta\left(U_{21}\right)+\delta\left(V_{22}\right)
$$

Proof. Let $M=\delta\left(S_{11}+T_{12}+U_{21}+V_{22}\right)-\left(\delta\left(S_{11}\right)+\delta\left(T_{12}\right)+\delta\left(U_{21}\right)+\delta\left(V_{22}\right)\right)$. We have

$$
\begin{aligned}
\delta\left(\left[P_{j}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{i}\right)= & {[} \\
& \left.\delta\left(P_{j}\right), S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{i} \\
& +\left[P_{j}, \delta\left(S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{i}\right. \\
& +\left[P_{j}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet \delta\left(P_{i}\right) .
\end{aligned}
$$

On the other hand, we have $\left[P_{j}, S_{11}\right]_{*} \bullet P_{i}=\left[P_{j}, V_{22}\right]_{*} \bullet P_{i}=0$. Also, $\left[P_{j}, T_{12}\right]_{*} \bullet P_{i}=0$ or $\left[P_{j}, U_{21}\right]_{*} \bullet P_{i}=0$ for $i, j=1,2$ and $i \neq j$. Then

$$
\begin{aligned}
\delta\left(\left[P_{j}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{i}\right)= & \delta\left(\left[P_{j}, S_{11}\right]_{*} \bullet P_{i}\right)+\delta\left(\left[P_{j}, T_{12}\right]_{*} \bullet P_{i}\right) \\
& +\delta\left(\left[P_{j}, U_{21}\right]_{*} \bullet P_{i}\right)+\delta\left(\left[P_{j}, V_{22}\right]_{*} \bullet P_{i}\right) \\
= & {\left[\delta\left(P_{j}\right), S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{i} } \\
& +\left[P_{j}, \delta\left(S_{11}\right)+\delta\left(T_{12}\right)+\delta\left(U_{21}\right)+\delta\left(V_{22}\right)\right]_{*} \bullet P_{i} \\
& +\left[P_{j}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet \delta\left(P_{i}\right) .
\end{aligned}
$$

By comparing the above two equations, we find $\left[P_{j}, M\right]_{*} \bullet P_{i}=0$. This implies that $P_{j} M P_{i}+P_{i} M^{*} P_{j}=0$. Multiplying both sides with P_{j} from the left, we obtain $P_{j} M P_{i}=0$ with $i \neq j$. Hence, $M=M_{11}+M_{22}$. Again for every $B_{12} \in \mathfrak{A}_{12}$, we have

$$
\begin{aligned}
\delta\left(\left[B_{12}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{2}\right)= & {[} \\
& \left.\left(B_{12}\right), S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{2} \\
& +\left[B_{12}, \delta\left(S_{11}+T_{12}+U_{21}+V_{22}\right)\right]_{*} \bullet P_{2} \\
& +\left[B_{12}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

On the other hand, by using Lemma 3.2, we have

$$
\begin{aligned}
\delta\left(\left[B_{12}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{2}\right)= & \delta\left(\left[B_{12}, S_{11}\right]_{*} \bullet P_{2}\right)+\delta\left(\left[B_{12}, T_{12}\right]_{*} \bullet P_{2}\right) \\
& +\delta\left(\left[B_{12}, U_{21}\right]_{*} \bullet P_{2}\right)+\delta\left(\left[B_{12}, V_{22}\right]_{*} \bullet P_{2}\right) \\
= & {\left[\delta\left(B_{12}\right), S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet P_{2} } \\
& +\left[B_{12}, \delta\left(S_{11}\right)+\delta\left(T_{12}\right)+\delta\left(U_{21}\right)+\delta\left(V_{22}\right)\right]_{*} \bullet P_{2} \\
& +\left[B_{12}, S_{11}+T_{12}+U_{21}+V_{22}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

By comparing the last two expressions, we find $\left[B_{12}, M\right]_{*} \bullet P_{2}=0$. That means $B_{12} M P_{2}+P_{2} M^{*} B_{12}^{*}=0$. Multiplying both sides with P_{1} from the left, we find $B_{12} M P_{2}=0$. By using the primeness of \mathfrak{U}, we obtain $P_{2} M P_{2}=0$. Thus, $M_{22}=0$. Similarly, we can find $M_{11}=0$. Hence, $M=0$.

Lemma 3.4. For any $S_{i j}, T_{i j} \in \mathfrak{H}_{i j},(1 \leq i \neq j \leq 2)$, we have

$$
\delta\left(S_{i j}+T_{i j}\right)=\delta\left(S_{i j}\right)+\delta\left(T_{i j}\right)
$$

Proof. Since, we have

$$
\left[-\frac{i}{2} I, i\left(S_{i j}+P_{i}\right)\right]_{*} \bullet\left(T_{i j}+P_{j}\right)=\left(S_{i j}+T_{i j}\right)+S_{i j}^{*}+T_{i j} S_{i j}^{*}
$$

It follows from Lemma 3.3, that

$$
\begin{aligned}
\delta\left(S_{i j}+T_{i j}\right)+\delta\left(S_{i j}^{*}\right)+\delta\left(T_{i j} S_{i j}^{*}\right)= & \delta\left(\left(S_{i j}+T_{i j}\right)+S_{i j}^{*}+T_{i j} S_{i j}^{*}\right) \\
= & \delta\left(\left[-\frac{i}{2} I, i\left(S_{i j}+P_{i}\right)\right]_{*} \bullet\left(T_{i j}+P_{j}\right)\right) \\
= & {\left[\delta\left(-\frac{i}{2} I\right), i\left(S_{i j}+P_{i}\right)\right]_{*} \bullet\left(T_{i j}+P_{j}\right) } \\
& +\left[-\frac{i}{2} I, \delta\left(i\left(S_{i j}+P_{i}\right)\right)\right]_{*} \bullet\left(T_{i j}+P_{j}\right) \\
& +\left[-\frac{i}{2} I, i\left(S_{i j}+P_{i}\right)\right]_{*} \bullet \delta\left(T_{i j}+P_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \delta\left(\left[-\frac{i}{2} I, i S_{i j}\right]_{*} \bullet T_{i j}\right)+\delta\left(\left[-\frac{i}{2} I, i S_{i j}\right]_{*} \bullet P_{j}\right) \\
& +\delta\left(\left[-\frac{i}{2} I, i P_{i}\right]_{*} \bullet T_{i j}\right)+\delta\left(\left[-\frac{i}{2} I, i P_{i}\right]_{*} \bullet P_{j}\right) \\
= & \delta\left(T_{i j} S_{i j}^{*}\right)+\delta\left(S_{i j}+S_{i j}^{*}\right)+\delta\left(T_{i j}\right) \\
= & \delta\left(S_{i j}\right)+\delta\left(S_{i j}^{*}\right)+\delta\left(T_{i j} S_{i j}^{*}\right)+\delta\left(T_{i j}\right) .
\end{aligned}
$$

Hence, $\delta\left(S_{i j}+T_{i j}\right)=\delta\left(S_{i j}\right)+\delta\left(T_{i j}\right)$.
Lemma 3.5. For any $S_{i i}, T_{i i} \in \mathfrak{H}_{i i},(1 \leq i \leq 2)$, we have

$$
\delta\left(S_{i i}+T_{i i}\right)=\delta\left(S_{i i}\right)+\delta\left(T_{i i}\right) .
$$

Proof. For $i=1$, write $M=\delta\left(S_{11}+T_{11}\right)-\delta\left(S_{11}\right)-\delta\left(T_{11}\right)$. We have

$$
\begin{aligned}
\delta\left(\left[P_{1}, S_{11}+T_{11}\right]_{*} \bullet P_{2}\right)= & {\left[\delta\left(P_{1}\right), S_{11}+T_{11}\right]_{*} \bullet P_{2}+\left[P_{1}, \delta\left(S_{11}+T_{11}\right)\right]_{*} \bullet P_{2} } \\
& +\left[P_{1}, S_{11}+T_{11}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

On the other side, by using Lemma 3.2, we have

$$
\begin{aligned}
\delta\left(\left[P_{1}, S_{11}+T_{11}\right]_{*} \bullet P_{2}\right)= & \delta\left(\left[P_{1}, S_{11}\right]_{*} \bullet P_{2}\right)+\delta\left(\left[P_{1}, T_{11}\right]_{*} \bullet P_{2}\right) \\
= & {\left[\delta\left(P_{1}\right), S_{11}+T_{11}\right]_{*} \bullet P_{2}+\left[P_{1}, \delta\left(S_{11}\right)+\delta\left(T_{11}\right)\right]_{*} \bullet P_{2} } \\
& +\left[P_{1}, S_{11}+T_{11}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

By comparing the last two equations, we get $\left[P_{1}, M\right]_{*} \bullet P_{2}=0$. That means $P_{1} M P_{2}+P_{2} M^{*} P_{1}=0$. Multiplying both sides from left by P_{1}, we get $P_{1} M P_{2}=0$. Similarly, we can show $P_{2} M P_{1}=0$.

For any $B_{i j} \in \mathfrak{H}_{i j}$, we have

$$
\begin{aligned}
\delta\left(\left[B_{12}, S_{11}+T_{11}\right]_{*} \bullet P_{1}\right)= & {[} \\
& \left.\delta\left(B_{12}\right), S_{11}+T_{11}\right]_{*} \bullet P_{1}+\left[B_{12}, \delta\left(S_{11}+T_{11}\right)\right]_{*} \bullet P_{1} \\
& +\left[B_{12}, S_{11}+T_{11}\right]_{*} \bullet \delta\left(P_{1}\right) .
\end{aligned}
$$

On the other side, by Lemma 3.2, we have

$$
\begin{aligned}
\delta\left(\left[B_{12}, S_{11}+T_{11}\right]_{*} \bullet P_{1}\right)= & \delta\left(\left[B_{12}, S_{11}\right]_{*} \bullet P_{1}\right)+\delta\left(\left[B_{12}, T_{11}\right]_{*} \bullet P_{1}\right) \\
= & {\left[\delta\left(B_{12}\right), S_{11}+T_{11}\right]_{*} \bullet P_{1}+\left[B_{12}, \delta\left(S_{11}\right)+\delta\left(T_{11}\right)\right]_{*} \bullet P_{1} } \\
& +\left[B_{12}, S_{11}+T_{11}\right]_{*} \bullet \delta\left(P_{1}\right) .
\end{aligned}
$$

By comparing the above two equations and then multiplying both sides from right by P_{2}, we obtain $B_{12} M P_{2}=0$. By using the primeness of \mathfrak{M}, we get $M_{22}=0$. Hence, $M=M_{11}$. Now, again on the one hand, we have

$$
\begin{aligned}
\delta\left(\left[S_{11}+T_{11}, B_{12}\right]_{*} \bullet P_{2}\right)= & {\left[\delta\left(S_{11}+T_{11}\right), B_{12}\right]_{*} \bullet P_{2}+\left[S_{11}+T_{11}, \delta\left(B_{12}\right)\right]_{*} \bullet P_{2} } \\
& +\left[S_{11}+T_{11}, B_{12}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

On the other hand, from Lemma 3.3 and Lemma 3.4 that for any $B_{12} \in \mathfrak{A}_{12}$, we have

$$
\begin{aligned}
\delta\left(\left[S_{11}+T_{11}, B_{12}\right]_{*} \bullet P_{2}\right)= & \delta\left(S_{11} B_{12}\right)+\delta\left(T_{11} B_{12}\right)+\delta\left(B_{12}^{*} S_{11}^{*}\right)+\delta\left(B_{12}^{*} T_{11}^{*}\right) \\
= & \delta\left(\left[S_{11}, B_{12}\right]_{*} \bullet P_{2}\right)+\delta\left(\left[T_{11}, B_{12}\right]_{*} \bullet P_{2}\right) \\
= & {\left[\delta\left(S_{11}\right)+\delta\left(T_{11}\right), B_{12}\right]_{*} \bullet P_{2}+\left[S_{11}+T_{11}, \delta\left(B_{12}\right)\right]_{*} \bullet P_{2} } \\
& +\left[S_{11}+T_{11}, B_{12}\right]_{*} \bullet \delta\left(P_{2}\right) .
\end{aligned}
$$

By comparing the last two expressions, we get $\left[M_{11}, B_{12}\right]_{*} \bullet P_{2}=0$. By using the primeness of \mathfrak{A}, we obtain $M_{11}=0$. Hence, the proof is complete. Similarly, we can show the case for $i=2$.

Lemma 3.6. δ is additive.
Proof. Let $S, T \in \mathfrak{A}$ and write $S=\sum_{i, j=1}^{2} S_{i j}, T=\sum_{i, j=1}^{2} T_{i j}$. Then by using Lemma 3.3, Lemma 3.4 and Lemma 3.5, we have

$$
\begin{aligned}
\delta(S+T) & =\delta\left(\sum_{i, j=1}^{2} S_{i j}+\sum_{i, j=1}^{2} T_{i j}\right) \\
& =\delta\left(\sum_{i, j=1}^{2}\left(S_{i j}+T_{i j}\right)\right) \\
& =\sum_{i, j=1}^{2} \delta\left(S_{i j}+T_{i j}\right) \\
& =\sum_{i, j=1}^{2} \delta\left(S_{i j}\right)+\delta\left(T_{i j}\right) \\
& =\delta\left(\sum_{i, j=1}^{2} S_{i j}\right)+\delta\left(\sum_{i, j=1}^{2} T_{i j}\right) \\
& =\delta(S)+\delta(T) .
\end{aligned}
$$

Lemma 3.7. δ has the following properties:

1. $\delta(i I)^{*}=\delta(i I)$.
2. For any $\lambda \in \mathbb{R}, \delta(\lambda I) \in \mathbb{R} I$.
3. For all $S \in \mathfrak{A}$ with $S=S^{*}, \delta(S)=\delta(S)^{*}$.
4. For any $\lambda \in \mathbb{C}, \delta(\lambda I) \in \mathbb{C}$.

Proof. (1) We have,

$$
\delta\left([i I, i I]_{*} \bullet(i I)\right)=-4 \delta(i I)
$$

On the other hand, we have

$$
\begin{aligned}
\delta\left([i I, i I]_{*} \bullet(i I)\right)= & {[\delta(i I), i I]_{*} \bullet(i I)+[i I, \delta(i I)]_{*} \bullet(i I) } \\
& +[i I, i I]_{*} \bullet \delta(i I) \\
= & -8 \delta(i I)+4 \delta^{*}(i I) .
\end{aligned}
$$

By comparing the above two equations, we get, $\delta(i I)^{*}=\delta(i I)$.
(2) For any $\lambda \in \mathbb{R}$, we have

$$
0=\delta\left([\lambda I, S]_{*} \bullet I\right)=[\delta(\lambda I), S]_{*} \bullet I=\delta(\lambda I)\left(S-S^{*}\right)-\left(S-S^{*}\right) \delta(\lambda I)^{*}
$$

Thus, $\delta(\lambda I)\left(S-S^{*}\right)=\left(S-S^{*}\right) \delta(\lambda I)^{*}$ holds for all $S \in \mathfrak{A}$ and hence $\delta(\lambda I) S=S \delta(\lambda I)^{*}$ for all $S=-S^{*} \in \mathfrak{A}$. Since every S is of the form of $S=S_{1}+i S_{2}$, where $S_{1}=\frac{S+S^{*}}{2}$ and $S_{2}=\frac{S-S^{*}}{2 i}$, it follows that $\delta(\lambda I) S=S \delta(\lambda I)^{*}$ for all $S \in \mathfrak{A}$. By Lemma 2.1, we have $\delta(\lambda I) \in \mathbb{R} I$.
(3) By using Lemma 3.7 (2), we have for $S=S^{*}$

$$
\begin{aligned}
0=\delta\left([S, I]_{*} \bullet B\right) & =[\delta(S), I]_{*} \bullet B+[S, \delta(I)]_{*} \bullet B+[S, I]_{*} \bullet \delta(B) \\
& =[\delta(S), I]_{*} \bullet B \\
& =\left(\delta(S)-\delta(S)^{*}\right) \bullet B \\
& =\left(\delta(S)-\delta(S)^{*}\right) B-B\left(\delta(S)-\delta(S)^{*}\right)
\end{aligned}
$$

for all $B \in \mathfrak{A}$. That means, $\delta(S)-\delta(S)^{*}=[\delta(S), I]_{*} \in \mathbb{F}$. In particular, $\delta(S)-\delta(S)^{*}=\lambda I$ for some $\lambda \in \mathbb{C}$. Also, we have

$$
\begin{aligned}
0 & =\delta\left([S, S]_{*} \bullet B\right) \\
& =[\delta(S), S]_{*} \bullet B+[S, \delta(S)]_{*} \bullet B \\
& =\left(S\left(\delta(S)-\delta(S)^{*}\right)\right) \bullet B \\
& =\lambda(S B-B S)
\end{aligned}
$$

for all $B \in \mathfrak{A}$. Suppose that $\lambda \neq 0$, then $S \in \mathbb{F I}$, which is a contradiction. Thus, $\lambda=0$. Hence, $\psi(S)=\psi(S)^{*}$.
(4) For any $\lambda \in \mathbb{C}$ and $S \in \mathfrak{A}$ with $S=S^{*}$. Using Lemma 3.7 (3), we see that

$$
0=\delta\left([S, \lambda I]_{*} \bullet T\right)=[\delta(S), \lambda I]_{*} \bullet T+[S, \delta(\lambda I)]_{*} \bullet T+[S, \lambda I]_{*} \bullet \delta(T)=[S, \delta(\lambda I)]_{*} \bullet T
$$

for all $T \in \mathfrak{M}$. That means $[S, \lambda I]_{*}=[S, \lambda I] \in \mathbb{F} I$. Now, by using Lemma 2.2, we get $[S, \lambda I]=0$. Thus, $\delta(\lambda I) S=S \delta(\lambda I)$ for all $S=S^{*}$. Since every S is of the form of $S=S_{1}+i S_{2}$, where $S_{1}=\frac{S+S^{*}}{2}$ and $S_{2}=\frac{S-S^{*}}{2 i}$. It follows that

$$
\delta(\lambda I) S=S \delta(\lambda I)
$$

for all $S \in \mathfrak{A}$. Hence, $\delta(\lambda I) \in \mathbb{C} I$.
Lemma 3.8. 1. $P_{1} \delta\left(P_{1}\right) P_{2}=-P_{1} \delta\left(P_{2}\right) P_{2}, \quad P_{2} \delta\left(P_{1}\right) P_{1}=-P_{2} \delta\left(P_{2}\right) P_{1}$.
2. $P_{1} \delta\left(P_{2}\right) P_{1}=P_{2} \delta\left(P_{1}\right) P_{2}=0$.

Proof. (1). Let $1 \leq i \neq j \leq 2$. It follows from Lemma 3.7 that

$$
\begin{aligned}
0=\delta\left(\left[P_{1}, P_{2}\right]_{*} \bullet P_{1}\right) & =\left[\delta\left(P_{1}\right), P_{2}\right]_{*} \bullet P_{1}+\left[P_{1}, \delta\left(P_{2}\right)\right]_{*} \bullet P_{1}+\left[P_{1}, P_{2}\right]_{*} \bullet \delta\left(P_{1}\right) \\
& =-P_{2} \delta\left(P_{1}\right) P_{1}-P_{1} \delta\left(P_{1}\right) P_{2}+2 P_{1} \delta\left(P_{2}\right) P_{1}-\delta\left(P_{2}\right) P_{1}-P_{1} \delta\left(P_{2}\right) .
\end{aligned}
$$

Multiplying both sides by P_{1} from left and by P_{2} from the right, we get

$$
P_{1} \delta\left(P_{1}\right) P_{2}=-P_{1} \delta\left(P_{2}\right) P_{2}
$$

Similarly, we can show that $P_{2} \delta\left(P_{1}\right) P_{1}=-P_{2} \delta\left(P_{2}\right) P_{1}$.
(2). On the other hand, we get

$$
\begin{aligned}
\delta\left(\left[i I, i P_{1}\right]_{*} \bullet P_{2}\right)= & {\left[\delta(i I), i P_{1}\right]_{*} \bullet P_{2}+\left[i I, \delta\left(i P_{1}\right)\right]_{*} \bullet P_{2}+\left[i I, i P_{1}\right]_{*} \bullet \delta\left(P_{2}\right) } \\
= & -i P_{1} \delta(i I) P_{2}+i P_{2} \delta(i I) P_{1}+2 i \delta\left(i P_{1}\right) P_{2}-2 i P_{2} \delta\left(i P_{1}\right)-2 P_{1} \delta\left(P_{2}\right) \\
& -2 \delta\left(P_{2}\right) P_{1} .
\end{aligned}
$$

Multiplying both sides of the above equation by P_{1} from left and right, we obtain that $P_{1} \delta\left(P_{2}\right) P_{1}=0$. Similarly, $P_{2} \delta\left(P_{1}\right) P_{2}=0$.

Let $M=P_{1} \delta\left(P_{1}\right) P_{2}-P_{2} \delta\left(P_{1}\right) P_{1}$. Then $M=-M^{*}$. We define a map $\psi: \mathfrak{A} \rightarrow \mathfrak{A}$ by

$$
\psi(S)=\delta(S)-(S M-M S)
$$

for all $S \in \mathfrak{A}$. It is easy to verify that ψ also satifies $\psi\left([S, T]_{*} \bullet U\right)=[\psi(S), T]_{*} \bullet U+[S, \psi(T)]_{*} \bullet U+[S, T]_{*} \bullet \psi(U)$ and has following properties.
Remark 3.9. 1. $\psi\left(P_{i}\right)=P_{i} \delta\left(P_{i}\right) P_{i} \in \mathfrak{A}_{i i}, i=1,2$.
2. $\psi(i I)^{*}=\psi(i I)$.
3. $\psi(S)=\psi(S)^{*}$ for all $S=S^{*} \in \mathfrak{A}$.
4. ψ is additive.
5. ψ is $a *$-derivation if and only if δ is $a *$-derivation.

Lemma 3.10. $\psi\left(P_{i}\right)=0$ and $\psi\left(\mathfrak{H}_{i j}\right) \subseteq \mathfrak{A}_{i j}$.

Proof. For any $S_{12} \in \mathfrak{A}_{12}$. By the properties of ψ, we have

$$
\begin{aligned}
\psi\left(i S_{12}\right) & =\psi\left(\left[\frac{i}{2} I, P_{1}\right]_{*} \bullet S_{12}\right) \\
& =\left[\frac{i}{2} I, \psi\left(P_{1}\right)\right]_{*} \bullet S_{12}+\left[\frac{i}{2} I, P_{1}\right]_{*} \bullet \psi\left(S_{12}\right) \\
& =i\left(\psi\left(P_{1}\right) S_{12}-S_{12} \psi\left(P_{1}\right)^{*}+P_{1} \psi\left(S_{12}\right)-\psi\left(S_{12}\right) P_{1}\right) \\
& =i\left(\psi\left(P_{1}\right) S_{12}+P_{1} \psi\left(S_{12}\right)-\psi\left(S_{12}\right) P_{1}\right)
\end{aligned}
$$

Multiplying both sides of the above equation by P_{1} and P_{2} from the left and right respectively, we get

$$
P_{1} \psi\left(i S_{12}\right) P_{1}=P_{2} \psi\left(i S_{12}\right) P_{2}=0
$$

Hence, $\psi\left(i S_{12}\right)=P_{1} \psi\left(i S_{12}\right) P_{2}+P_{2} \psi\left(i S_{12}\right) P_{1}$. On the other hand, for all $B \in \mathfrak{A}$, we have

$$
0=\psi\left(\left[i S_{12}, P_{1}\right]_{*} \bullet B\right)=\left[\psi\left(i S_{12}\right), P_{1}\right]_{*} \bullet B
$$

Thus, $\psi\left(i S_{12}\right) P_{1}-P_{1} \psi\left(i S_{12}\right)^{*} \in \mathbb{R} I$. Multiplying both sides by P_{2} from the left and P_{1} from the right, we get $P_{2} \psi\left(i S_{12}\right) P_{1}=0$. Thus, $\psi\left(i S_{12}\right) \subseteq \mathfrak{A}_{12}$. Since, S_{12} is arbitary. Hence, $\psi\left(\mathfrak{H}_{12}\right) \subseteq \mathfrak{A}_{12}$. Similarly, we can show that $\psi\left(\mathfrak{H}_{21}\right) \subseteq \mathfrak{A}_{21}$.
Now, by using the additivity of ψ and for any $S_{12} \in \mathfrak{A}_{12}$, we have

$$
\psi\left(\left[S_{12}, P_{2}\right]_{*} \bullet P_{2}\right)=\psi\left(S_{12}+S_{12}^{*}\right)=\psi\left(S_{12}\right)+\psi\left(S_{12}^{*}\right)
$$

On the other hand, we have

$$
\begin{aligned}
\psi\left(\left[S_{12}, P_{2}\right]_{*} \bullet P_{2}\right) & =\left[\psi\left(S_{12}\right), P_{2}\right]_{*} \bullet P_{2}+\left[S_{12}, \psi\left(P_{2}\right)\right]_{*} \bullet P_{2}+\left[S_{12}, P_{2}\right]_{*} \bullet \psi\left(P_{2}\right) \\
& =\psi\left(S_{12}\right)+\psi\left(S_{12}\right)^{*}+2 S_{12} \psi\left(P_{2}\right)+\psi\left(S_{12}\right)^{*} S_{12}^{*}+\psi\left(P_{2}\right) S_{12}^{*} .
\end{aligned}
$$

By comparing the above two equations, we get

$$
\psi\left(S_{12}^{*}\right)=\psi\left(S_{12}\right)^{*}+2 S_{12} \psi\left(P_{2}\right)+\psi\left(S_{12}\right)^{*} S_{12}^{*}+\psi\left(P_{2}\right) S_{12}^{*}
$$

Multiplying both sides of the above equation by P_{1} from the left and by P_{2} from the right, we have $S_{12} \psi\left(P_{2}\right) P_{2}=0$ for all $S_{12} \in \mathfrak{H}_{12}$. By using primeness of \mathfrak{A}, we get $P_{2} \psi\left(P_{2}\right) P_{2}=0$. Now, by using Remark 3.9 (1), we get $P_{2} \delta\left(P_{2}\right) P_{2}=0$. Hence, $\psi\left(P_{2}\right)=0$. Similarly, we can show that $\psi\left(P_{1}\right)=0$.

For every $S_{11} \in \mathfrak{A}_{11}$, we have

$$
\begin{equation*}
0=\psi\left(\left[P_{1}, S_{11}\right]_{*} \bullet P_{2}\right)=\left[P_{1}, \psi\left(S_{11}\right)\right]_{*} \bullet P_{2}=P_{1} \psi\left(S_{11}\right) P_{2}+P_{2} \psi\left(S_{11}\right)^{*} P_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
0=\psi\left(\left[P_{2}, S_{11}\right]_{*} \bullet P_{1}\right)=\left[P_{2}, \psi\left(S_{11}\right)\right]_{*} \bullet P_{1}=P_{2} \psi\left(S_{11}\right) P_{1}+P_{1} \psi\left(S_{11}\right)^{*} P_{2} \tag{2}
\end{equation*}
$$

Multiplying both sides from the left by P_{1} to equation (1) and by P_{2} from left to equation (2), we have $P_{1} \psi\left(S_{11}\right) P_{2}=P_{2} \psi\left(S_{11}\right) P_{1}=0$.
On the other hand, for any $M_{12} \in \mathfrak{A}_{12}$, we have

$$
0=\psi\left(\left[M_{12}, S_{11}\right]_{*} \bullet P_{2}\right)=\left[M_{12}, \psi\left(S_{11}\right)\right]_{*} \bullet P_{2}=M_{12} \psi\left(S_{11}\right) P_{2}+P_{2} \psi\left(S_{11}\right)^{*} M_{12}^{*}
$$

Multiplying both sides with P_{2} from the right, we have $M_{12} \psi\left(S_{11}\right) P_{2}=0$. By using the primeness of \mathfrak{A}, we get $P_{2} \psi\left(S_{11}\right) P_{2}=0$. Hence, $\psi\left(\mathfrak{A}_{11}\right) \subseteq \mathfrak{A}_{11}$. Similarly, we can show that $\psi\left(\mathfrak{A}_{22}\right) \subseteq \mathfrak{A}_{22}$.
Lemma 3.11. For every $S_{i i}, T_{i i} \in \mathfrak{H}_{i i}, S_{i j}, T_{i j} \in \mathfrak{H}_{i j}, T_{j i} \in \mathfrak{H}_{j i}, T_{j j} \in \mathfrak{A}_{j j}(1 \leq i \neq j \leq 2)$, we have

1. $\psi\left(S_{i j} T_{j i}\right)=\psi\left(S_{i j}\right) T_{j i}+S_{i j} \psi\left(T_{j i}\right)$.
2. $\psi\left(S_{i i} T_{i j}\right)=\psi\left(S_{i i}\right) T_{i j}+S_{i i} \psi\left(T_{i j}\right)$.
3. $\psi\left(S_{i j} T_{j j}\right)=\psi\left(S_{i j}\right) T_{j j}+S_{i j} \psi\left(T_{j j}\right)$.
4. $\psi\left(S_{i i} T_{i i}\right)=\psi\left(S_{i i}\right) T_{i i}+S_{i i} \psi\left(T_{i i}\right)$.

Proof. (1) It follows from Lemma 3.10 that

$$
\begin{aligned}
\psi\left(S_{i j} T_{j i}\right)=\psi\left(\left[P_{i}, S_{i j}\right]_{*} \bullet T_{j i}\right) & =\left[P_{i}, \psi\left(S_{i j}\right)\right]_{*} \bullet T_{j i}+\left[P_{i}, S_{i j}\right]_{*} \bullet \psi\left(T_{j i}\right) \\
& =\psi\left(S_{i j}\right) T_{i j}+S_{i j} \psi\left(T_{j i}\right) .
\end{aligned}
$$

(2) For every $X_{j i} \in \mathfrak{A}_{j i},(1 \leq i \neq j \leq 2)$, we have from (1) that

$$
\psi\left(\left[S_{i i}, T_{i j}\right]_{*} \bullet X_{j i}\right)=\psi\left(S_{i i} T_{i j} X_{j i}\right)=\psi\left(S_{i i} T_{i j}\right) X_{j i}+S_{i i} T_{i j} \psi\left(X_{j i}\right)
$$

On the other hand, we have

$$
\begin{aligned}
\psi\left(\left[S_{i i}, T_{i j}\right]_{*} \bullet X_{j i}\right) & =\left[\psi\left(S_{i i}\right), T_{i j}\right]_{*} \bullet X_{j i}+\left[S_{i i}, \psi\left(T_{i j}\right)\right]_{*} \bullet X_{j i}+\left[S_{i i}, T_{i j}\right]_{*} \bullet \psi\left(X_{j i}\right) \\
& =\psi\left(S_{i i}\right) T_{i j} X_{j i}+S_{i i} \psi\left(T_{i j}\right) X_{j i}+S_{i i} T_{i j} \psi\left(X_{j i}\right) .
\end{aligned}
$$

By comparing the above two equations, we have $\left(\psi\left(S_{i i} T_{i j}\right)-\psi\left(S_{i i}\right) T_{i j}-S_{i i} \psi\left(T_{i j}\right)\right) X_{j i}=0$ for all $X_{j i} \in \mathfrak{A}_{j i}$. By using the primeness of \mathfrak{A}, we have

$$
\psi\left(S_{i i} T_{i j}\right)=\psi\left(S_{i i}\right) T_{i j}+S_{i i} \psi\left(T_{i j}\right) .
$$

(3) For every $X_{j i} \in \mathfrak{A}_{j i},(1 \leq i \neq j \leq 2)$, using Lemma 3.11, (1) and (2), we get

$$
\begin{aligned}
\psi\left(S_{i j} T_{j j}\right) X_{j i}+S_{i j} T_{j j} \psi\left(X_{j i}\right) & =\psi\left(S_{i j} T_{j j} X_{j i}\right) \\
& =\psi\left(S_{i j}\right) T_{j j} X_{j i}+S_{i j} \psi\left(T_{j j} X_{j i}\right) \\
& =\psi\left(S_{i j}\right) T_{j j} X_{j i}+S_{i j} \psi\left(T_{j j}\right) X_{j i}+S_{i j} T_{j j} \psi\left(X_{j i}\right) .
\end{aligned}
$$

Hence, $\left(\psi\left(S_{i j} T_{j j}\right)-\left(\psi\left(S_{i j}\right) T_{j j}+S_{i j} \psi\left(T_{j j}\right)\right)\right) X_{j i}=0$ for all $X_{j i} \in \mathfrak{A}_{j i}$. Then, by using the primeness of \mathfrak{A}, we have

$$
\psi\left(S_{i j} T_{j j}\right)=\psi\left(S_{i j}\right) T_{j j}+S_{i j} \psi\left(T_{j j}\right)
$$

(4) For every $X_{i j} \in \mathfrak{A}_{i j},(1 \leq i \neq j \leq 2)$, we have from (2) that

$$
\begin{aligned}
\psi\left(S_{i i} T_{i i}\right) X_{i j}+S_{i i} T_{i i} \psi\left(X_{i j}\right) & =\psi\left(S_{i i} T_{i i} X_{i j}\right) \\
& =\psi\left(S_{i i}\right) T_{i i} X_{i j}+S_{i i} \psi\left(T_{i i} X_{i j}\right) \\
& =\psi\left(S_{i i}\right) T_{i i} X_{i j}+S_{i i} \psi\left(T_{i i}\right) X_{i j}+S_{i i} T_{i i} \psi\left(X_{i j}\right) .
\end{aligned}
$$

Hence, $\left(\psi\left(S_{i i} T_{i i}\right)-\left(\psi\left(S_{i i}\right) T_{i i}+S_{i i} \psi\left(T_{i i}\right)\right)\right) X_{i j}=0$ for all $X_{i j} \in \mathfrak{A}_{i j}$. Then, by using the primeness of \mathfrak{A}, we have

$$
\psi\left(S_{i i} T_{i i}\right)=\psi\left(S_{i i}\right) T_{i i}+S_{i i} \psi\left(T_{i i}\right) .
$$

Now, by using (1), (2), (3), (4) and the additivity of ψ, we get $\psi(S T)=\psi(S) T+S \psi(T)$.

Lemma 3.12. $\psi\left(S^{*}\right)=\psi(S)^{*}$ for all $S \in \mathfrak{A}$.
Proof. We have $\psi\left(P_{1}\right)=0$ and $\psi\left(P_{2}\right)=0$. Then

$$
0=\psi(I)=-\psi((i I)(i I))=\psi(i I) i I+i I \psi(i I)=2 i \psi(i I)
$$

Thus, $\psi(i I)=0$. Hence, $\psi(i S)=\psi(i I(S))=i \psi(S)$. For any $S \in \mathfrak{A}$, applying Remark 3.9 (3), we have

$$
\begin{aligned}
\psi\left(S^{*}\right) & =\psi(\Re S-i \mathfrak{I} S)=\psi(\Re S)-\psi(i \mathfrak{I} S) \\
& =\psi(\Re S)-i \psi(\mathfrak{I} S)=\psi(\Re S)^{*}-i \psi(\mathfrak{T} S)^{*} \\
& =\psi(\Re S)^{*}+(i \psi(\mathfrak{I} S))^{*}=\psi(\Re S)^{*}+\psi(i \mathfrak{T} S)^{*} \\
& =\psi(\Re S+i \mathfrak{T} S)^{*}=\psi(S)^{*} .
\end{aligned}
$$

Proof of Theorem 3.1 By using Lemma 3.6, Lemma 3.11, Lemma 3.12 and the Remark 3.9, we get δ is an additive *-derivation.

Acknowledgement: The authors thank the referee for his/her careful reading of the article and suggesting valuable comments that improved the quality of this work.

References

[1] R. An, J. Hou, A characterization of *-automorphism on $\mathcal{B}(H)$, Acta. Math. Sinica (English Series) 26 (2010) 287-294.
[2] Z. Bai, S. Du, Maps preserving products XY - YX* on von Neumann algebras, J. Math. Anal. Appl. 386 (2012) 103-109.
[3] J. Cui, C. K. Li, Maps preserving product $X Y-Y X^{*}$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009) 833-842.
[4] L. Dai, F. Lu, Nonlinear maps preserving Jordan*-products, J. Math. Anal. Appl. 409 (2014) 180-188.
[5] P. Halmos, A Hilbert Space Problem Book, 2nd ed, Springer-Verlag, New York-Heideberg-Berlin 1982.
[6] D. Huo, B. Zheng, J. Xu, H. Liu, Nonlinear mappings pre- serving Jordan multiple *-product on factor von Neumann algebras, Linear Multilinear Algebra 63 (2015) 1026-1036.
[7] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaestiones Mathematicae 39 (2016) 1037-1046.
[8] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product $[A \bullet B, C] *$ on von Neumann algebras, Filomat 35 (2021) $2775-2781$.
[9] C. Li, D. Zhang, Nonlinear Mixed Jordan Triple *-Derivations on *-Algebras, Sib. Math. J. 63 (2022) 735-742.
[10] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Mountain J. Math. 51 (2021) 601-612.
[11] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Math. Sinica (English Series) 32 (2016) 821-830.
[12] W. Lin, Nonlinear *-Lie-type derivations on standard operator algebras, Acta Math. Hungar. 154 (2018) 480-500.
[13] W. Lin, Nonlinear *-Lie-type derivations on von Neumann algebras, Acta Math. Hungar. 156 (2018) 112-131.
[14] F. Zhao, C. Li, Nonlinear maps preserving the Jordan triple *-product between factors. Indag. Math. 29 (2017) 619-627.
[15] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Math. Slovaca 68 (2018) 163-170.

[^0]: 2020 Mathematics Subject Classification. Primary 47B47; Secondary 16W25, 46K15
 Keywords. Mixed Jordan triple *- derivation, standard operator algebra
 Received: 11 May 2022; Revised: 06 October 2022; Accepted: 12 October 2022
 Communicated by Dijana Mosić
 Research supported by the National Board of Higher Mathematics (NBHM), India, Grant No. 02011/16/2020 NBHM (R. P.) R and D II/7786.

 Email addresses: nu.rehman.mm@amu.ac.in, rehman100@gmail.com (Nadeem ur Rehman), junaidnisar73@gmail.com (Junaid Nisar), mnazim1882@gmail.com (Mohd Nazim)

