Filomat 37:10 (2023), 3153–3166 https://doi.org/10.2298/FIL2310153C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The group inverse of certain block complex matrices

Huanyin Chen^a, Marjan Sheibani Abdolyousefi^b

^a School of Mathematics, Hangzhou Normal University, Hangzhou, China ^bFarzanegan Campus, Semnan University, Semnan, Iran

Abstract. We present new additive results for the group inverse of block complex matrices. As an application, the representations for the group inverse of a block complex matrix are given. These extend the main results of Benítez, Liu and Zhu (Linear Multilinear Algebra, **59**(2011), 279–289).

1. Introduction

In a ring *R*, an element *a* is said to have group inverse *x* if *a*, *x* commute, $x = x^2a$ and $a = a^2x$. Such *x* is unique if exists, and denote it by $a^{\#}$. In this paper, the ring of interest is $\mathbb{C}^{n \times n}$, the ring of $n \times n$ complex matrices, and the main goal of this paper is to compute the group inverse of matrices of a certain block form. One motivation for considering this problem is the pursuit of a closed-form solution for systems of second-order linear differential equations which may be written in the following vector-valued form: Ax''(t) + Bx'(t) + Cx(t) = 0 where $A, B, C \in \mathbb{C}^{n \times n}$ (with *A* being potentially singular) and *x* is a C^n -valued function (see [3]).

Recall that $A \in \mathbb{C}^{n \times n}$ has Drazin inverse provided that there exists $X \in \mathbb{C}^{n \times n}$ such that AX = XA, X = XAX and $A^k = A^{k+1}X$ for some $k \in \mathbb{N}$. Such X is unique if it exists, denoted by A^D . The smallest positive integer k such that the preceding conditions hold is called the Drazin index of A, denoted by ind(A). Evidently, A has group inverse if and only if it has Drazin index 1, if and only if *rank*(A) = *rank*(A^2). Many authors have investigate group inverse from many different views, e.g., [1, 4–6, 9–12].

In Section 2, we present a new additive result for the group inverse of block complex matrices. Let $P, Q \in \mathbb{C}^{n \times n}$ have group inverses. If $PQ^iP = 0$ for $i = 1, \dots, n$, then P + Q has group inverse. The explicit formula for $(P + Q)^{\#}$ is given. This also extends [1, Theorem 2.1] to a wider case.

Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
, where $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}^{n \times m}$, $D \in \mathbb{C}^{n \times n}$. It is of interesting to find the group

inverse of the block complex matrix *M*. This problem is quite complicated and was expensively studied by many authors, see for example [1, 5, 14]. In Section 3, we apply our additive results on group inverse to a block complex matrix. The existences and explicit representations for the group inverse of a block complex are thereby given. These extend the main results of Benítez, Liu and Zhu (see [1, Theorem 3.4, Theorem 3.5, Theorem 3.6 and Theorem 3.7]).

Research supported by the Natural Science Foundation of Zhejiang Province, China (No. LY21A010018).

²⁰²⁰ Mathematics Subject Classification. 15A09, 65F20

Keywords. group inverse; additive result; spectral idempotent, block complex matrix

Received: 14 May 2022; Revised: 07 August 2022; Accepted: 23 September 2022

Communicated by Dijana Mosić

Email addresses: huanyinchen@aliyun.com (Huanyin Chen), m.sheibani@semnan.ac.ir (Marjan Sheibani Abdolyousefi)

It is attractive to investigate the Drazin (group) inverse of the block matrix $\begin{pmatrix} E & I_n \\ F & 0 \end{pmatrix} \in \mathbb{C}^{2n \times 2n}$, where I_n is the identity matrix. This special block matrix is closely connected to the solution of singular differential equation (see [3]). Finally, in Section 4, the existence and the computational formula for the group inverse of the perturbed anti-triangular block complex matrix $\begin{pmatrix} E & I_n \\ F & 0 \end{pmatrix} \in \mathbb{C}^{2n \times 2n}$ are given. Evidently, a wider kind of singular differential equations posed by Campbell is thereby solved (see [4]).

Throughout the paper, we denote by \mathbb{C} and $\mathbb{C}^{n \times n}$ the field of all complex numbers and the Banach algebra of all $n \times n$ complex matrices respectively. We use \mathbb{N} to stand for the set of all natural numbers. Let $P \in \mathbb{C}^{n \times n}$. The spectral idempotent $I_n - P \hat{P}^D$ is denoted by P^{π} .

2. Additive properties

In this section, we investigate the group inverse of the sum of two group invertible matrices. We may now state:

Theorem 2.1. Let $P, Q \in \mathbb{C}^{n \times n}$ have group inverses. If $PQ^iP = 0$ for $i = 1, \dots, n$, then P + Q has group inverse. In this case,

$$(P+Q)^{\#} = Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} + QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#}.$$

Proof. Let $p(\lambda) = \lambda^n - a_1 \lambda^{n-1} - \cdots - a_{n-1} \lambda - a_n$ be the characteristic polynomial of *Q*. By using Caylay-Hamilton Theorem, p(Q) = 0, i.e., $Q^n = a_1 Q^{n-1} + \dots + a_{n-1} Q + a_n I_n$. Then $Q^{n+1} = a_1 Q^n + \dots + a_{n-1} Q^2 + a_n Q$. By hypothesis, $PQ^iP = 0$ for $i = 1, \dots, n$, and so $PQ^{n+1}P = 0$. By induction, $PQ^iP = 0$ for any $i \in \mathbb{N}$. If Q is not nilpotent, there exists some $m \in \mathbb{N}$ such that $Q^{n+1} = c_n Q^n + \cdots + c_m Q^m (c_m \neq 0)$. Hence $Q^m = ZQ^{m+1}$ for some $Z \in \mathbb{C}[Q]$. This implies that $Q^D = Q^m Z^{m+1}$. Therefore we verify that

$$P(Q^D)^i P = 0, P(QQ^D)^i P$$

for any $i \in \mathbb{N}$. Let

$$M = Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} + OO^{\#}P^{\#}OO^{\#} + O^{\#}PP^{\#}OO^{\#} + OO^{\#}PP^{\#}O^{\#}$$

Since we have

$$PM = PQ^{\pi}P^{\#} + PQ^{\#}P^{\pi} - PP^{\#}QQ^{\#} - PQ^{\#} + PQQ^{\#}P^{\#}QQ^{\#} + PQ^{\#}PP^{\#}QQ^{\#} + PQQ^{\#}PP^{\#}Q^{\#} = PP^{\#}Q^{\pi}, QM = QQ^{\#}P^{\pi} - QP^{\#}QQ^{\#} - QPP^{\#}Q^{\#} + QQ^{\#}PP^{\#}QQ^{\#} + QP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}QQ^{\#} = QQ^{\#} - QQ^{\#}PP^{\#}Q^{\pi}.$$

Hence,

$$(P+Q)M = PP^{\#}Q^{\pi} + QQ^{\#} - QQ^{\#}PP^{\#}Q^{\pi}$$

Moreover, we have

. ...

$$MP = PP^{\#} - QQ^{\#}PP^{\#} - PP^{\#}Q^{\#}P + QQ^{\#}PP^{\#}Q^{\#}P = Q^{\pi}PP^{\#}, MQ = Q^{\pi}P^{\#}Q + Q^{\#}P^{\pi}Q - P^{\#}Q - PP^{\#}QQ^{\#} + QQ^{\#}P^{\#}Q + Q^{\#}PP^{\#}Q + QQ^{\#}PP^{\#}QQ^{\#} = P^{\pi}QQ^{\#} + QQ^{\#}PP^{\#}QQ^{\#}.$$

Hence

$$M(P+Q) = Q^{\pi} P P^{\#} + P^{\pi} Q Q^{\#} + Q Q^{\#} P P^{\#} Q Q^{\#}.$$

Accordingly,

$$\begin{aligned} (P+Q)M &= PP^{\#}Q^{\pi} + QQ^{\#} - QQ^{\#}PP^{\#}Q^{\pi} \\ &= Q^{\pi}PP^{\#} + P^{\pi}QQ^{\#} + QQ^{\#}PP^{\#}QQ^{\#} \\ &= M(P+Q). \end{aligned}$$

Thus we compute that

$$I_n - (P + Q)M = P^{\pi}Q^{\pi} + QQ^{\#}PP^{\#}Q^{\pi}$$

= $Q^{\pi}P^{\pi} + Q^{\pi}PP^{\#}QQ^{\#}$
= $I_n - M(P + Q).$

Therefore

	$[I_n - (P+Q)M](P+Q)$
=	$[P^{\pi}Q^{\pi} + QQ^{\#}PP^{\#}Q^{\pi}](P+Q)$
=	$P^{\pi}Q^{\pi}P + QQ^{\#}PP^{\#}Q^{\pi}P$
=	$P^{\pi}(I_n - QQ^{\#})P + QQ^{\#}P$
=	$-(I_n - PP^{\#})QQ^{\#}P + QQ^{\#}P$
=	0.

That is, P + Q = (P + Q)M(P + Q).

Also we have

$$\begin{split} &M[I_n - M(P + Q)] \\ = & M[Q^{\pi}P^{\pi} + Q^{\pi}PP^{\#}QQ^{\#}] \\ = & [MQ^{\pi}][P^{\pi} + PP^{\#}QQ^{\#}] \\ = & [Q^{\pi}P^{\#}Q^{\pi} + Q^{\#}P^{\pi}Q^{\pi}][P^{\pi} + PP^{\#}QQ^{\#}] \\ = & [Q^{\pi}P^{\#}Q^{\pi} + Q^{\#}P^{\pi}Q^{\pi}][I - PP^{\#}Q^{\pi}] \\ = & Q^{\#}P^{\pi}Q^{\pi} - Q^{\#}P^{\pi}Q^{\pi}PP^{\#}Q^{\pi} \\ = & Q^{\#}P^{\pi}Q^{\pi} - Q^{\#}PP^{\#}Q^{\pi} \\ = & 0. \end{split}$$

Hence M = M(P + Q)M. Therefore P + Q has group inverse M. That is,

$$\begin{aligned} (P+Q)^{\#} &= Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} \\ &+ QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#}, \end{aligned}$$

as asserted. \Box

Corollary 2.2. ([1, Theorem 2.1]) Let $P, Q \in \mathbb{C}^{n \times n}$ have group inverses. If PQ = 0, then P + Q has group inverse. In this case,

$$(P+Q)^{\#} = Q^{\pi}P^{\#} + Q^{\#}P^{\pi}.$$

Proof. This is obvious by Theorem 2.1. \Box

In [2, Theorem 3.3], Bu investigated the existence and representation for the group inverse of P + Q under PQP = 0 and additional conditions for $P, Q \in \mathbb{C}^{n \times n}$. For 2×2 complex matrices P, Q, we give an explicit result as follow.

Corollary 2.3. Let $P, Q \in \mathbb{C}^{2\times 2}$ have group inverses. If PQP = 0, then P + Q has group inverse. In this case,

$$(P+Q)^{\#} = Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} + QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#}.$$

Proof. This is obvious by Theorem 2.1. \Box

We demonstrate Theorem 2.1 by the following numerical example.

Example 2.4. Let $P = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $Q = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in \mathbb{C}^{2 \times 2}$. Then P, Q are idempotents, and so they have group inverses. Clearly, $PQ = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0$. In this case, $PQP = PQ^2P = 0$. Then P + Q has group inverse. In this case,

$$(P+Q)^{\#} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

3. Block complex matrices

We now apply our preceding theorem to the group inverse of the block complex matrix $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, where $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{m \times n}$, $C \in \mathbb{C}^{n \times m}$, $D \in \mathbb{C}^{n \times n}$. These also extend the main results of Benítez, Liu and Zhu (see [1, Theorem 3.4, Theorem 3.5, Theorem 3.6 and Theorem 3.7]) to wider cases. We can derive

Theorem 3.1. Let A and D have group inverses. If $BD^iCA = 0$, $BD^iCB = 0$ for $i = 0, \dots, n-1$ and $A^{\pi}B = 0$, $D^{\pi}C = 0$, then M has group inverse. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= A^{\#} - (A^{\#})^2 B D^{\#} C - A^{\#} B (D^{\#})^2 C, \\ \Delta &= (A^{\#})^2 B - (A^{\#})^2 B D D^{\#} - A^{\#} B D^{\#}, \\ \Lambda &= -D^{\#} C A^{\#} + (D^{\#})^2 C A^{\pi} + D^{\#} C (A^{\#})^2 B D^{\#} C + (D^{\#})^2 C A^{\#} B D^{\#} C + D^{\#} C A^{\#} B (D^{\#})^2 C, \\ \Xi &= -D^{\#} C (A^{\#})^2 B - (D^{\#})^2 C A^{\#} B + D^{\#} C (A^{\#})^2 B D D^{\#} + (D^{\#})^2 C A^{\#} B D D^{\#} + D^{\#} C A^{\#} B D D^{\#}. \end{split}$$

Proof. Write M = P + Q, where

$$P = \left(\begin{array}{cc} A & B \\ 0 & 0 \end{array}\right), Q = \left(\begin{array}{cc} 0 & 0 \\ C & D \end{array}\right).$$

Since $A^{\pi}B = 0$, $D^{\pi}C = 0$, it follows by [9, Theorem 2.1] that *P* and *Q* have group inverses. Moreover, we have

$$P^{\#} = \begin{pmatrix} A^{\#} & (A^{\#})^{2}B \\ 0 & 0 \end{pmatrix}, P^{\pi} = \begin{pmatrix} A^{\pi} & -A^{\#}B \\ 0 & I_{n} \end{pmatrix};$$
$$Q^{\#} = \begin{pmatrix} 0 & 0 \\ (D^{\#})^{2}C & D^{\#} \end{pmatrix}, Q^{\pi} = \begin{pmatrix} I_{m} & 0 \\ -D^{\#}C & D^{\pi} \end{pmatrix}.$$

Moreover, we compute that

$$\begin{aligned} Q^{\pi}P^{\#} &= \begin{pmatrix} A^{\#} & (A^{\#})^{2}B \\ -D^{\#}CA^{\#} & -D^{\#}C(A^{\#})^{2}B \end{pmatrix}, \\ Q^{\#}P^{\pi} &= \begin{pmatrix} 0 & 0 \\ (D^{\#})^{2}CA^{\pi} & D^{\#} - (D^{\#})^{2}CA^{\#}B \end{pmatrix}, \\ P^{\#}QQ^{\#} &= \begin{pmatrix} (A^{\#})^{2}BD^{\#}C & (A^{\#})^{2}BDD^{\#} \\ 0 & 0 \end{pmatrix}, \\ PP^{\#}Q^{\#} &= \begin{pmatrix} A^{\#}B(D^{\#})^{2}C & A^{\#}BD^{\#} \\ 0 & 0 \end{pmatrix}, \\ QQ^{\#}P^{\#}QQ^{\#} &= \begin{pmatrix} 0 & 0 \\ D^{\#}C(A^{\#})^{2}BD^{\#}C & D^{\#}C(A^{\#})^{2}BDD^{\#} \\ (D^{\#})^{2}CA^{\#}BD^{\#}C & (D^{\#})^{2}CA^{\#}BDD^{\#} \end{pmatrix}, \\ QQ^{\#}PP^{\#}QQ^{\#} &= \begin{pmatrix} 0 & 0 \\ (D^{\#})^{2}CA^{\#}BD^{\#}C & (D^{\#})^{2}CA^{\#}BDD^{\#} \end{pmatrix}, \\ QQ^{\#}PP^{\#}Q^{\#} &= \begin{pmatrix} 0 & 0 \\ D^{\#}CA^{\#}B(D^{\#})^{2}C & D^{\#}CA^{\#}BDD^{\#} \end{pmatrix}. \end{aligned}$$

We easily check that

$$Q^i = \left(\begin{array}{cc} 0 & 0 \\ D^{i-1}C & D^i \end{array} \right).$$

By using Caylay-Hamilton Theorem, we prove that $BD^{i-1}CA = 0$, $BD^{i-1}CB = 0$ for $i \in \mathbb{N}$. Therefore

$$PQ^{i}P = \begin{pmatrix} BD^{i-1}C & BD^{i-1} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} BD^{i-1}CA & BD^{i-1}CB \\ 0 & 0 \end{pmatrix} \\ = 0$$

for any $i \in \mathbb{N}$. In light of Theorem 2.1, *M* has group inverse. In this case,

$$\begin{aligned} M^{\#} &= Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} \\ &+ QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#} \\ &= \begin{pmatrix} \Gamma & \Delta \\ \Lambda & \Xi \end{pmatrix}, \end{aligned}$$

where

$$\begin{split} \Gamma &= A^{\#} - (A^{\#})^2 B D^{\#} C - A^{\#} B (D^{\#})^2 C, \\ \Delta &= (A^{\#})^2 B - (A^{\#})^2 B D D^{\#} - A^{\#} B D^{\#}, \\ \Lambda &= -D^{\#} C A^{\#} + (D^{\#})^2 C A^{\pi} + D^{\#} C (A^{\#})^2 B D^{\#} C \\ &+ (D^{\#})^2 C A^{\#} B D^{\#} C + D^{\#} C A^{\#} B (D^{\#})^2 C, \\ \Xi &= -D^{\#} C (A^{\#})^2 B - (D^{\#})^2 C A^{\#} B + D^{\#} C (A^{\#})^2 B D D^{\#} \\ &+ (D^{\#})^2 C A^{\#} B D D^{\#} + D^{\#} C A^{\#} B D^{\#}. \end{split}$$

This completes the proof. \Box

Corollary 3.2. Let A and D have group inverses. If $CA^{i}BC = 0$, $CA^{i}BD = 0$ for $i = 0, \dots, m-1$ and $A^{\pi}B = 0$, $D^{\pi}C = 0$, then M has group inverse. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= -A^{\#}B(D^{\#})^{2}C - (A^{\#})^{2}BD^{\#}C + A^{\#}B(D^{\#})^{2}CAA^{\#} \\ &+ (A^{\#})^{2}BD^{\#}CAA^{\#} + A^{\#}BD^{\#}CA^{\#}, \\ \Delta &= -A^{\#}BD^{\#} + (A^{\#})^{2}BD^{\pi} + A^{\#}B(D^{\#})^{2}CA^{\#}B \\ &+ (A^{\#})^{2}BD^{\#}CA^{\#}B + A^{\#}BD^{\#}C(A^{\#})^{2}B, \\ \Lambda &= (D^{\#})^{2}C - (D^{\#})^{2}CAA^{\#} - D^{\#}CA^{\#}, \\ \Xi &= D^{\#} - (D^{\#})^{2}CA^{\#}B - D^{\#}C(A^{\#})^{2}B. \end{split}$$

Proof. In view of Theorem 3.1, $N := \begin{pmatrix} D & C \\ B & A \end{pmatrix}$ has group inverse. Moreover,

$$N^{\#} = \left(\begin{array}{cc} \Xi & \Lambda \\ \Delta & \Gamma \end{array}\right),$$

where

$$\Xi = D^{\#} - (D^{\#})^2 C A^{\#} B - D^{\#} C (A^{\#})^2 B,$$

$$\Lambda = (D^{\#})^2 C - (D^{\#})^2 C A A^{\#} - D^{\#} C A^{\#}$$

$$\Delta = -A^{\#}BD^{\#} + (A^{\#})^2 BD^{\pi} + A^{\#}B(D^{\#})^2 CA^{\#}B$$

+
$$(A^{\#})^{2}BD^{\#}CA^{\#}B + A^{\#}BD^{\#}C(A^{\#})^{2}B$$

$$\begin{split} \Lambda &= (D^{\#})^{2}C - (D^{\#})^{2}CAA^{\#} - D^{\#}CA^{\#}, \\ \Delta &= -A^{\#}BD^{\#} + (A^{\#})^{2}BD^{\pi} + A^{\#}B(D^{\#})^{2}CA^{\#}B \\ &+ (A^{\#})^{2}BD^{\#}CA^{\#}B + A^{\#}BD^{\#}C(A^{\#})^{2}B, \\ \Gamma &= -A^{\#}B(D^{\#})^{2}C - (A^{\#})^{2}BD^{\#}C + A^{\#}B(D^{\#})^{2}CAA^{\#}. \end{split}$$

We easily see that

$$M = \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix} \begin{pmatrix} D & C \\ B & A \end{pmatrix} \begin{pmatrix} 0 & I_n \\ I_m & 0 \end{pmatrix},$$

and so

$$M^{\#} = \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix} N^{\#} \begin{pmatrix} 0 & I_n \\ I_m & 0 \end{pmatrix},$$

as required. \Box

We now turn to use the alternative splitting approach for a complex block matrix and derive the following.

Theorem 3.3. Let A and D have group inverses. If $ABD^iC = 0$, $CBD^iC = 0$ for $i = 0, \dots, n-1$ and $CA^{\pi} = 0$, $BD^{\pi} = 0$, then M has group inverse. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= A^{\#} - BD^{\#}C(A^{\#})^2 + B(D^{\#})^2CA^{\#}, \\ \Delta &= -A^{\#}BD^{\#} - AA^{\#}B(D^{\#})^2 + BD^{\#}C(A^{\#})^2BD^{\#} \\ &+ B(D^{\#})^2CA^{\#}BD^{\#} + BD^{\#}CA^{\#}B(D^{\#})^2, \\ \Lambda &= D^{\pi}C(A^{\#})^2 + D^{\#}CA^{\#}, \\ \Xi &= -C(A^{\#})^2BD^{\#} - CA^{\#}B(D^{\#})^2 + DD^{\#}C(A^{\#})^2BD^{\#} \\ &+ D^{\#}CA^{\#}BD^{\#} + DD^{\#}CA^{\#}B(D^{\#})^2. \end{split}$$

Proof. Write M = P + Q, where

$$P = \left(\begin{array}{cc} A & 0 \\ C & 0 \end{array}\right), Q = \left(\begin{array}{cc} 0 & B \\ 0 & D \end{array}\right).$$

Since $CA^{\pi} = 0$, $BD^{\pi} = 0$, it follows by [9, Theorem 2.1] that *P* and *Q* have group inverses. Moreover, we have

$$P^{\#} = \begin{pmatrix} A^{\#} & 0 \\ C(A^{\#})^{2} & 0 \end{pmatrix}, P^{\pi} = \begin{pmatrix} A^{\pi} & 0 \\ -CA^{\#} & I_{n} \end{pmatrix};$$
$$Q^{\#} = \begin{pmatrix} 0 & B(D^{\#})^{2} \\ 0 & D^{\#} \end{pmatrix}, Q^{\pi} = \begin{pmatrix} I_{m} & -BD^{\#} \\ 0 & D^{\pi} \end{pmatrix}.$$

We easily check that

$$Q^{i} = \left(\begin{array}{cc} 0 & BD^{i-1} \\ 0 & BD^{i} \end{array}\right),$$

and so

$$PQ^{i}P = \begin{pmatrix} 0 & ABD^{i-1} \\ 0 & CBD^{i-1} \end{pmatrix} \begin{pmatrix} A & 0 \\ C & 0 \end{pmatrix}$$
$$= \begin{pmatrix} ABD^{i-1}C & 0 \\ CBD^{i-1}C & 0 \end{pmatrix}$$
$$= 0.$$

In light of Theorem 2.1, *M* has group inverse. We compute that

$$\begin{split} Q^{\pi}P^{\#} &= \begin{pmatrix} A^{\#} - BD^{\#}C(A^{\#})^{2} & 0 \\ D^{\pi}C(A^{\#})^{2} & 0 \end{pmatrix}, \\ Q^{\#}P^{\pi} &= \begin{pmatrix} B(D^{\#})^{2}CA^{\#} & 0 \\ D^{\#}CA^{\#} & 0 \end{pmatrix}, \\ P^{\#}QQ^{\#} &= \begin{pmatrix} 0 & A^{\#}BD^{\#} \\ 0 & C(A^{\#})^{2}BD^{\#} \end{pmatrix}, \\ PP^{\#}Q^{\#} &= \begin{pmatrix} 0 & AA^{\#}B(D^{\#})^{2} \\ 0 & CA^{\#}B(D^{\#})^{2} \end{pmatrix}, \\ QQ^{\#}P^{\#}QQ^{\#} &= \begin{pmatrix} 0 & BD^{\#}C(A^{\#})^{2}BD^{\#} \\ 0 & DD^{\#}C(A^{\#})^{2}BD^{\#} \\ 0 & DD^{\#}C(A^{\#})^{2}BD^{\#} \end{pmatrix}, \\ Q^{\#}PP^{\#}QQ^{\#} &= \begin{pmatrix} 0 & B(D^{\#})^{2}CA^{\#}BD^{\#} \\ 0 & D^{\#}CA^{\#}BD^{\#} \end{pmatrix}, \\ QQ^{\#}PP^{\#}Q^{\#} &= \begin{pmatrix} 0 & BD^{\#}CA^{\#}BD^{\#} \\ 0 & DD^{\#}CA^{\#}BD^{\#} \end{pmatrix}. \end{split}$$

We easily check that

$$Q^i = \left(\begin{array}{cc} 0 & 0 \\ D^{i-1}C & D^i \end{array}\right),$$

and so

$$PQ^{i}P = \begin{pmatrix} BD^{i-1}C & BD^{i-1} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} BD^{i-1}CA & BD^{i-1}CB \\ 0 & 0 \end{pmatrix}$$
$$= 0$$

for any $i \in \mathbb{N}$. Therefore we have

$$\begin{aligned} M^{\#} &= Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} \\ &+ QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#} \\ &= \begin{pmatrix} \Gamma & \Delta \\ \Lambda & \Xi \end{pmatrix}, \end{aligned}$$

where

$$\begin{split} \Gamma &= A^{\#} - BD^{\#}C(A^{\#})^2 + B(D^{\#})^2CA^{\#}, \\ \Delta &= -A^{\#}BD^{\#} - AA^{\#}B(D^{\#})^2 + BD^{\#}C(A^{\#})^2BD^{\#} \\ &+ B(D^{\#})^2CA^{\#}BD^{\#} + BD^{\#}CA^{\#}B(D^{\#})^2, \\ \Lambda &= D^{\pi}C(A^{\#})^2 + D^{\#}CA^{\#}, \\ \Xi &= -C(A^{\#})^2BD^{\#} - CA^{\#}B(D^{\#})^2 + DD^{\#}C(A^{\#})^2BD^{\#} \\ &+ D^{\#}CA^{\#}BD^{\#} + DD^{\#}CA^{\#}B(D^{\#})^2. \end{split}$$

This completes the proof. \Box

Corollary 3.4. Let A and D have group inverses. If $DCA^iB = 0$, $BCA^iB = 0$ for $i = 0, 1, \dots, m-1$ and $BD^{\pi} = 0$, $CA^{\pi} = 0$, then M has group inverse. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= -B(D^{\#})^2 CA^{\#} - BD^{\#}C(A^{\#})^2 + AA^{\#}B(D^{\#})^2 CA^{\#} \\ &+ A^{\#}BD^{\#}CA^{\#} + AA^{\#}BD^{\#}C(A^{\#})^2, \\ \Delta &= A^{\pi}B(D^{\#})^2 + A^{\#}BD^{\#}, \\ \Lambda &= -D^{\#}CA^{\#} - DD^{\#}C(A^{\#})^2 + CA^{\#}B(D^{\#})^2 CA^{\#} \\ &+ C(A^{\#})^2BD^{\#}CA^{\#} + CA^{\#}BD^{\#}C(A^{\#})^2, \\ \Xi &= D^{\#} - CA^{\#}B(D^{\#})^2 + C(A^{\#})^2BD^{\#}. \end{split}$$

Proof. In view of Theorem 3.3, $\begin{pmatrix} D & C \\ B & A \end{pmatrix}$ has group inverse. We easily check that

$$M = \begin{pmatrix} 0 & I_m \\ I_n & 0 \end{pmatrix} \begin{pmatrix} D & C \\ B & A \end{pmatrix} \begin{pmatrix} 0 & I_n \\ I_m & 0 \end{pmatrix}.$$

Analogously to Corollary 3.2, we obtain the result. \Box

4. Special block matrices

The aim of this section is to present existences and computational formulas for the group inverse of the anti-triangular block complex matrix $M = \begin{pmatrix} E & I_n \\ F & 0 \end{pmatrix}$ under the weaker perturbation condition. These also provide algebraic method to find all function solutions of a new class of singular differential equations posed by Campbell (see [1]). In [13, Theorem 2.10], Zou et al. investigated the group inverse of the preceding *M* under the condition *EF* = 0, We now extend their result to a wider case.

Theorem 4.1. Let $E, F \in \mathbb{C}^{n \times n}$ have group inverses. If $EF^iE = 0$ for $i = 1, \dots, n$, then $M = \begin{pmatrix} E & I_n \\ F & 0 \end{pmatrix}$ has group inverse if and only if $F^{\pi}E^{\pi}F^{\pi} = 0$. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= E^{\#} + E^{\#}FF^{\#} + 2EF^{\#} + FF^{\#}E^{\#} - FF^{\#}E^{\#}FF^{\#} \\ &- 2FF^{\#}EF^{\#}, \\ \Delta &= (E^{\#})^{2} + (E^{\#})^{2}FF^{\#} + EE^{\#}FF^{\#} - FF^{\#}(E^{\#})^{2} + F^{\#}E^{\pi} \\ &- FF^{\#}(E^{\#})^{2}FF^{\#} + F^{\#}EE^{\#}FF^{\#}, \\ \Lambda &= FF^{\#}E^{\pi} + F(E^{\#})^{2}FF^{\#} + F(E^{\#})^{2}FF^{\#} + FF^{\#}EE^{\#}FF^{\#} \\ &+ 2FEE^{\#}F^{\#}, \\ \Xi &= -FF^{\#}E^{\#} + F(E^{\#})^{3}FF^{\#} + F(E^{\#})^{3}FF^{\#} \\ &+ FF^{\#}E^{\#}FF^{\#} + 2FE^{\#}F^{\#}. \end{split}$$

Proof. Clearly, we have

$$M^{2} = \begin{pmatrix} E^{2} + F & E \\ FE & F \end{pmatrix} = P + Q,$$

where

$$P = \left(\begin{array}{cc} E^2 & E \\ 0 & 0 \end{array}\right), Q = \left(\begin{array}{cc} F & 0 \\ FE & F \end{array}\right).$$

Since *E*, *F* have group inverses, it follows by [9, Theorem 2.1] that *P* and *Q* have group inverses. Since $EF^iE = 0$ for $i = 1, \dots, n-1$, By using Caylay-Hamilton Theorem, we have $EF^iE = 0$ for any $i \in \mathbb{N}$. Therefore

$$PQ^{i}P = \begin{pmatrix} E^{2}F^{i} & E^{2}F^{i-1} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} E^{2} & E \\ 0 & 0 \end{pmatrix} \\ = \begin{pmatrix} E^{2}F^{i}E^{2} & E^{2}F^{i}E \\ 0 & 0 \end{pmatrix} \\ = 0$$

for any $i \in \mathbb{N}$. In light of Theorem 2.1, M^2 has group inverse. Moreover, we have

$$\begin{aligned} (M^2)^{\#} &= Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} \\ &+ QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#}. \end{aligned}$$

Hence,

$$MM^{D} = (P+Q)(M^{2})^{\#} = PP^{\#} + QQ^{\#} - PP^{\#}QQ^{\#} - QQ^{\#}PP^{\#}Q^{\pi}.$$

In light of [9, Theorem 2.1], we have

$$\begin{split} P^{\#} &= \left(\begin{array}{cc} (E^{\#})^2 & (E^{\#})^3 \\ 0 & 0 \end{array} \right), P^{\pi} = \left(\begin{array}{cc} E^{\pi} & -E^{\#} \\ 0 & I_n \end{array} \right); \\ Q^{\#} &= \left(\begin{array}{cc} F^{\#} & 0 \\ X & F^{\#} \end{array} \right); Q^{\pi} = \left(\begin{array}{cc} F^{\pi} & 0 \\ XF + FF^{\#}E & F^{\pi} \end{array} \right), \end{split}$$

where

$$X = F^{\#} E F^{\pi} - F^{\#} F E F^{\#}.$$

Clearly,

$$XF + FF^{\#}E = FF^{\#}EF^{\pi}.$$

,

We easily check that

$$\begin{split} PP^{\#} &= \left(\begin{array}{cc} EE^{\#} & E^{\#} \\ 0 & 0 \end{array}\right), \\ QQ^{\#} &= \left(\begin{array}{cc} FF^{\#} & 0 \\ -FF^{\#}EF^{\pi} & FF^{\#} \end{array}\right), \\ PP^{\#}QQ^{\#} &= \left(\begin{array}{cc} EE^{\#}FF^{\#} & E^{\#}FF^{\#} \\ 0 & 0 \end{array}\right), \\ QQ^{\#}PP^{\#}Q^{\pi} &= \left(\begin{array}{cc} FF^{\#}EE^{\#}F^{\pi} & FF^{\#}E^{\#}F^{\pi} \\ -FF^{\#}EF^{\pi} & -FF^{\#}EE^{\#}F^{\pi} \end{array}\right). \end{split}$$

Hence,

$$MM^{D} = \begin{pmatrix} FF^{\#} + F^{\pi}EE^{\#}F^{\pi} & F^{\pi}E^{\#}F^{\pi} \\ 0 & FF^{\#} + FF^{\#}EE^{\#}F^{\pi} \end{pmatrix}.$$

Hence,

$$I_{2n} - MM^{D} = \begin{pmatrix} F^{\pi} E^{\pi} F^{\pi} & -F^{\pi} E^{\#} F^{\pi} \\ 0 & (I_{n} - FF^{\#} EE^{\#})F^{\pi} \end{pmatrix}.$$

Accordingly,

$$(I_{2n} - MM^{D})M = \begin{pmatrix} F^{\pi}E^{\pi}F^{\pi} & -F^{\pi}E^{\#}F^{\pi} \\ 0 & (I_{n} - FF^{\#}EE^{\#})F^{\pi} \end{pmatrix} \begin{pmatrix} E & I_{n} \\ F & 0 \end{pmatrix} \\ = \begin{pmatrix} F^{\pi}E^{\pi}F^{\pi}E & F^{\pi}E^{\pi}F^{\pi} \\ 0 & 0 \end{pmatrix}.$$

Therefore *M* has group inverse if and only if $F^{\pi}E^{\pi}F^{\pi} = 0$.

Moreover, we compute that

$$\begin{split} Q^{\pi}P^{\#} &= \left(\begin{array}{cc} F^{\pi}(E^{\#})^{2} & F^{\pi}(E^{\#})^{3} \\ FF^{\#}E^{\#} & FF^{\#}(E^{\#})^{2} \end{array}\right), \\ Q^{\#}P^{\pi} &= \left(\begin{array}{cc} F^{\#}E^{\pi} & -F^{\#}FE^{\#} \\ -F^{\#}EFF^{\#} & -F^{\#}FEF^{\#} & F^{\#}E^{\pi} \\ -F^{\#}EFF^{\#} & -F^{\#}FF^{\#} \\ 0 & 0 \end{array}\right), \\ P^{\#}Q^{\#} &= \left(\begin{array}{cc} EE^{\#}F^{\#} & E^{\#}F^{\#} \\ 0 & 0 \end{array}\right), \\ QQ^{\#}P^{\#}QQ^{\#} &= \left(\begin{array}{cc} FF^{\#}(E^{\#})^{2}FF^{\#} & FF^{\#}(E^{\#})^{3}FF^{\#} \\ -FF^{\#}E^{\#}FF^{\#} & -FF^{\#}(E^{\#})^{2}FF^{\#} \\ -FF^{\#}EFF^{\#} & F^{\#}EFF^{\#} \\ F^{\#}EEFF^{\#} & F^{\#}EEFF^{\#} \\ F^{\#}EEFF^{\#} & F^{\#}EE^{\#}FF^{\#} \\ QQ^{\#}PP^{\#}QQ^{\#} &= \left(\begin{array}{cc} FF^{\#}EE^{\#}F^{\#} & FF^{\#}EFF^{\#} \\ -FF^{\#}EEFF^{\#} & FF^{\#}EFF^{\#} \\ -FF^{\#}EFF^{\#} & FF^{\#}EFF^{\#} \\ -FF^{\#}EFF^{\#}EFF^{\#} & -FF^{\#}EFF^{\#}F^{\#} \\ \end{array}\right). \end{split}$$

Accordingly, we have

$$\begin{aligned} M^{\#} &= M(M^{2})^{\#} \\ &= \begin{pmatrix} E & I_{n} \\ F & 0 \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ \lambda & \xi \end{pmatrix} \\ &= \begin{pmatrix} E\gamma + \lambda & E\delta + \xi \\ F\gamma & F\delta \end{pmatrix}, \end{aligned}$$

where

$$\begin{array}{rcl} \gamma & = & F^{\pi}(E^{\#})^{2} + F^{\#}E^{\pi} + (E^{\#})^{2}FF^{\#} + EE^{\#}F^{\#} + FF^{\#}(E^{\#})^{2}FF^{\#} \\ & + & F^{\#}EE^{\#}FF^{\#} + FF^{\#}EE^{\#}F^{\#}, \\ \delta & = & F^{\pi}(E^{\#})^{3} - F^{\#}E^{\#} + (E^{\#})^{3}FF^{\#} + E^{\#}F^{\#} + FF^{\#}(E^{\#})^{3}FF^{\#} \\ & + & F^{\#}E^{\#}FF^{\#} + FF^{\#}E^{\#}F^{\#}, \\ \lambda & = & FF^{\#}E^{\#} - F^{\#}EFF^{\#} - F^{\#}FEF^{\#} - FF^{\#}E^{\#}FF^{\#} \\ & + & F^{\#}EFF^{\#} - FF^{\#}EF^{\pi}EE^{\#}F^{\#}, \\ \xi & = & FF^{\#}(E^{\#})^{2} + F^{\#}E^{\pi} - FF^{\#}(E^{\#})^{2}FF^{\#} + F^{\#}EE^{\#}FF^{\#} \\ & - & FF^{\#}EF^{\pi}E^{\#}F^{\#}. \end{array}$$

Let $\Gamma = E\gamma + \lambda$, $\Delta = E\delta + \xi$, $\Lambda = F\gamma$ and $\Xi = F\delta$. Then we complete the proof. \Box

Corollary 4.2. Let $E, F \in \mathbb{C}^{n \times n}$ have group inverses. If $EF^iE = 0$ for $i = 1, \dots, n$, then $M = \begin{pmatrix} E & F \\ I_n & 0 \end{pmatrix}$ has group inverse if and only if $F^{\pi}E^{\pi}F^{\pi} = 0$. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= -E^{\#}FF^{\#} + 2FF^{\#}(E^{\#})^{3}F + FF^{\#}E^{\#}FF^{\#} + 2F^{\#}E^{\#}F, \\ \Delta &= E^{\pi}FF^{\#} + FF^{\#}(E^{\#})^{2}F + FF^{\#}(E^{\#})^{2}F + FF^{\#}EE^{\#}FF^{\#} \\ &+ 2F^{\#}EE^{\#}F, \\ \Lambda &= (E^{\#})^{2} + FF^{\#}(E^{\#})^{2} + F^{\#}EE^{\#} + (E^{\#})^{2}FF^{\#} + E^{\pi}F^{\#} \\ &- FF^{\#}(E^{\#})^{2}FF^{\#} + FF^{\#}EE^{\#}F^{\#} - F^{\#}EE^{\#}FF^{\#}, \\ \Xi &= E^{\#} + FF^{\#}E^{\#} + 2F^{\#}E + E^{\#}FF^{\#} - FF^{\#}E^{\#}FF^{\#} \\ &- 2F^{\#}EFF^{\#}. \end{split}$$

Proof. Clearly, $M^{\#} = [(M^T)^{\#}]^T$, where $M^T = \begin{pmatrix} E^T & I_n \\ F^T & 0 \end{pmatrix}$. Applying Theorem 4.1 to the transpose M^T of M, we obtain the result. \Box

We are now ready to prove the following.

Theorem 4.3. Let $E, F \in \mathbb{C}^{n \times n}$ have group inverses. If $FE^iF = 0$ for $i = 1, \dots, n$, then $M = \begin{pmatrix} E & I_n \\ F & 0 \end{pmatrix}$ has group inverse if and only if $E^{\pi}F^{\pi}E^{\pi} = 0$. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= E^{\#}F^{\pi} + EF^{\#}EE^{\#} + EFF^{\#}(E^{\#})^{2} + EF^{\#}EE^{\#} \\ &+ EE^{\#}F^{\#}E + E^{\#}FF^{\#}EE^{\#} - (E^{\#})^{2}FF^{\#}E \\ &+ EFF^{\#}(E^{\#})^{2} - EE^{\#}FF^{\#}E^{\#} + 2F^{\#}E \\ &- FF^{\#}E^{\#}, \\ \Delta &= -EE^{\#}F^{\#} + (E^{\#})^{2}F^{\pi} + EF^{\#}E^{\#} + 2EFF^{\#}(E^{\#})^{3} \\ &+ EF^{\#}E^{\#} + EE^{\#}F^{\#}EE^{\#} + E^{\#}FF^{\#}E^{\#} \\ &- (E^{\#})^{2}FF^{\#}EE^{\#} - EE^{\#}FF^{\#}(E^{\#})^{2} \\ &+ F^{\#} + F^{\#}EE^{\#} - FF^{\#}(E^{\#})^{2} \\ &+ F^{\#} + F^{\#}EE^{\#} + 2F(E^{\#})^{2} \\ \Xi &= FF^{\#}E^{\#} + 2F(E^{\#})^{3}. \end{split}$$

Proof. Clearly, we have

$$M^{2} = \begin{pmatrix} E^{2} + F & E \\ FE & F \end{pmatrix} = P + Q,$$

where

$$P = \left(\begin{array}{cc} F & 0\\ FE & F \end{array}\right), Q = \left(\begin{array}{cc} E^2 & E\\ 0 & 0 \end{array}\right).$$

Since *E*, *F* have group inverses. By virtue of [9, Theorem 2.1], *P* and *Q* have group inverses. Since $FE^{i}F = 0$, we see that

$$Q^i = \left(\begin{array}{cc} E^{2i} & E^{2i-1} \\ 0 & 0 \end{array}\right),$$

and so

$$PQ^{i}P = \begin{pmatrix} FE^{2i} & FE^{2i-1} \\ FE^{2i+1} & FE^{2i} \end{pmatrix} \begin{pmatrix} F & 0 \\ FE & F \end{pmatrix} = 0$$

for $i = 1, \cdots, n$.

Moreover, we have

$$(M^{2})^{\#} = Q^{\pi}P^{\#} + Q^{\#}P^{\pi} - P^{\#}QQ^{\#} - PP^{\#}Q^{\#} + QQ^{\#}P^{\#}QQ^{\#} + Q^{\#}PP^{\#}QQ^{\#} + QQ^{\#}PP^{\#}Q^{\#}.$$

Hence,

$$MM^D = PP^{\#} + QQ^{\#} - PP^{\#}QQ^{\#} - QQ^{\#}PP^{\#}Q^{\pi}.$$

As in the proof of Theorem 4.1, we have

$$P^{\#} = \begin{pmatrix} F^{\#} & 0 \\ F^{\#}E - F^{\#}FEF^{\#} & F^{\#} \end{pmatrix}; P^{\pi} = \begin{pmatrix} F^{\pi} & 0 \\ FF^{\#}EF^{\pi} & F^{\pi} \end{pmatrix}$$
$$Q^{\#} = \begin{pmatrix} (E^{\#})^2 & (E^{\#})^3 \\ 0 & 0 \end{pmatrix}, Q^{\pi} = \begin{pmatrix} E^{\pi} & -E^{\#} \\ 0 & I_n \end{pmatrix}.$$

We easily check that

$$PP^{\#} = \begin{pmatrix} FF^{\#} & 0 \\ -FF^{\#}E & FF^{\#} \end{pmatrix}, \\ QQ^{\#} = \begin{pmatrix} EE^{\#} & E^{\#} \\ 0 & 0 \end{pmatrix}, \\ PP^{\#}QQ^{\#} = \begin{pmatrix} FF^{\#}EE^{\#} & FF^{\#}E^{\#} \\ -FF^{\#}E & -FF^{\#}EE^{\#} \end{pmatrix},$$

$$QQ^{\#}PP^{\#}Q^{\pi} = \begin{pmatrix} EE^{\#}FF^{\#}E^{\pi} & -EE^{\#}FF^{\#}E^{\#} + E^{\#}FF^{\#}EE^{\#} + E^{\#}FF^{\#} \\ 0 & 0 \end{pmatrix}.$$

Then

$$\begin{aligned} MM^D &= \\ \begin{pmatrix} EE^{\#} + E^{\pi}FF^{\#}E^{\pi} & E^{\#}F^{\pi} - E^{\pi}FF^{\#}E^{\#} - E^{\#}FF^{\#}EE^{\#} \\ 0 & FF^{\#} + FF^{\#}EE^{\#} \end{pmatrix}. \end{aligned}$$

Hence,

Accordingly,

$$\begin{aligned} &(I_{2n} - MM^D)M = \\ & \left(\begin{array}{cc} E^{\pi}F^{\pi}E^{\pi} & -E^{\#}F^{\pi} + E^{\pi}FF^{\#}E^{\#} + E^{\#}FF^{\#}EE^{\#} \\ 0 & F^{\pi} - FF^{\#}EE^{\#} \end{array} \right) \left(\begin{array}{cc} E & I_n \\ F & 0 \end{array} \right) \\ &= \left(\begin{array}{cc} E^{\pi}F^{\pi}E^{\pi}F & E^{\pi}F^{\pi}E^{\pi} \\ 0 & 0 \end{array} \right). \end{aligned}$$

Therefore *M* has group inverse if and only if $E^{\pi}F^{\pi}E^{\pi} = 0$. We compute that

$$\begin{aligned} Q^{\pi}P^{\#} &= \begin{pmatrix} E^{\pi}F^{\#} & -E^{\#}F^{\#} \\ F^{\#}E & F^{\#} \end{pmatrix}, \\ Q^{\#}P^{\pi} &= \begin{pmatrix} (E^{\#})^{2}F^{\pi} & (E^{\#})^{3}F^{\pi} \\ 0 & 0 \end{pmatrix}, \\ P^{\#}QQ^{\#} &= \begin{pmatrix} F^{\#}EE^{\#} & F^{\#}E^{\#} \\ F^{\#}E & F^{\#}EE^{\#} \end{pmatrix}, \\ PP^{\#}Q^{\#} &= \begin{pmatrix} FF^{\#}(E^{\#})^{2} & FF^{\#}(E^{\#})^{2} \\ -FF^{\#}E^{\#} & -FF^{\#}(E^{\#})^{2} \end{pmatrix}, \\ QQ^{\#}P^{\#}QQ^{\#} &= \begin{pmatrix} A_{1} & A_{2} \\ 0 & 0 \end{pmatrix}, \\ A_{1} &= EE^{\#}F^{\#}EE^{\#} + E^{\#}F^{\#}EE^{\#}; \\ A_{2} &= EE^{\#}F^{\#}EE^{\#} + E^{\#}F^{\#}EE^{\#}; \\ A_{2} &= EE^{\#}F^{\#}EE^{\#} + E^{\#}F^{\#}EE^{\#}; \\ Q^{\#}PP^{\#}QQ^{\#} &= \begin{pmatrix} B_{1} & B_{2} \\ 0 & 0 \end{pmatrix}, \\ B_{1} &= (E^{\#})^{2}FF^{\#}EE^{\#} - (E^{\#})^{3}FF^{\#}EE^{\#}; \\ B_{2} &= (E^{\#})^{2}FF^{\#}EE^{\#} - (E^{\#})^{3}FF^{\#}EE^{\#}; \\ QQ^{\#}PP^{\#}Q^{\#} &= \begin{pmatrix} C_{1} & C_{2} \\ 0 & 0 \end{pmatrix}, \\ C_{1} &= EE^{\#}FF^{\#}(E^{\#})^{2} - E^{\#}FF^{\#}E^{\#}, \\ C_{2} &= EE^{\#}FF^{\#}(E^{\#})^{3} - E^{\#}FF^{\#}(E^{\#})^{2}. \end{aligned}$$

Accordingly, we have

$$\begin{aligned} M^{\#} &= M(M^{2})^{\#} \\ &= \begin{pmatrix} E & I_{n} \\ F & 0 \end{pmatrix} \begin{pmatrix} \gamma & \delta \\ \lambda & \xi \end{pmatrix} \\ &= \begin{pmatrix} E\gamma + \lambda & E\delta + \xi \\ F\gamma & F\delta \end{pmatrix}, \end{aligned}$$

where

$$\begin{split} \gamma &= E^{\pi}F^{\#} + (E^{\#})^{2}F^{\pi} + F^{\#}EE^{\#} + FF^{\#}(E^{\#})^{2} \\ &+ EE^{\#}F^{\#}EE^{\#} + E^{\#}F^{\#}E + (E^{\#})^{2}FF^{\#}EE^{\#} \\ &- (E^{\#})^{3}FF^{\#}E + EE^{\#}FF^{\#}(E^{\#})^{2} - E^{\#}FF^{\#}E^{\#}, \\ \delta &= -E^{\#}F^{\#} + (E^{\#})^{3}F^{\pi} + F^{\#}E^{\#} + FF^{\#}(E^{\#})^{3} \\ &+ EE^{\#}F^{\#}E^{\#} + E^{\#}F^{\#}EE^{\#} + (E^{\#})^{2}FF^{\#}E^{\#} \\ &- (E^{\#})^{3}FF^{\#}EE^{\#} + EE^{\#}FF^{\#}(E^{\#})^{3} - E^{\#}FF^{\#}(E^{\#})^{2}, \\ \lambda &= F^{\#}E + F^{\#}E - FF^{\#}E^{\#}, \\ \xi &= F^{\#} + F^{\#}EE^{\#} - FF^{\#}(E^{\#})^{2}. \end{split}$$

Let $\Gamma = E\gamma + \lambda$, $\Delta = E\delta + \xi$, $\Lambda = F\gamma$ and $\Xi = F\delta$. This completes the proof. \Box

Corollary 4.4. Let $E, F \in \mathbb{C}^{n \times n}$ have group inverses. If $FE^iF = 0$ for $i = 1, \dots, n$, then $M = \begin{pmatrix} E & F \\ I_n & 0 \end{pmatrix}$ has group inverse if and only if $E^{\pi}F^{\pi}E^{\pi} = 0$. In this case,

$$M^{\#} = \left(\begin{array}{cc} \Gamma & \Delta \\ \Lambda & \Xi \end{array}\right),$$

where

$$\begin{split} \Gamma &= E^{\#}FF^{\#} + 2(E^{\#})^{3}F, \\ \Delta &= FF^{\#} + EE^{\#}FF^{\#} + 2(E^{\#})^{2}F, \\ \Lambda &= -F^{\#}EE^{\#} + F^{\pi}(E^{\#})^{2} + E^{\#}F^{\#}E + 2(E^{\#})^{3}FF^{\#}E \\ &+ E^{\#}F^{\#}E + EE^{\#}F^{\#}EE^{\#} + E^{\#}FF^{\#}E^{\#} \\ &- EE^{\#}FF^{\#}(E^{\#})^{2} - (E^{\#})^{2}FF^{\#}EE^{\#} + F^{\#} + EE^{\#}F^{\#} \\ &- (E^{\#})^{2}FF^{\#}, \\ \Xi &= F^{\pi}E^{\#} + EE^{\#}F^{\#}E + (E^{\#})^{2}FF^{\#}E + EE^{\#}F^{\#}E \\ &+ EF^{\#}EE^{\#} + EE^{\#}FF^{\#}E^{\#} - EFF^{\#}(E^{\#})^{2} \\ &+ (E^{\#})^{2}FF^{\#}E - E^{\#}FF^{\#}EE^{\#} + 2EF^{\#} \\ &- E^{\#}FF^{\#}. \end{split}$$

Proof. Applying Theorem 4.3 to the transpose of M, we complete the proof as in Corollary 4.2.

Acknowledgement

The authors would like to thank the referee for his/her valuable and helpful suggestions which led to improvement of the paper.

References

- J. Benítez; X. Liu and T. Zhu, Additive results for the group inverse in an algebra with applications to block operators, *Linear Multilinear Algebra*, 59(2011), 279–289.
- [2] C. Bu; X. Zhou; L. Ma and J. Zhou, On the group inverse for the sum of matrices, J. Aust. Math. Soc., 96(2014), 36–43.
- [3] S.L. Campbell, The Drazin inverse and systems of second order linear differential equations, *Linear & Multilinear Algebra*, **14**(1983), 195–198.
- [4] N. Castro-González; J. Robles and J.Y. Vélez-Cerrada, The group inverse of 2 × 2 matrices over a ring, *Linear Algebra Appl.*, 438(2013), 3600–3609.
- [5] C. Cao; Y. Wang and Y. Sheng, Group inverses for some 2 × 2 block matrices over rings, Front. Math. China, 11(2016), 521–538.

- [6] C.Y. Deng, On the group invertibility of operators, *Electronic J. Linear Algebra*, **31**(2016), 492–510.
 [7] L. Guo; J. Chen and H. Zou, Representations for the Drazin inverse of the sum of two matrices and its applications, *Bull. Iranian* Math. Soc., 45(2019), 683-699.
- [8] L. Guo and X. Du, Representations for the Drazin inverses of 2 × 2 block matrices, *Applied Math. Comput.*, 217(2010), 2833–2842.
 [9] N. Mihajlović and D.S. Djordjević, On group invrtibility in rings, *Filomat*, 33(2019), 6141–6150.
- [10] D. Mosić, Group inverse and generalized Drazin inverse of block matrices in a Banach algebra, Bull. Korean Math. Soc., 51(2014), 765-771.
- [11] X. Song and B. Zheng, The group invertibility of the product of two matrices over ring and its applications, Comput. Applied Math., 33(2014), 821-829.
- [12] M. Zhou; J. Chen and X. Zhu, The group inverse and core inverse of sum of two elements in a ring, Comm. Algebra, 48(2020), 676-690.
- [13] H. Zou; J. Chen and D. Mosić, The Drazin invertibility of an anti-triangular matrix over a ring, Studia Scient. Math. Hungar., 54(2017), 489–508.
- [14] H. Zou; D. Mosic and Y. Chen, The existence and representation of the Drazin inverse of a 2×2 block matrix over a ring, J. Algebra Appl., 18(2019), 1950212 (23 pages), DOI: 10.1142/S0219498819502128.