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Abstract. Let R be an associate ring with involution and let a,w ∈ R. The notion of EI along an element
is introduced. An element w is called EI along a if w∥a exists and w∥aw = ww∥a. Its several characterizations
are given by w-core inverses. Several necessary and sufficient conditions such that a #O

waw and wa #O
wa are

projections are derived. In particular, it is shown that a #O
waw is a projection if and only if aw is Moore-Penrose

invertible with (aw)† = a #O
w if and only if aw is group invertible with (aw)# = a #O

w . Also, wa #O
wa is a projection if

and only if a is Moore-Penrose invertible with a† = wa #O
w . Then, we describe the existence of w-core inverse

of a by the existence of (the unique) projection p ∈ R and idempotent q ∈ R satisfying pR = aR = awR = qR
and Rq = Raw.

1. Introduction

Idempotents (projections) have strongly connections with the theory of generalized inverses, which have
attracted much research in many branches of mathematics, including matrices, bounded linear operators,
semigroups and more general setting of rings. Several papers [5, 9–11, 15, 18] investigated the related
topic. Since we prefer to take a ring theoretic point, corresponding characterizations for idempotents (or
projections) generated by the recently introduced w-core inverses will be presented in a general ring.

The paper is organized as follows. In Section 2, we present the notations and basic properties of several
generalized inverses. In Section 3, we define and characterize EI along an element by idempotents. As an
application, the well known existence criterion for EP elements is given. In Section 4, we determine when
the idempotent of the form a #O

waw or wa #O
wa is a projection. In particular, it is shown that a #O

waw is a projection
if and only if aw is Moore-Penrose invertible with (aw)† = a #O

w if and only if aw is group invertible with
(aw)# = a #O

w. In this case, aw is EP. Also, wa #O
wa is a projection if and only if a is Moore-Penrose invertible with

a† = wa #O
w. Then, we describe the existence of the w-core inverse by the existence of (the unique) projection

p ∈ R and idempotent q ∈ R satisfying pR = aR = awR = qR and Rq = Raw. Finally, for any a,w ∈ R, it is
shown that a is regular (resp., {1, 3}-invertible, {1, 4}-invertible, Moore-Penrose invertible, group invertible
and core invertible) if and only if awa is regular (resp., {1, 3}-invertible, {1, 4}-invertible, Moore-Penrose
invertible, group invertible and core invertible), provided that w∥a exists. Also, their expressions are given.
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2. Preliminaries

In this section, we mainly introduce some notations, and give some fundamental results of generalized
inverses, which will be useful in the sequent sections.

Let R be an associate ring with unity 1. We say that an element a ∈ R is (von Neumann) regular if a ∈ aRa.
Any x ∈ R satisfying a = axa is called an inner inverse of a, and is denoted by a−. By R− and a{1} we denote
the sets of all regular elements in R and all inner inverses of a, respectively.

Definition 2.1. [4] Let R be an associate ring with unity 1. An element a ∈ R is called Drazin invertible if there
exist an element b ∈ R and a non-negative integer k such that

(i) ak = ak+1b, (ii) bab = b, (iii) ab = ba.

Any element b satisfying the above conditions (i)−(iii) is unique if it exists, and is denoted by aD. The smallest
non-negative integer k is called the Drazin index of a and is denoted by ind(a).

An element a ∈ R is group invertible if it is Drazin invertible and ind(a) = 1. The group inverse
of a is denoted by a#. Moreover, a ∈ R is group invertible if and only if a ∈ a2R ∩ Ra2. In this case,
a# = yax = ax2 = y2a, where a = a2x = ya2 for some x, y ∈ R. As usual, we denote by RD and R# the sets of
all Drazin invertible and group invertible elements in R, respectively.

Let ∗ be an involution on R, that is the involution ∗ satisfying (x∗)∗ = x, (xy)∗ = y∗x∗ and (x + y)∗ = x∗ + y∗

for all x, y ∈ R. We call R a ∗-ring if there exists an involution on R. Throughout this paper, any ring R
considered, unless otherwise noted, is assumed to be a ∗-ring.

Definition 2.2. [12] Let a ∈ R. An element a ∈ R is called Moore-Penrose invertible if there exists an x ∈ R
satisfying the following equations

(i) axa = a, (ii) xax = x, (iii) (ax)∗ = ax, (iv) (xa)∗ = xa.

Any element x satisfying the equations (i)−(iv) is called the Moore-Penrose inverse of a. It is unique if it exists, and
is denoted by a†.

We say that a is {1, 3}-invertible if x satisfies the equations (i) and (iii) in Definition 2.2. Such x is called a
{1, 3}-inverse of a, and is denoted by a(1,3). By a{1, 3} we denote the set of all {1, 3}-inverses of a. Similarly, a
is {1, 4}-invertible if x satisfies the equations (i) and (iv). Such x is called a {1, 4}-inverse of a, and is denoted
by a(1,4). By a{1, 4} we denote the set of all {1, 4}-inverses of a. As usual, we denote by R†, R(1,3) and R(1,4)

the sets of all Moore-Penrose invertible, {1,3}-invertible and {1,4}-invertible elements in R, respectively. It
is known from [21, Lemma 2.1] that a ∈ R(1,3) if and only if a ∈ Ra∗a. If a = ya∗a for some y ∈ R, then y∗ is a
{1,3}-inverse of a. Dually, a ∈ R(1,4) if and only if a ∈ aa∗R. If a = aa∗x for some x ∈ R, then x∗ is a {1,4}-inverse
of a. It is well known that a ∈ R† if and only if a ∈ aa∗R ∩ Ra∗a.

In 2011, Mary introduced the inverse along an element in a semigroup by the Green’s preorder relations.
We herein state the notion of the inverse along an element in an associate ring R with unity 1.

Definition 2.3. [6, Definition 4] Let a, d ∈ R. An element a is called invertible along d if there exists some b ∈ R
such that bad = d = dab and b ∈ dR∩Rd. Such an element b is called the inverse of a along d. It is unique if it exists,
and is denoted by a∥d.

As was stated in [6, Theorem 11], the inverse along an element recovers the group inverse, the Drazin
inverse and the Moore-Penrose inverse. More precisely, given any a ∈ R, a is group invertible if and only if
a is invertible along a, a is Drazin invertible if and only if a is invertible along an for some positive integer n,
a is Moore-Penrose invertible if and only if a is invertible along a∗. In 2013, Mary [7] presented the existence
criterion for the inverse along an element by the intersection of ideals, i.e, a is invertible along d if and only
if d ∈ dadR∩Rdad. In particular, if d = dadx = ydad, then a∥d = dx = yd. By the symbol R∥d we denote the set
of all elements which are invertible along d in a ring R.
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Extending the (Mary’s) inverse along an element, Drazin in 2012 introduced the (b, c)-inverse. For any
a, b, c ∈ R, a is (b, c)-invertible [3] if there is some y ∈ R such that y ∈ bRy∩ yRc, yab = b and cay = c. Such an
y is unique if it exists, and is denoted by a(b,c). It is noted that the (d, d)-inverse of a is exactly the inverse of
a along d. By R(b,c) we denote the set of all (b, c)-invertible elements in R.

Recently, the author introduced a class of generalized inverses, called the w-core inverse [19], general-
izing the core inverse, the core-EP inverse and the Moore-Penrose inverse.

Definition 2.4. [19, Definition 2.1] Let a,w ∈ R. An element a is called w-core invertible if there exists some x ∈ R
such that awx2 = x, xawa = a and (awx)∗ = awx. Such an x is called a w-core inverse of a. It is unique if it exists,
and is denoted by a #O

w.

It is shown in [19] that a is w-core invertible if and only if there exists some x ∈ R such that awxa = a,
xR = aR and Rx = Ra∗ if and only if w is invertible along a and a is {1, 3}-invertible. In this case, a #O

w = w∥aa(1,3).
In particular, an element is called core invertible if it is 1-core invertible, the standard notion of the core
inverse in a ring can be seen in [13]. The core inverse of a is denoted by a #O. In [19], it is illustrated that
a is core invertible if and only if it is a-core invertible if and only if it is 1-core invertible, in which case,
a #O = a#aa(1,3); a is Moore-Penrose invertible if and only if it is a∗-core invertible. More results on w-core
inverses can be referred to mathematical literature [20].

3. EI along an element

It is known that the Drazin inverse has the double commutant property, that is, aD double commutes
with a, precisely, if ax = xa then aDx = xaD for any x ∈ R. However, for the case of the Moore-Penrose
inverse, aa† is not equal to a†a in general. More generally, w∥a does not commute with w.

For any a,w ∈ R, w is called EI (equal idempotent) along a if w ∈ R∥a and ww∥a = w∥aw, which is the
equivalent condition such that w is completely invertible along a [14, Corollary 3.5]. The standard notion
of the complete inverse along an element can be found in [14]. Also, Benı́tez and Boasso in [1, Section 6]
have shown some characterizations of ww∥a = w∥aw.

The following result determines when w and w∥a commute by the existence of the w-core invertibility of
a. Firstly, an auxiliary lemma is given below.

Lemma 3.1. Given any a,w ∈ R with w ∈ R∥a, then w∥a = w∥aa−a = aa−w∥a.

Proof. Note that w∥awa = a = aww∥a and w∥a ∈ aR∩Ra. Then a ∈ awRa ⊆ aRa, i.e., a is regular. Also, it follows
from w∥a ∈ Ra that w∥a = ta for some t ∈ R, and consequently w∥aa−a = taa−a = ta = w∥a. A dual statement
gives w∥a = aa−w∥a.

Proposition 3.2. Let a,w ∈ R and a ∈ R #O
w. Suppose e = wa #O

wa and f = a #O
waw. Then the following conditions are

equivalent:
(i) w is EI along a.
(ii) e = f .
(iii) eR = f R and e f = f e.
(iv) eR = f R and e f e = f e f .
(v) eR = f R and (e f )2 = ( f e)2.
If one of the above conditions holds, then a ∈ R #O. Moreover, a #O = wa #O

w.

Proof. (i)⇔ (ii) Note that a ∈ R #O
w if and only if w ∈ R∥a and a ∈ R(1,3). Then, by Lemma 3.1, w∥a = w∥aa(1,3)a.

Given ww∥a = w∥aw, then e = wa #O
wa = ww∥aa(1,3)a = ww∥a = w∥aw = w∥aa(1,3)aw = a #O

waw = f . Conversely, if
e = f , then ww∥a = ww∥aa(1,3)a = wa #O

wa = e = f = a #O
waw = w∥aa(1,3)aw = w∥aw.

(ii)⇒ (iii) and (iii)⇒ (iv) are clear.
(iv)⇒ (v) Note that (e f )2 = e f e f = (e f e) f = f e f and ( f e)2 = f e f e = e f e. Then (e f )2 = ( f e)2.
(v)⇒ (ii) As eR = f R, then e = f e and f = e f . So, e = e2 = ( f e)2 = (e f )2 = f 2 = f .
We next give the criterion and the formula of a #O. As ae = a = f a, then a = f a = ea = wa #O

wa2
∈ Ra2.

Also, a = a f = a2wa #O
w f ∈ a2R. So, a ∈ R# and a# = w(a #O

w)2aw. It follows from Lemma 3.1 that a #O
waa(1,3) =

(w∥aa(1,3))aa(1,3) = (w∥aa(1,3)a)a(1,3) = w∥aa(1,3) = a #O
w. Thus, a #O = a#aa(1,3) = w(a #O

w)2awaa(1,3) = wa #O
waa(1,3) = wa #O

w.
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Recall that an element b ∈ R is EP if b ∈ R#
∩ R† and b# = b†. A well known characterization for EP

element is that b is EP if and only if b ∈ R† and bb† = b†b. It is known [6] that b ∈ R† if and only if b∥b∗

exists. Moreover, b† = b∥b∗ . We herein remind the reader that the EP element is a special case of EI along an
element. Indeed, if b is EP, then bb† = b†b, i.e., bb∥b∗ = b∥b∗b, and consequently, b is EI along b∗.

Take w = b and a = b∗, then e = b(b∗) #O

b b∗ = bb∥b∗ (b∗)(1,3)b∗ = bb∥b∗ = bb† and f = (b∗) #O

b b∗b = b†b. As a special
result of Theorem 3.2, we get the following characterizations for EP elements.

Corollary 3.3. Let b ∈ R. Suppose e = bb† and f = b†b. Then the following conditions are equivalent:
(i) b is EP.
(ii) e = f .
(iii) eR = f R and e f = f e.
(iv) eR = f R and e f e = f e f .
(v) eR = f R and (e f )2 = ( f e)2.

We close this section with the characterization for the inverse along an element.

Theorem 3.4. Let a,w ∈ R. Then the following conditions are equivalent:
(i) w is invertible along a.
(ii) there exists e2 = e ∈ R such that a ∈ Re and ew is invertible along a.
(iii) there exists f 2 = f ∈ R such that a ∈ f R and w f is invertible along a.
In this case, w∥a = (ew)∥a = (w f )∥a.

Proof. (i)⇒ (ii) Given (i), then, by Lemma 3.1, a is regular. Write e = a−a, then e2 = e and a = ae ∈ Re. Hence,
a ∈ aewaR ∩ Raewa since a ∈ awaR ∩ Rawa, i.e., ew is invertible along a.

(ii)⇒ (i) Since a ∈ Re, there is some x ∈ R such that a = xe and hence aw = xew = xeew = aew. As ew is
invertible along a, then a ∈ aewaR∩Raewa, and whence a ∈ awaR∩Rawa, as required. Moreover, w∥a = (ew)∥a.

(i)⇔ (iii) Setting f = aa−, it can be similarly proved as (i)⇔ (ii).

4. When a #O

waw and wa #O

wa are projections

Recall that an element p ∈ R is an idempotent if p = p2, and p is a projection if p = p2 = p∗.
It is known from [19] that if a is w-core invertible, then there exists some x ∈ R such that awxa = a,

xawx = x, awx = (awx)∗, awx2 = x and xawa = a. Clearly, xaw and wxa are both idempotent. However, they
may not be projections.

The following two theorems characterize when xaw and wxa are projections, provided that x is the w-core
inverse of a.

Lemma 4.1. [19, Theorem 2.9] Let a,w ∈ R. Then a ∈ R #O
w if and only if w∥a and a(1,3) both exist. In this case,

a #O
w = w∥aa(1,3) and w∥a = a #O

wa.

Theorem 4.2. Let a,w ∈ R with a ∈ R #O
w. If x = a #O

w ∈ R, then the following conditions are equivalent:
(i) xaw = (xaw)∗.
(ii) (aw)∗R = aR.
(iii) (aw)∗R ⊆ aR.
(iv) R(xa)∗ = R(xaw).
(v) R(xaw) ⊆ R(xa)∗.
(vi) aw ∈ R† with (aw)† = x.
(vii) aw ∈ R# with (aw)# = x.

Proof. (i)⇒ (ii) As xaw = (xaw)∗, then (aw)∗ = (awxaw)∗ = (xaw)∗(aw)∗ = xaw(aw)∗ = awx2aw(aw)∗ ∈ aR. Also,
a = xawa = (xaw)∗a = (aw)∗x∗a ∈ (aw)∗R. So, (aw)∗R = aR.

(ii)⇒ (iii) is trivial.
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(iii) ⇒ (i) Given (aw)∗R ⊆ aR, then there exists suitable t ∈ R such that (aw)∗ = at = xawat = xaw(aw)∗.
Post-multiplying the equation above by x∗ gives (xaw)∗ = xaw(xaw)∗ = xaw, as required.

(i) ⇒ (iv) Once given xaw = (xaw)∗, then Rxaw = R(xaw)∗ = Rw∗(xa)∗ ⊆ R(xa)∗. Again, we have
(xa)∗ = (xawxa)∗ = (xa)∗(xaw)∗ = (xa)∗xaw, which implies R(xa)∗ ⊆ Rxaw. Thus, R(xa)∗ = Rxaw.

(iv)⇒ (v) is trivial.
(v)⇒ (i) Since Rxaw ⊆ R(xa)∗, it follows that xaw = t(xa)∗ = t(xawxa)∗ = t(xa)∗(xaw)∗ = xaw(xaw)∗ = (xaw)∗

for some t ∈ R.
(i)⇒ (vi) Note that x ∈ R satisfies awxaw = aw, xawx = x and awx = (awx)∗. Again, as xaw = (xaw)∗, then

aw ∈ R† and (aw)† = x.
(vi)⇒ (i) is obvious since x ∈ (aw){1, 4}.
(i) ⇒ (vii) Since xaw = (xaw)∗, we have xaw = awx2aw = (awx)∗(xaw)∗ = (xawawx)∗ = (awx)∗ = awx.

Consequently, by awxaw = aw and xawx = x, one gets aw ∈ R# and (aw)# = x.
(vii)⇒ (i) follows from awx = xaw and awx = (awx)∗.

From Theorem 4.2 above, for any a ∈ R #O
w, we get that any one condition of (i)-(vii) is equivalent to the

fact that (viii) aw is EI along (aw)∗ (i.e., aw is EP). Indeed, given (vi), and hence (vii), then aw ∈ R#
∩ R† and

(aw)# = (aw)†, hence aw is EI along (aw)∗. For the converse statement, it is clear that we have the implication
(viii)⇒ (vi).

Theorem 4.3. Let a,w ∈ R with a ∈ R #O
w. If x = a #O

w, then the following conditions are equivalent:
(i) wxa = (wxa)∗.
(ii) (xa)∗R = (wxa)R.
(iii) (xa)∗R ⊆ (wxa)R.
(iv) a∗R = (wa)R.
(v) a∗R ⊆ (wa)R.
(vi) a ∈ R† with a† = wx.

Proof. To begin with, (ii)⇒ (iii) and (iv)⇒ (v) are trivial.
(i) ⇒ (ii) Given wxa = (wxa)∗, then (wxa)R = (wxa)∗R = (xa)∗w∗R ⊆ (xa)∗R. Also, (xa)∗R = (xawxa)∗R =

(wxa)∗(xa)∗R ⊆ (wxa)∗R = (wxa)R.
(iii)⇒ (i) It follows from (xa)∗R ⊆ (wxa)R that (xa)∗ = wxat = wx(awxa)t = wxa(wxat) = wxa(xa)∗ for some

t ∈ R. We have (wxa)∗ = (xa)∗w∗ = wxa(xa)∗w∗ = wxa(wxa)∗ = wxa.
(i) ⇒ (iv) Since wxa = (wxa)∗, we have a∗ = (awxa)∗ = (wxa)∗a∗ = wxaa∗ = w(awx2)aa∗, which gives

a∗R ⊆ waR. Also, wa = w(xawa) = (wxa)∗wa = a∗(wx)∗wa ∈ a∗R. Therefore, a∗R = (wa)R.
(v)⇒ (i) From a∗R ⊆ (wa)R, there exists some t ∈ R such that a∗ = wat = w(xawa)t = wxa(wat) = wxaa∗.

Post-multiplying the equality a∗ = wxaa∗ by (wx)∗ yields (wxa)∗ = wxa(wxa)∗ = wxa.
(i)⇒ (vi) As awxa = a, awx = (awx)∗ and xawx = x, then awxa = a, awx = (awx)∗ and wxawx = wx, which

combining with wxa = (wxa)∗ imply a ∈ R† and a† = wx.
(vi)⇒ (i) As a† = wx, then a†a = (a†a)∗ gives wxa = (wxa)∗.

Remark 4.4. For any a ∈ R #O
w, if a and x satisfy any one condition of (i)-(vi) in Theorem 4.3, then a may not

be group invertible. See the following counterexample.

Example 4.5. Let R =M2(C) be the ring of all 2 by 2 complex matrices and let the involution be the conjugate

transpose. Take a =
[
0 1
0 0

]
, w =

[
0 0
1 0

]
∈ R, by a direct calculation, any such form matrix

[
∗ ∗

1 0

]
∈ a{1, 3},

w∥a =
[
0 1
0 0

]
, and consequently a #O

w = w∥aa(1,3) =

[
1 0
0 0

]
. Clearly, wa #O

wa =
[
0 0
0 1

]
= (wa #O

wa)∗. However, a < R#,

i.e., a < a2R ∩ Ra2 since a2 =

[
0 0
0 0

]
.

For any given a,w ∈ R, the authors in [19] showed that a is w-core invertible if and only if aw is invertible
along aa∗, provided that a ∈ R†. Another characterization for the existence of the w-core inverse is given
below.
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Theorem 4.6. Let a,w ∈ R and let a ∈ R†. Then a ∈ R #O
w if and only if (a†)∗w is invertible along aa∗. In this case,

a #O
w = ((a†)∗w)∥aa∗ (a†)∗a†.

Proof. For the “only if” part, suppose a ∈ R #O
w. Then w∥a and a(1,3) exist, and hence a ∈ awaR ∩ Rawa ∩ Ra∗a.

So, aa∗ ∈ Rawaa∗ = Raa†awaa∗ = Raa∗(a†)∗waa∗. Also, a ∈ awaR = awaa∗(a†)∗R ⊆ awaa∗R = aa†awaa∗R =
aa∗(a†)∗waa∗R. Therefore, (a†)∗w is invertible along aa∗.

For the “if” part, we have ((a†)∗w)∥aa∗ (a†)∗waa∗ = aa∗ = aw((a†)∗w)∥aa∗ and ((a†)∗w)∥aa∗
∈ aa∗R∩Raa∗. Suppose

x = ((a†)∗w)∥aa∗ (a†)∗a†. Then we can prove that x is the w-core inverse of a by the following three steps.
(1) awx = aw((a†)∗w)∥aa∗ (a†)∗a† = aa∗(a†)∗a† = aa† = (awx)∗.
(2) Since x ∈ aa∗R, there exists some t ∈ R such that x = aa∗t and hence awx2 = aa†x = aa†aa∗t = aa∗t = x.
(3) We have

xawa = ((a†)∗w)∥aa∗ (a†)∗a†awa = ((a†)∗w)∥aa∗ (a†)∗(a†a)∗wa
= ((a†)∗w)∥aa∗ (a†)∗wa = ((a†)∗w)∥aa∗ (a†)∗waa∗(a†)∗

= aa∗(a†)∗

= a.

The proof is completed.

Recall that an element a ∈ R is called a partial isometry if aa∗a = a. Various characterizations of partial
isometries in a ring with involution can be referred to [8]. It follows that if a ∈ R is a partial isometry, then
a ∈ R† and a† = a∗. Moreover, (a†)∗w = aw. As a consequence of Theorem 4.6, we have the following result.

Corollary 4.7. Let a,w ∈ R and a = aa∗a. Then a ∈ R #O
w if and only if aw is invertible along aa∗. In this case,

a #O
w = (aw)∥aa∗ .

Given any a ∈ R, the set of all right annihilators of a is denoted by a0 = {x ∈ R : ax = 0} and the set of
all left annihilators of a is denoted by 0a = {x ∈ R : xa = 0}. For any a, b ∈ R, if aR = bR then 0a = 0b, and if
Ra = Rb then a0 = b0 (see e.g., [13, Lemmas 2.5 and 2.6]).

We now come to our main characterization theorem for w-core inverses, which are given by ideals
generated by idempotents and projections.

Theorem 4.8. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a is w-core invertible.
(ii) there exist a unique projector p ∈ R and an idempotent q ∈ R such that pR = aR = awR = qR and Rq = Raw.
(iii) there exist a projector p ∈ R and an idempotent q ∈ R such that pR = aR = awR = qR and Rq = Raw.
(iv) aw ∈ R− and there exist a projector p ∈ R and an idempotent q ∈ R such that 0p = 0a = 0(aw) = 0q and

q0 = (aw)0.
(v) aw ∈ R− and there exist a unique projector p ∈ R and an idempotent q ∈ R such that 0p = 0a = 0(aw) = 0q

and q0 = (aw)0.
In this case, a #O

w = q(aw)−p for any (aw)− ∈ (aw){1}.

Proof. (i)⇒ (ii) Let x ∈ R be the w-core inverse of a and let p = awx and q = xaw. Then p2 = p = p∗ and q2 = q.
Also, pR = awxR ⊆ awR ⊆ aR = awxaR ⊆ pR gives pR = aR = awR. From xawx = x, we have qR = xR = aR
and Rq = Raw = Rawxaw ⊆ Rq, which imply Rq = Raw.

We next show that such a projection is unique. Let p1, p2 satisfy (ii). Then p1R = aR = awR = p2R. There
exists some s ∈ R such that p1 = p2s = p2p2s = p2p1, and similarly p2 = p1p2. So, p1 = (p2p1)∗ = p1p2 = p2.

(ii)⇒ (iii) and (iii)⇒ (iv) are clear.
(iv)⇒ (v) It suffices to show the uniqueness of p. Suppose 0p1 =

0p2. Then (1−p1)p2 = 0 and (1−p2)p1 = 0.
Hence, p1 = p2p1 = p1p2 = p2.

(v)⇒ (i) As 0p = 0(aw) and (1 − aw(aw)−)aw = 0, then (1 − aw(aw)−)p = 0, i.e., aw(aw)−p = p. It follows
from q0 = (aw)0 that aw = awq. Set x = q(aw)−p. Then x is the w-core inverse of a. Indeed, we have

(1) awx = awq(aw)−p = aw(aw)−p = p = p∗ = (awx)∗.
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(2) 0p = 0a yields pa = a, and hence awxa = pa = a. As (1 − awx)a = 0, then (1 − awx)q = 0 since 0q = 0a.
Thus, awxq = q. Post-multiplying the equality awxq = q by (aw)−p gives awx2 = x.

(3) As aw(1 − (aw)−aw) = 0 and q0 = (aw)0, then q = q(aw)−aw. Once given 0q = 0a, then a = qa and hence
xawa = q(aw)−pawa = q(aw)−awa = qa = a.

Suppose that a,w ∈ R and w∥a exists. Then, by [7, Theorem 2.1], a ∈ aRa, i.e., a is regular. As
a ∈ awaR ∩ Rawa, then a ∈ awaRa and awa ∈ awaRawa, i.e., awa is regular. Conversely, the regularity
of awa also guarantees the regularity of a. Indeed, since awa ∈ awaRawa, by a ∈ awaR ∩ Rawa, we have
a ∈ awaRa ⊆ aRa, consequently, a is regular.

It is natural to ask whether a and awa have the same generalized invertibility, provided that w is invertible
along a. The following result illustrates the assumptions.

Theorem 4.9. Let a,w ∈ R and let w∥a exist. Then
(i) a ∈ R− if and only if awa ∈ R−. In this case, a−w∥aa− ∈ (awa){1} and (awa)−awawa(awa)− ∈ a{1}.
(ii) a ∈ R(1,3) if and only if awa ∈ R(1,3). In this case, a(1,3)w∥aa(1,3)

∈ (awa){1, 3} and (awa)(1,3)awawa(awa)(1,3)
∈

a{1, 3}.
(iii) a ∈ R(1,4) if and only if awa ∈ R(1,4). In this case, a(1,4)w∥aa(1,4)

∈ (awa){1, 4} and (awa)(1,4)awawa(awa)(1,4)
∈

a{1, 4}.
(iv) a ∈ R† if and only if awa ∈ R†. In this case, (awa)† = a†w∥aa† and a† = (awa)†awawa(awa)†.
(v) a ∈ R# if and only if awa ∈ R#. In this case, (awa)# = a#w∥aa# and a# = (awa)#awawa(awa)#.

Proof. (i) has been proved above.
(ii) Suppose that a ∈ R(1,3). Then a ∈ Ra∗a and hence awa ∈ Ra∗awa. Note that w ∈ R∥a implies that

a ∈ awaR. Then a = awat for some t ∈ R and hence awa ∈ Ra∗awa = R(awat)∗awa ⊆ R(awa)∗awa, i.e.,
awa ∈ R(1,3).

Conversely, given awa ∈ R(1,3), i.e., awa ∈ R(awa)∗awa, then a = awat ∈ R(awa)∗awat = R(awa)∗a ⊆ Ra∗a. So,
a ∈ R(1,3).

We next give the expressions of a(1,3) and (awa)(1,3). It is noted that w∥a exists if and only if a ∈ awaR ∩
Rawa. Hence, there are some s, t ∈ R such that a = sawa = awat. Suppose that awa ∈ R(1,3). Then
a = sawa(awa)(1,3)awa = awa(awa)(1,3)awat = a(awa)(1,3)awa = awa(awa)(1,3)a.

Suppose that x = (awa)(1,3)awawa(awa)(1,3). Then x ∈ a{1, 3}. Indeed, we have ax = a(awa)(1,3)awawa(awa)(1,3) =
awa(awa)(1,3) = (ax)∗ and axa = awa(awa)(1,3)a = a.

Conversely, as a ∈ R(1,3), then one can verify that a(1,3)w∥aa(1,3)
∈ (awa){1, 3}.

(iii) can be proved by a similar way of (ii).
(iv) follows from (ii) and (iii).
(v) It is known that a ∈ R# if and only if a ∈ a2R ∩ Ra2. Suppose that a ∈ R#. Then a ∈ a2R ∩ Ra2 and

hence awa ∈ awa2R ∩ Ra2wa. Again, from the implication w ∈ R∥a ⇒ a ∈ awaR ∩ Rawa, it follows that
awa ∈ awa2R ∩ Ra2wa ⊆ (awa)2R ∩ R(awa)2.

Conversely, as awa ∈ (awa)2R ∩ R(awa)2, then a ∈ a2R ∩ Ra2 since w ∈ R∥a ⇔ a ∈ awaR ∩ Rawa.
By a direct calculation, (awa)# = a#w∥aa# and a# = (awa)#awawa(awa)#.

It is known that a ∈ R #O if and only if a ∈ R#
∩ R(1,3). As a special result of Theorem 4.9, we have the

following result.

Theorem 4.10. Let a,w ∈ R and let w∥a exist. Then a ∈ R #O if and only if awa ∈ R #O. In this case, (awa) #O = a #Ow∥aa #O

and a #O = (awa) #Oawawa(awa) #O.
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