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Abstract. In this paper, we introduce the notions of pre-uniform spaces and pre-proximities and investigate
some basic properties about them, where the definition of pre-uniformity here is different from the pre-
uniformities which are studied in [1], [8] and [12], respectively. First, we prove that each pre-uniform
pre-topology is regular, and give an example to show that there exists a pre-uniform structure on a finite
set such that the pre-uniform pre-topology is not discrete. Moreover, we give three methods of generating
(strongly) pre-uniformities, that is, the definition of a pre-base, a family of strongly pre-uniform covers,
or a family of strongly pre-uniform pseudometrics. As an application, we show that each strongly pre-
topological group is completely regular. Finally, we pose the concept of the pre-proximity on a set and
discuss some properties of the pre-proximity.

1. Introduction

The concepts of a uniform space and of a proximity space can be considered either as axiomatizations
of some geometric notions, close to but quite independent of the concept of a topological space, or as
convenient tools for an investigation of topological spaces. As we all know, uniformities and proximities
both can be applied as topological tools. Indeed, the theory of uniform spaces shows striking analogies
with the theory of metric spaces, but the realm of its applicability is much broader, see [9, 11, 21–24]. In
particular, uniformity is a useful tool when we research the theory of topological groups.

In 1999, Doignon and Falmagne 1999 introduced the theory of knowledge spaces (KST) which is regarded
as a mathematical framework for the assessment of knowledge and advices for further learning [7, 10]. KST
makes a dynamic evaluation process; of course, the accurate dynamic evaluation is based on individuals’
responses to items and the quasi-order on domain Q[7]. In 2009, Danilov discussed the knowledge spaces
based on the topological point of view. Indeed, the notion of a knowledge space is a generalization of
topological spaces [6], that is, a generalized topology on a set Z is a subfamily T of 2Z such that T is closed
under arbitrary unions. Császár (2002) in [2] introduced the notions of generalized topological spaces and
then investigated some properties of generalized topological spaces, see [2–5]. Further, J. Li first discuss
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the pre-topology (that is, the subbase for the topology) with the applications in the theory of rough sets,
see [13–15], and then D. Liu in [16, 17] discuss some properties of pre-topology. Recently, Lin, Cao and Li
[18] have systematically investigated some properties of pre-topology, and Lin, Wu, Xie and Bao in [19]
have introduced the concept of pre-topological group and studied some properties of it. Since the concept
of uniformity plays an important role in the study of topological spaces, it is natural to pose the concept
of pre-uniform structure as pre-topological tools in the applications of pre-topological spaces, where the
definition of pre-uniformity here is different with the pre-uniformities which are studied in [1], [8] and [12]
respectively..

This paper is organized as follows. In Section 2, we introduce the necessary notation and terminology
which are used in the paper. In Section 3, we introduce the notion of pre-uniformity structure and investigate
some properties about pre-uniformities. We find that some properties of the pre-uniform structures which
are similar to that of uniform spaces hold and others do not hold. For example, compared with the property
that each uniform structure on a finite set is discrete uniformity, we give an example that a pre-uniform space
µ on a finite set X such that pre-uniform pre-topology (X, τ(µ)) is not discrete. In Section 4, we introduce
three methods of generating (strongly) pre-uniformities, that is, the definition of a pre-base, a family of
strongly pre-uniform covers, or a family of strongly pre-uniform pseudometrics. As an application, we
prove that each strongly pre-topological group is completely regular. In Section 5, we discuss the relation of
pre-uniformly continuous and continuous in pre-uniform spaces. In Section 6, we introduce pre-proximities
and pre-proximity spaces, and then we investigate some properties about them.

2. Preliminaries

Denote the sets of real number, positive integers, the closed unit interval and all non-negative integers
by R,N, I and ω, respectively. Readers may refer [9, 18] for terminology and notations not explicitly given
here.

We recall some concepts about pre-topological spaces.

Definition 2.1. ([2, 6, 13]) A pre-topology on a set Z is a subfamily T of 2Z such that
⋃

T = Z and
⋃

T ′
∈ T

for any T ′
⊆ T . Each element of T is called an open set of the pre-topology.

Definition 2.2. ([18]) A subset D of a pre-topological space Z is closed provided Z \D is open in Z.

Take an arbitrary subset F of a pre-topological space (Z, τ); then it follows that⋂
{C : F ⊆ C,Z \ Cτ}

is closed in Z, which is called the closure [18] of F and denoted by F. Clearly, F is the smallest closed set
containing F, and a set C is closed iff C = C.

Definition 2.3. ([18]) If B is a subset of a pre-topological space (Z, τ), then the set⋃
{W ⊆ B : W ∈ τ}

is called the interior of B and is denoted by B◦.

Definition 2.4. ([18]) Let (G, τ) be a pre-topological space and B ⊆ τ. If for each U ∈ τ there exists a
subfamily B′ of B such that U =

⋃
B
′, then we say that B is a pre-base of (G, τ).

Definition 2.5. ([18]) Let h : Y→ Z be a mapping between two pre-topological spaces (Y, τ) and (Z, υ). The
mapping h is pre-continuous from Y to Z if h−1(W) ∈ τ for each W ∈ υ.
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Definition 2.6. ([18]) Let (Z, τ) be a pre-topological space. Then:
(1) Z is called a T0-space if for any y, z ∈ Z with y , z there exists W ∈ τ such that W ∩ {y, z} is exact

one-point set;
(2) Z is called a T1-space if for any y, z ∈ Z with y , z there are V,W ∈ τ so that V ∩ {y, z} = {y} and

W ∩ {y, z} = {z};
(3) Z is called a T2-space, or a Hausdorff space, if for any y, z ∈ Z with y , z there are V,W ∈ τ so that y ∈ V,

z ∈W and V ∩W = ∅;
(4) Z is called a T3 pre-topological space, or a regular space, if Z is a T1-space, and for every z ∈ Z and every

closed set A of Z with z < A there are open subsets V and O such that V ∩O = ∅, z ∈ V and A ⊆ O;
(5) Z is a T3 1

2
pre-topological space, or a completely regular pre-topological space, or a Tychonoff pre-topological

space, if Z is a T1-space, and for each z ∈ Z and each closed subset C ⊆ Z with z < C there exists a
pre-continuous mapping r : Z→ I so that r(z) = 0 and r(x) = 1 for each x ∈ C.

3. Basic properties of pre-uniformities

In this section, we mainly introduce the concept of pre-uniformity and discuss some basic properties of
it.

Let X be a nonempty set. We say that the set △ = {(x, x) : x ∈ X} is the diagonal of X × X. For any subsets
A,B of X and x ∈ X, denote by

A−1 = {(y, x) : (x, y) ∈ A},

A ◦ B = {(x, y) : there exists z ∈ X such that z ∈ A and (z, y) ∈ B},

A[x] = {y ∈ X : (x, y) ∈ A}.

If A = A−1, we say that A is symmetric.

Definition 3.1. Let µ be a family of non-empty subsets of X × X such that the following conditions are
satisfied:

(U1) for any U ∈ µ, △ ⊆ U;
(U2) if U ∈ µ, then U−1

∈ µ;
(U3) if U ∈ µ, then there exist V,W ∈ µ such that V ◦W ⊆ U;
(U4) if U ∈ µ and U ⊂ V ⊆ X × X, then V ∈ µ;
(U5) if

⋂
µ = △;

(U6) if U,V ∈ µ, then U ∩ V ∈ µ;
(U2′) if U ∈ µ, there exists V ∈ µ such that V ⊂ U and V = V−1;
(U3′) if U ∈ µ, then there exists V ∈ µ such that V ◦ V ⊆ U.
• The family µ is a pre-uniform structure of X if µ satisfies (U1)-(U5), the pair (X, µ) is a pre-uniform space

and the members of µ are called entourage.
• If a pre-uniform structureµ also satisfies (U2′), then we say thatµ is a symmetrically pre-uniform structure

and (X, µ) is a symmetrically pre-uniform space.
• If a pre-uniform structure µ also satisfies (U3′), then we say that µ is a strongly pre-uniform structure

and (X, µ) is a strongly pre-uniform space.
• If µ is a symmetrically and strongly pre-uniform structure µ, then we say that µ is an almost uniform

structure and (X, µ) is an almost uniform space.
• An almost uniform structure µ satisfies (U6) is called uniform and (X, µ) is a uniform space.

A family B ⊂ µ is called a pre-base for the pre-uniformity µ if for each V ∈ µ there exists a W ∈ B such
that W ⊂ V. The uniformity that has {△} as a pre-base is called the discrete pre-uniformity. The smallest
cardinal number of the form |B|, where B is a pre-base for µ, is called the weight of the pre-uniformity µ and
is denoted by w(µ). Clearly, we have the following proposition.
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Proposition 3.2. Let (X, µ) be a pre-uniform space. If B is a pre-base for µ, then B has the following properties:
(BU1) For each V ∈ B there exist U ∈ B such that U−1

⊂ V.
(BU2) For each V ∈ B there exist U,W ∈ B such that U ◦W ⊂ V.
(BU3)

⋂
B = △.

Remark 3.3. Clearly, each uniform space is an almost uniform space, each almost uniform space is strongly
pre-uniform space and symmetrically pre-uniform space, and each strongly pre-uniform space or symmet-
rically pre-uniform space is a pre-uniform space, but not vice versa, see the following examples.

(1) There exists a strongly pre-uniform space which is not a symmetrically pre-uniform space; in
particular, it is not an almost uniform space. Indeed, let X = R, and let A = {(x,+∞) : x ∈ R}∪ {(−∞, x) : x ∈
R}. LetB be the set of all the forms

⋃
x∈R (({x} × Ax) ∪ ({Bx × {x})), where Ax,Bx ∈ A and x ∈ Ax ∩Bx for each

x ∈ R, and let µ be the pre-uniform generated byB. Then it easily check that (R, µ) is a strongly pre-uniform
space which is not a symmetrically pre-uniform space since the element

⋃
x∈R (({x} × Ax) ∪ ({Bx × {x})) does

not satisfy (U2′), where Ax ∈ {(t,+∞) : t ∈ R} and Bx ∈ {(−∞, t) : t ∈ R} for each x ∈ R.
(2) There exists an almost uniform space which is not a uniform space. Indeed, let X be any non-empty

set such that there exist two uniform structures µ1 and µ2 on the set X satisfying that there are U0 ∈ µ1 and
V0 ∈ µ2 such that for any U ∈ µ1 and V ∈ µ2 we have U ⊈ V0 and V ⊈ U0, see [9, 8.1.B]. Put δ = µ1 ∪ µ2,
and let µ be the pre-uniform structure generated by δ. Then (X, µ) is an almost uniform space which is not
a uniform space since U0 ∩ V0 < µ.

However, the following question is still unknown for us.

Question 3.4. Does there exist a symmetrically pre-uniform space which is not a strongly pre-uniform space?

The proof of the following proposition is easy, thus we omit it.

Proposition 3.5. Let (X, µ) be a pre-uniform space. Put

τ(µ) = {G ⊆ X : for each x ∈ G there exists U ∈ µ such that U[x] ⊆ G}.

Then τ(µ) is a pre-topology on X.

We say that τ(µ) is the induced pre-topology from the pre-uniform structure (X, µ), or say that τ(µ) is the
pre-uniform pre-topology of (X, µ). If X is a pre-topological space and a pre-uniformity µ on the set X induces
the original pre-topology of X, then we say that µ is a pre-uniformity on the pre-topological space X.

If µ1 and µ2 are two pre-uniformities on a set X and µ2 ⊂ µ1, then we say that the pre-uniformity
µ1 is finer than the pre-uniformity µ2 or that µ2 is coarser than µ1. It is easily checked the following two
propositions hold.

Proposition 3.6. If a pre-uniformity µ1 on a set is finer than a pre-uniformity µ2, then τ(µ1) is finer than τ(µ2).

Proposition 3.7. If {µs}s∈S is a family of pre-uniformities on a set X, then there exists a pre-uniformity µ on X which
is coarser than any pre-uniformity on X that is finer than all pre-uniformities µs. Moreover, if the pre-uniformity µs
induces the pre-topology τ(µs) for each s ∈ S, then the pre-topology induced by the least upper bound of the family
{µs}s∈S is the least upper bound of the family {τ(µs)}s∈S of pre-topologies on the set X.

Lemma 3.8. Let (X, µ) be a pre-uniform space. For each x ∈ X, put µx = {(U[x])◦ : U ∈ µ}, where each (U[x])◦

denotes the interior of U[x] in the induced pre-topology τ(µ). Then µx is an open neighborhood pre-base at x.

Proof. Take any x ∈ X and U ∈ µ. Put

G = {y ∈ X : there exists V ∈ µ such that V[y] ⊆ U[x]}.

Then x ∈ G ⊂ U[x]. Hence it suffices to prove that G is open in the pre-uniform pre-topology. For each y ∈ G,
there exists V ∈ µ such that V[y] ⊆ U[x], hence there exist W1,W2 such that W1 ◦W2 ⊆ V. For any u ∈W1[y]
and v ∈ W2[u], we have (y,u) ∈ W1 and (u, v) ∈ W2, hence (y, v) ∈ W1 ◦W2 ⊆ V, then v ∈ V[y] ⊆ U[x].
Therefore, W2[u] ⊆ U[x], then u ∈ G. By the arbitrary choice of u ∈ W1[y], we have W1[y] ⊆ G. Hence G is
open in X.
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Lemma 3.9. Let (X, µ) be a pre-uniform space. Put

β = {B ∈ µ : B is closed in X × X} and λ = {C ∈ µ : C is open in X × X}.

Then both β and λ are pre-bases for µ.

Proof. We first prove that β is a pre-base for µ. Take any U ∈ µ. Then there exist V1,V2,V3 ∈ µ and
W ∈ µ such that V1 ◦ V2 ◦ V3 ⊆ U and W−1

⊆ V3. Let (x, y) ∈ V2. Since (V1[x] ×W[y]) ∩ V2 , ∅, there
exists (s, t) ∈ (V1[x] ×W[y]) ∩ V2, hence (x, s) ∈ V1, (s, t) ∈ V2 and (y, t) ∈ W, then (x, s) ∈ V1, (s, t) ∈ V2 and
(t, y) ∈W−1, which implies that (x, y) ∈ V1 ◦ V2 ◦ V3. Therefore, V2 ⊆ V1 ◦ V2 ◦ V3 ⊆ U.

Now we prove that λ is a pre-base for µ. Take any U ∈ µ. Then there exist W1,W2,W3 ∈ µ and O1 ∈ µ
such that W1 ◦W2 ◦W3 ⊆ U and O−1

1 ⊆W1. Let (x, y) ∈W2. Then W−1
1 [x]×W3[y] is a neighborhood of (x, y).

We claim that W−1
1 [x] ×W3[y] ⊂ U. Indeed, take any (u, v) ∈ W−1

1 [x] ×W3[y]. Then (u, x) ∈ W1, (x, y) ∈ W2
and (y, v) ∈W3, hence (u, v) ∈W1 ◦W2 ◦W3 ⊆ U. Therefore, W2 ⊂ U◦. Hence λ is a pre-base for µ.

Remark 3.10. If V is closed in X × X in the pre-uniform structure (X, µ), then V[x] is closed in X since for
any fixed x ∈ X the mapping X→ X × X defined by y 7→ (x, y) for any y ∈ X is pre-continuous.

Lemma 3.11. Let (X, µ) be a pre-uniform space. Then the pre-uniform pre-topology (X, τ(µ)) is T0 if and only if
△ =
⋂
µ.

Proof. Necessity. Assume (X, τ(µ)) is T0. Then for any (x, y) ∈ X×X \△, there exists U ∈ µ such that y < U[x]
or x < U[y]. If y < U[x], then it is obvious that (x, y) < U. If x < U[y], then there exists V ∈ µ such that
V−1
⊆ U, then x < V−1[y], thus (y, x) < V−1, that is, (x, y) < V. Therefore, we have △ =

⋂
µ.

Sufficiency. Assume that △ =
⋂
µ. Take any distinct points x and y. Then there exists U ∈ µ such that

(x, y) < U, hence y < U[x]. Therefore, (X, τ(µ)) is T0.

Proposition 3.12. If (X, µ) is a pre-uniform space, then the pre-uniform pre-topology (X, τ(µ)) is (T1) regular.

Proof. By Lemma 3.11, (X, τ(µ)) is T0. First, we prove that it is Hausdorff. Indeed, take any distinct points x
and y. By Lemma 3.11, there exists U ∈ µ such that (x, y) < U. We can find V,W ∈ µ such that V ◦W ⊆ U.
We claim that V[x] ∩W−1[y] = ∅. Suppose not, take any z ∈ V[x] ∩W−1[y]. Then (x, z) ∈ V and (y, z) ∈W−1,
hence (x, y) ∈ V ◦W ⊆ U, which is a contradiction.

Now we prove that X is regular. Take any x ∈ X and U ∈ µ. Then there exists V,W ∈ µ such that
V ◦W ⊂ U. We claim that V[x] ⊂ U[x]. Indeed, pick any y ∈ V[x]; then W−1[y] ∩ V[x] , ∅, hence take
any z ∈ W−1[y] ∩ V[x]. Therefore, (y, z) ∈ W−1 and (x, z) ∈ V, then it follows that (x, y) ∈ V ◦W ⊂ U, thus
y ∈ U[x].

Each uniform structure on a finite set is discrete uniformity, but the situation is different in the class of
pre-uniform structure, see the following example.

Example 3.13. There exists a pre-uniform space µ on a finite set X such that pre-uniform pre-topology
(X, τ(µ)) is not discrete.

Proof. Let X = {a, b, c}, and let
U1 = {(a, a), (b, b), (c, c), (a, b), (b, c), (c, a)}

and
U2 = {(a, a), (b, b), (c, c), (a, c), (b, a), (c, b)}.

Then the family B = {U1,U2} satisfies the conditions (BU1)-(BU3) in Proposition 3.2. Let µ be the pre-
uniform generated by the family B. Then it is easily checked that the pre-uniform pre-topology (X, τ(µ)) is
not discrete since △ < µ. Moreover, it is obvious that µ is not an almost uniformity.
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Consider a pre-uniform space (resp. an almost uniform space) (X, µ) and a pseudometric ρ on the set
X; we say that the pseudometric ρ is pre-uniform (resp. almost uniform) with respect to µ if for each ε > 0
there is a V ∈ µ such that ρ(x, y) < εwhenever (x, y) ∈ V.

Proposition 3.14. If a pseudometric ρ on a set X is pre-uniform with respect to a pre-uniformity µ on X, then ρ is a
pre-continuous function from the set X × X with the pre-topology induced by the pre-uniformity µ to the real line.

Proof. Let (x0, y0) be a point of X×X; pick an ε > 0 and a V ∈ µ such that ρ(x, y) < ε2 for any (x, y) ∈ V. From
Lemma 3.8, the set (V[x0])◦ × (V[y0])◦ is an open neighborhood of (x0, y0), hence it only need to prove that

|ρ(x0, y0) − ρ(x, y)| < ε for each (x, y) ∈ V[x0] × V[y0].

However, if (x, y) ∈ V[x0]×V[y0], then (x0, x) ∈ V and (y0, y) ∈ V, hence it follows from the triangle inequality
that

|ρ(x0, y0) − ρ(x, y)| < ρ(x0, x) + ρ(y0, y) <
ε
2
+
ε
2
= ε.

Since all the open sets of a pre-topology is a subbase of a topological space, it follows from [9, Theorem
8.1.10] that we have the following theorem.

Theorem 3.15. For each sequence V0,V1, . . . ,of members of a pre-uniformity µ on a set X, where

V0 = X × X,Vi+1 ◦ Vi+1 ◦ Vi+1 ⊂ Vi and V−1
i = Vi for any i ∈N,

there exists a pseudometric ρ on the set X such that for each i ≥ 1

{(x, y) : ρ(x, y) <
1
2i } ⊂ Vi ⊂ {(x, y) : ρ(x, y) ≤

1
2i }

Corollary 3.16. For each strongly pre-uniformity µ on a set X and any V ∈ µ there exists a pseudometric ρ on the
set X with respect to µ and satisfies the following condition

{(x, y) : ρ(x, y) < 1} ⊂ V.

Proof. By the definition of strongly pre-uniformity, there exists a sequence V0,V1, . . . ,of members of µ such
that

V0 = X × X,V1 = V−1
1 ⊂ V and Vi+1 ◦ Vi+1 ◦ Vi+1 ⊂ Vi for any i ∈N.

Put ρ = 2ρ0, where ρ0 is a pseudometric satisfying Theorem 3.15, has the required property.

Let (X, µ) be a strongly pre-uniform space, and let P be the family of all pseudometrics on the set X that
are strongly pre-uniform with respect to µ. By Corollary 3.16, we have the following proposition.

Proposition 3.17. For each pair x, y of distinct points of X, there exists a ρ ∈ P such that ρ(x, y) > 0.

Now we can prove our main result in this section.

Theorem 3.18. For each strongly pre-uniformity µ on a set X, the pre-topology (X, τ(µ)) is completely regular.

Proof. Take any x ∈ X and any closed set F ⊂ X with x < F. By Proposition 3.12 and Lemma 3.8, there exists
V ∈ µ such that V[x] ∩ F = ∅. It follows from Corollary 3.16 that there exists a pseudometric ρ on the set X
with respect to µ and satisfies the following condition

{(x, y) : ρ(x, y) < 1} ⊂ V.

By Proposition 3.14, ρ is pre-continuous. Define the function f : X → I by f (y) = min{1, ρ(x, y)} for each
y ∈ X. It easily see that f is pre-continuous, vanishes at x and is equal to one on F.

The following question is still unknown for us.

Question 3.19. For each pre-uniformity µ on a set X, is the pre-topology (X, τ(µ)) completely regular?
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4. The complete regularity of pre-uniform spaces

In this section, we introduce three methods of generating (strongly) pre-uniformities, that is, the defini-
tion of a pre-base, a family of strongly pre-uniform covers, or a family of strongly pre-uniform pseudomet-
rics. As an application, we show that each strongly pre-topological group is completely regular.

For any V ∈ DX of the set X, put C (V) = {V[x]}x∈X, where DX = {U ⊂ X × X : △ ⊂ U}; then C (V) is a
cover of X. Let µ be a pre-uniformity on set X; any cover of the set X that has a refinement of the form
C (V) for some V ∈ µ, is called pre-uniform with respect to µ. Let C be the set of all covers of a set X that are
pre-uniform with respect to a pre-uniformity µ on the set X. Then we have the following proposition.

Proposition 4.1. If µ is a strongly pre-uniformity on the set X, then C has the following properties:
(UC1) IfA ∈ C andA is a refinement of a cover B of the set X, then B ∈ C .
(UC2) For eachA ∈ C , there exists a B ∈ C which is a star refinement ofA.
(UC3) For each pair x, y of distinct points of X there is anA ∈ C so that no member ofA contains both x and y.

Proof. (UC1) is obvious. We need to prove (UC2) and (UC3).

(UC2). Clearly, it suffices to prove that for eachA = C (V) ∈ C the coverB = C (W), where V,W ∈ µwith
W3
⊂ V and W−1 =W, is a star refinement ofA. Indeed, take any x ∈ X; we claim that st(W[x],B) ⊂ V[x] ∈ A.

In fact, for any y ∈ st(W[x],B) there exists z ∈ X such that y ∈ W[z] and W[z] ∩ W[x] , ∅; pick any
h ∈ W[z] ∩W[x], then (x, h) ∈ W , (z, h) ∈ W and (z, y) ∈ W. From W = W−1 and W3

⊂ V, we have (x, y) ∈ V,
that is, y ∈ V[x].

(UC3). For each pair x, y of distinct points of X, there exists V ∈ µ such that (x, y) < V. From (U3′),
there is W ∈ µ such that W2

⊂ V. Put A = C [W]. Then it is easily checked that A satisfies the require
property.

It is more convenient not to describe the family µ of entourages of the diagonal directly when we
define a pre-uniformity on a given set. Here we shall introduce three methods of generating (strongly)
pre-uniformities (see Propositions 4.3, 4.2 and 4.4), that is, the definition of a pre-base, a family of strongly
pre-uniform covers, or a family of strongly pre-uniform pseudometrics.

Proposition 4.2. Let X be a set, and let O be a collection of covers of X which has properties (UC1)-(UC3). Put

B = {
⋃
{A × A : A ∈ A} : A ∈ O}.

Then B is a pre-base for a strongly pre-uniformity µ on the set X. The collection O is the collection of all covers of X
which are strongly pre-uniform with respect to µ.

If, moreover, X is a pre-topological space and the collection O consists of open covers of X, and if for each x ∈ X
and each open neighborhood G of x there isA ∈ O such that st(x,A) ⊂ G, then µ is a strongly pre-uniformity on the
space X.

Proof. For each coverA ∈ O , let
µ(A) =

⋃
{A × A : A ∈ A};

then put
U = {µ(A) : A ∈ O}.

Clearly, each µ(A) = µ(A)−1, thus (BU1) holds. By (UC3), (BU3) also holds. Moreover, it easily check
that µ(B) ◦ µ(B) ⊂ µ(A) if B is a star refinement of A. By (UC1), the collection O is the collection of
all covers of X which are strongly pre-uniform with respect to µ. Further, it is readily established that
µ(A)[x] = st(x,A).

The following two propositions are trivial.
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Proposition 4.3. Let X be a set, and let B ⊂ DX have the properties (BU1)-(BU3) in Proposition 3.2. Put

µ = {U ∈ DX : there exists B ∈ B such that B ⊂ U}.

Then µ is a pre-uniform structure and the family B is a pre-base for µ.
If, moreover, X is a pre-topological space and the family B consists of open subsets of the X × X, and if for each

x ∈ X and each open neighborhood G of x there is V ∈ B such that V[x] ⊂ G, then µ is a pre-uniformity on the
pre-topological space X.

The pre-uniformity µ is called the pre-uniformity generated by the pre-base B.

Proposition 4.4. Let X be a set, and let a familyP1 of pseudometrics on the set X that satisfies Proposition 3.17. For
each ρ ∈ P1 and i ∈ N, let Ui,ρ = {(x, y) : ρ(x, y) < 1

2i }. Then the family B = {Ui,ρ : ρ ∈ P1, i ∈ N} is a pre-base for
a strongly pre-uniformity µ on the set X. Each pseudometric ρ ∈ P1 is a strongly pre-uniform with respect to µ.

If, moreover, X is a pre-topological space and all pseudometrics of the familyP1 are pre-continuous functions from
X × X to the real line, and if for each x ∈ X and each non-empty closed set A ⊂ X with x < A there exists a ρ ∈ P1
such that inf{ρ(x, a) : a ∈ A} > 0, then µ is a strongly pre-uniformity on the space X.

The strongly pre-uniformity µ is called the strongly pre-uniformity generated by the family P1 of strongly
pre-uniform pseudometrics.

Now we can prove one of main results in this section.

Theorem 4.5. The pre-topology of a pre-topological space X can be induced by a strongly pre-uniformity on the set
X if and only if X is a completely regular pre-topological space.

Proof. By Theorem 3.18, the necessity is obvious. Now assume that X is a completely regular pre-topological
space. Denote by C(X) the family of all pre-continuous bounded real-valued functions defined on X. For
each f ∈ C(X) the formula

ρ f (x, y) = | f (x) − f (y)|

defines a pseudometric on the set X. Put P = {ρ f : f ∈ C(X)}. Since X is completely regular, the family
P satisfies Proposition 3.17. Let µ be the strongly pre-uniformity generated by C(X). We shall prove that
the pre-topology by µ coincide with the original pre-topology of X. By Proposition 4.4, it suffices to prove
that for each x ∈ X and each non-empty closed set A ⊂ X with x < A there exists a ρ ∈ P such that
inf{ρ(x, a) : a ∈ A} > 0. However, since X is completely regular, there exists a function f ∈ C(X) such that
f (x) = 0 and f (A) ⊂ {1}, then the pseudometric ρ f ∈ P satisfies that inf{ρ(x, a) : a ∈ A} = 1. Therefore, µ is a
strongly pre-uniformity on the pre-topological space X.

Proposition 4.6. Let X be a set and (X, µ) be a pre-uniform space. If there exists a pseudometric ρ on the set X such
that the pre-uniformity induced by ρ coincides with µ, then (X, µ) is a uniform space.

Proof. Indeed, the family {ρ} consisting of the single pseudometric ρ generated a uniformity on the set X,
hence (X, µ) be a uniform space.

Definition 4.7. Let f be a mapping from pre-uniform space (X, µ) to pre-uniform space (Y, ν). We say that f
is pre-uniformly continuous if for each F ∈ ν there exists M ∈ µ such that ϕ(M) ⊆ F, where ϕ : X × X→ Y × Y
defined by ϕ(x, z) = ( f (x), f (y)) for each (x, z) ∈ X × X.

The following lemma and proposition are trivial.

Lemma 4.8. Let (X, µ) and (Y, ν) be pre-uniform spaces. If f : (X, µ) → (Y, ν) is pre-uniformly continuous, then f
is pre-continuous.

Proposition 4.9. Let (X, µ) and (Y, ν) be pre-uniform spaces and f a mapping of X to Y. The following conditions
are equivalent:
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1. The mapping f is pre-uniformly continuous with respect to µ and ν.

2. There exist pre-bases B and C for µ and ν respectively, such that for each V ∈ ν there exists U ∈ B satisfying
U ⊂ ( f × f )−1(V).

3. For each coverA of the set Y which is pre-uniform with respect to ν the cover { f−1(A) : A ∈ A} of the set X is
pre-uniform with respect to µ.

4. For each pseudometric ρ on the set Y which is pre-uniform with to ν the pseudometric σ on the set X by the
formula σ(x, y) = ρ( f (x), f (y)) is pre-uniform with respect to µ.

The least upper bound of all pre-uniformities on a completely regular pre-topological space X, i.e., the
finest pre-uniformity on X, is called the universal pre-uniformity on the pre-topological space X. We say
that a pre-uniform space (X, µ) is fine, if µ is the universal pre-uniformity on the pre-topological space X
with the pre-topology induced by the pre-uniformity µ.

Proposition 4.10. Each pre-continuous mapping of a completely regular pre-topological space X to a completely
regular pre-topological space Y is pre-uniformly continuous with respect to the universal pre-uniformity on the
pre-topological space X and any pre-uniformity on the pre-topological space Y.

Proof. Let µ be the universal pre-uniformity on X and ν be any pre-uniformity on the pre-topological space
Y. For any V ∈ ν, we claim that UV = ( f × f )−1(V) ∈ µ. Indeed, for any x ∈ X, V[ f (x)] and V−1[ f (x)] are
neighborhoods of f (x) in Y, then f−1(V[ f (x)]) and f−1(V−1[ f (x)]) are neighborhoods of x in X since f is pre-
continuous; however, f−1(V[ f (x)]) ⊂ UV[x] = ( f × f )−1(V)[x] and f−1(V−1[ f (x)]) ⊂ U−1

V [x] = ( f × f )−1(V−1)[x].
Since µ is the universal pre-uniformity, it follows that UV = ( f × f )−1(V) ∈ µ.

Finally, we prove that the second main result in this section.

Definition 4.11. ([19]) A pre-topological group G is a group which is also a pre-topological space such that
the multiplication mapping of G × G into G sending x × y into x · y, and the inverse mapping of H into G
sending x into x−1, are pre-continuous mappings.

Definition 4.12. ([19]) If a pre-topological G has a symmetric pre-base Be at the identity e such that for each
U ∈ Be there exists V ∈ Be so that V2

⊂ U, then we say that G is a strongly pre-topological group.

Theorem 4.13. Each strongly pre-topological group G is completely regular.

Proof. Let B(e) be a pre-base for G at the neutral element e. For each U ∈ B(e), put B(U) = {xU : x ∈ G}.
Let B be the collection of all covers of G which have a refinement of the form of B(U), where U ∈ B(e). By
Theorem 3.18 and Proposition 4.2, it suffices to prove that B has properties of (UC1)-(UC3).

Clearly, B has property of (UC1). For each pair x, y of distinct points of G, we have x−1y , e. By
Proposition 3.12, G is T1, hence there exists U ∈ (B)(e) such that x−1y ∈ U. Pick V ∈ (B)(e) such that
V−1V ⊂ U. It easily check that no member of the cover B(V) = {xV : x ∈ G} contains both x and y.

To prove that B has property (UC3) it suffices to show that for each U ∈ B(e) there is V ∈ B(e) such that
st(xV,B(V)) ⊂ xU for any x ∈ G. Indeed, take any fixed ∈ B(e); since G is a strongly pre-topological group,
there exists V ∈ B(e) such that VV−1V ⊂ U. Then it easily check that st(xV,B(V)) ⊂ xU for any x ∈ G.

However, the following question is still unknown for us.

Question 4.14. Is each pre-topological group G completely regular?
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5. The coreflection of pre-uniform spaces

If µ is a pre-uniformity on a set X, then the family {
⋂

U∈F U : F ⊆ µ, |F | < ω} is a pre-base for a
pre-uniformity µ∗, which is the coarsest uniformity containing µ; we say that µ∗ is a uniform coreflection of
µ. If τ(µ) is pre-topology induced by µ, then we denote τ(µ∗) as the topology induced by µ∗. Clearly, the
following proposition is obvious.

Proposition 5.1. Let µ be a pre-uniformity on a set X. Then
⋂
µ = △ if and only if

⋂
µ∗ = △; hence if (X, τ(µ)) is

T0 then (X, τ(µ∗)) is completely regular.

By Theorem 3.18, we have the following proposition.

Proposition 5.2. Let µ be a strongly pre-uniformity on a set X. Then the following statements hold:

1. µ∗ has a pre-base {
⋂

U∈F U : F ⊆ µ, |F | < ω};
2. (X, τ(µ)) is completely regular if and only if (X, τ(µ∗)) is completely regular.

By Lemma 4.8, we have the following proposition.

Proposition 5.3. Let (X, µ) and (Y, ν) be pre-uniform spaces. If f : (X, µ) → (Y, ν) is pre-uniformly continuous,
then f : (X, τ(µ∗))→ (Y, τ(ν∗)) is continuous.

Proposition 5.4. Let (X, µ) and (Y, ν) be pre-uniform spaces and assume that (X, τ(µ∗)) is a compact Hausdorff space.
If f : (X, τ(µ))→ (Y, τ(ν)) is pre-continuous, then f : (X, µ)→ (Y, ν) is pre-uniformly pre-continuous.

Proof. Clearly, it suffices to prove that f−1
2 [V] ∈ µ for each V ∈ ν. Take any V ∈ ν. Then there exist

W,L ∈ ν such that W ◦ L ⊆ V. For each x ∈ X, since f : (X, τ(µ)) → (Y, τ(ν)) is pre-continuous, there exist
O1,O1 ∈ τ(µ) such that x ∈ O1 ∩ O1 and f (O1) ⊆ W[ f (x)] and f (O2) ⊆ L−1[ f (x)]. Then it is easily verified
that (x, x) ∈ O2 × O1 ⊆ f−1

2 [V], which implies that f−1
2 [V] is a neighborhood of △ in (X, τ(µ)) × (X, τ(µ)).

We claim that each (X, τ(µ)) × (X, τ(µ)) neighborhood of △ belongs to µ. Suppose not, then there exists a
(X, τ(µ)) × (X, τ(µ)) neighborhood V of △ which is not a member of µ. Put η = {U − V : U ∈ µ∗}. Then η
is a base for a filter on X × X and µ∗ is coarser than η. Since (X, τ(µ∗)) is a compact Hausdorff space, η has
a cluster point (x, y) in (X, τ(µ∗)) × (X, τ(µ∗)) such that x , y, hence (x, y) is a cluster point of µ∗. However,
it follows from Lemma 3.9 and Proposition 5.1 that the intersection of the closures of members of µ∗ is △,
which is a contradiction.

Definition 5.5. Let {(Xα, µα)}α∈I be a family of pre-uniform spaces and let X =
∏
α∈I Xα. The product pre-

uniformity is the coarsest pre-uniformity on X for which each projection πα : X → Xα is pre-uniformly
continuous.

The family of all sets of the form {(x, y) : (πα(x), πα(y)) ∈ Uα, α ∈ F}, where F is a finite subset of I and
Uα ∈ µα for any α ∈ F, is a pre-base for the product pre-uniformity. In particular, if (X, µ) and (Y, ν) are
pre-uniform spaces, a pre-base for the product pre-uniformity on X×Y consists of the family of relations on
X×Y to which B belongs if there are U ∈ µ and V ∈ ν such that B[(x, y)] = U[x]×V[y]} for each (x, y) ∈ X×Y.

The following two propositions are easily checked.

Proposition 5.6. Let f : (X =
∏
α∈I Xα, µ)→

∏
α∈I(Xα, µα). Then f is pre-uniformly continuous if and only if for

every α ∈ I, πα · f is pre-uniformly continuous.

Proposition 5.7. Let µ be the product pre-uniformity on the family of pre-uniform spaces {(Xα, µα)}α∈I. Then µ∗ is
just the product uniformity on the family of uniform spaces {(Xα, µ∗α)}α∈I.

Let (X, µ) be a pre-uniform space, U ∈ µ and A ⊆ X. We say that A is U-dense if for each x ∈ X there
exists a point y ∈ A such that (x, y) ∈ U; further, we say that (X, µ) is totally bounded if for each U ∈ µ there
exists a finite subset A ⊆ X that is U-dense in (X, µ).

The following proposition is easily checked.
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Proposition 5.8. Let (X, µ) be a totally bounded pre-uniform space. If for each U ∈ µ there exists W ∈ µ such that
W ·W ⊆ U, then for each U ∈ µ there is a finite coverAU of X such that for each A ∈ AU, A × A ⊆ U.

Corollary 5.9. Let (X, µ) be a totally bounded strongly pre-uniform space. Then for each U ∈ µ there is a finite cover
AU of X such that for each A ∈ AU, A × A ⊆ U.

6. Pre-proximities and pre-proximity spaces

In this section, we shall introduce the concept of pre-proximity on a set and pre-proximity spaces,
and then we discuss some basic properties of pre-proximity and pre-proximity spaces. First, we give the
following concept of pre-proximity on set, which is a generalization of proximity.

Let X be a set and δ a relation onP(X). We shall write AδB if the sets A,B ∈ P(X) are δ-related, otherwise
we shall write AδB. We say that a relation δ onP(X) is a pre-proximity on the set X if δ satisfies the following
conditions (PP1)-(PP5):

(PP1) AδB if and only if BδA.
(PP2) If AδB and B ⊆ C, then AδC.
(PP3) {x}δ{y} if and only if x = y.
(PP4) ∅δ̄X.
(PP5) If Aδ̄B, then there exists C ∈ P(X) such that Aδ̄C and Bδ̄(X \ C).
A pre-proximity space is a pair (X, δ) which consists of a set X and a pre-proximity δ on the set X. If AδB,

then A is said to be near B and if Aδ̄B, then A is said to be far from B. A pre-proximity space is proximity if
the following condition (PP6) holds:

(PP6) AδB ∪ C if and only if AδB or AδC.
From the definition of pre-proximity, we have the following proposition.

Proposition 6.1. Let δ be pre-proximity on the set X. Then we have the following two statements.
(1) If A ∩ B , ∅, then AδB.
(2) For each A ∈ P(X), we have ∅δ̄A.
(3) If A ⊆ A′, B ⊆ B′ and AδB, then A′δB′.

Proof. To establish (1), let A ∩ B , ∅, and take any x ∈ A ∩ B, then {x}δ{x}, hence {x}δA and Aδ{x} by (PP2)
and (PP1) respectively, and AδB by (PP2) again. Property (2) follows from (PP4) and (PP2). Property (3)
follows from (PP1) and (PP2).

For each pre-proximity δ on the set X, we can induce a pre-topology P on the set X. Indeed, for each
A ∈ P(X), put

Ā = {x ∈ X : xδA},

which defines a closure operator on the set X satisfying the conditions (a)-(d) in [18, Theorem 8]. In order
to prove it, we need the following lemma.

Lemma 6.2. For each pre-proximity δ on the set X and any A,B ∈ P(X), if Bδ̄A, then Bδ̄Ā.

Proof. Let Bδ̄A. From (PP5), there exists C ∈ P(X) such that Bδ̄C and Aδ̄(X \ C). We claim that Ā ⊆ C.
Indeed, take any x ∈ Ā; then {x}δA, hence Aδ{x} by (PP1). Assume x ∈ X \ C, then it follows from (PP2) that
Aδ(X \ C), which is a contradiction. Therefore, A ⊂ C, then Bδ̄Ā since Bδ̄C.

Theorem 6.3. For each pre-proximity δ on the set X, the closure operator c : P(X) → P(X), which is defined by
c(A) = {x ∈ X : xδA} for each A ∈ P(X), satisfies the following conditions:

(a) c(∅) = ∅.
(b) For every A ∈ P(X), we have A ⊆ c(A).
(c) For every A ∈ P(X), we have c(c(A)) = c(A).
(d) If A ⊆ B, then c(A) ⊆ c(B).
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Proof. Conditions (a), (b) and (d) follows from (2) of Proposition 6.1, (1) of Proposition 6.1 and (PP2)
respectively. Now we only need to prove (c). By (b), it suffices to prove c(c(A)) ⊆ c(A). Assume x < c(A),
then {x}δ̄A. Hence it follows from Lemma 6.2 that {x}δ̄Ā, that is, {x}δ̄c(A), which implies that x < c(c(A)).
Therefore, c(c(A)) = c(A).

Then it follows from [18, Theorem 8] that the family

P = {U : c(X \U) = X \U}

generated by c in Theorem 6.3 is a pre-topology. From (PP4), (X,P) is a T1-space. The pre-topology P is
called the pre-topology induced by the pre-proximity δ (or simply the pre-topology P(δ) of δ). Moreover, it is
easily verified that, for any A,B ∈ P(X),

AδB if and only if ĀδB̄.

A pre-topological space (X, τ) is said to be admit a pre-proximity δ provided δ induces τ, and δ is said to be
compatible with τ.

Lemma 6.4. Let (X, δ) be a pre-proximity space. If {x}δ̄A, then there exists a P(δ)-neighborhood U of x such that
Uδ̄A.

Proof. Since {x}δ̄A, it follows from (PP5) that there exists C ⊆ X such that {x}δ̄C and Aδ̄(X\C). Put U = (X\C)◦.
Then Uδ̄A, and x ∈ U since x < clδ(C) by {x}δ̄C and [18, Theorem 9].

Theorem 6.5. For each pre-uniformityµ on the set X and any A,B ∈ P(X), we define AδµB whenever V∩(A×B) , ∅
for any V ∈ µ. Then δµ is a pre-proximity on the set X. The pre-topology induced by δµ coincides with the pre-topology
induced by µ.

Proof. From the definition, it easily see that AδµB if and only if for any V ∈ µ there exist x ∈ A and y ∈ B
such that (x, y) ∈ V. Then it is obvious that (PP1), (PP2) and (PP4) hold. From (U5), it follows that (PP3)
holds. Finally, assume that Aδ̄µB, then there exist V,W1,W2 ∈ µ such that V ∩ (A×B) = ∅ and W1 ·W−1

2 ⊆ V.
Put

C = X \ (
⋃
x∈A

W1[x])and D = X \ (
⋃
x∈B

W2[x]).

Then W1 ∩ (A × C) = ∅, W2 ∩ (B ×D) = ∅ and C ∪D = X since

(
⋃
x∈A

W1[x]) ∩ (
⋃
x∈B

W2[x]) = ∅,

hence Aδ̄µC and Bδ̄µD, thus Aδ̄µC and Bδ̄µ(X \ C) since D ⊆ X \ C.

The pre-proximity δµ in Theorem 6.5 is called the pre-proximity induced by the pre-uniformity µ. A
pre-uniformity µ is said to be compatible with δ if δµ = δ. If δ is a pre-proximity on X, then π(δ) denotes the
class of all pre-uniformities compatible with δ. Two pre-uniformities that belong to the same pre-proximity
class are called pp-equivalent. The following proposition is obvious.

Proposition 6.6. Let µ and ν be pre-uniformities on a set X. If µ ⊆ ν, then τ(µ) ⊆ τ(ν) and δν ⊆ δµ.

Proposition 6.7. Let δ be a pre-proximity on a set X and A be a subset of X. Then δE = δ ∩ (P(A) × P(A)) is a
pre-proximity on E and P(δE) = P(δ)|E. Further, if µ induces δ, then µ|A × A induces δE.

Definition 6.8. A set B is called a δ-neighborhood of a set A provided Aδ̄(X \ B).
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Proposition 6.9. Let δ be a pre-proximity on a set X, and let≪ be a the relation on P(X) defined by A ≪ B iff B is
a δ-neighborhood of A. Then≪ has the following properties (in (PSI5) and (PSI6) the pre-topology induced by δ is
being considered):

(PSI1) If A≪ B, then X \ B≪ X \ A.
(PSI2) If A≪ B, then A ⊆ B.
(PSI3) If A ⊆ B≪ C ⊆ D, then A≪ D.
(PSI4) ∅ ≪ ∅ and X≪ X
(PSI5) If A≪ B, then there exists open set U ⊆ X such that A≪ U ⊆ U ≪ B.
(PSI6) For each x ∈ X and any neighborhood A of x we have {x} ≪ A.
Conversely, let a relation ≪ satisfying conditions (PSI1)-(PSI5) be defined on P(X). The relation δ defined by

Aδ̄B if A≪ X \ B is a pre-proximity on X. Further, B is a δ-neighborhood of A iff A≪ B.

Proof. Clearly, (PSI1)-(PSI4) are obvious. It suffice to prove (PSI5) and (PSI6). First, it follow from (PP5) that
we have the following claim:

Claim: If Aδ̄B, then there exist C,D ⊆ X such that A≪ C,B≪ D and C ∩D = ∅.
(PSI5). Indeed, we can prove a more stronger result. By Claim, there exists C,D ⊆ X such that

A ≪ C,X \ B ≪ D and C ∩ D = ∅. By (PSI1), we have C ⊆ X \ D ≪ B, thus Cδ̄(X \ B). Since Aδ̄(X \ C), we
conclude that Aδ̄(X \ C) from Lemma 6.2. Hence Aδ̄(X \ C◦) by [18, Theorem 9]. Put U = C◦. Then we have
A≪ U ⊆ C; since Cδ̄(X \ B), it follows that Uδ̄(X \ B), which shows that Ūδ̄(X \ {B}), thus U ≪ B.

(PSI6). Assume that {x} ≪ A does not hold, then {x}δX \ A, thus x ∈ X \ A. Therefore, A ∩ (X \ A) , ∅
since A is a neighborhood of x, which is a contradiction.

Conversely, it is easily checked that δ is a pre-proximity.

Let X be a set, and let A,B ∈ P(X). Denote the set X × X − A × B by T(A,B).

Proposition 6.10. Let (X, δ) be a pre-proximity space, and let

S = {T(A,B) : Aδ̄B,A,B ∈ P(X)}.

Then S is a pre-base for a totally bounded pre-uniformity µδ which is compatible with δ. Moreover, µδ is the coarsest
pre-uniformity in π(δ).

Proof. Clearly, S is a pre-base for a pre-uniformity µδ. Indeed, it is easily checked that S satisfies the
conditions (U1) and (U2). We only need to prove that S satisfies the conditions (U3) and (U5). Take
any T(A,B) ∈ S. Then Aδ̄B, hence there exists a subset C of X such that Aδ̄C and X − Cδ̄B. We claim
that T(A,C) ◦ T(X − C,B) ⊆ T(A,B). In fact, take any (x, z) ∈ T(A,C) and (z, y) ∈ T(X − C,B). Suppose
that x ∈ A. Then z < C, hence z ∈ X − C, thus y < B, which implies that (x, y) ∈ T(A,B). Therefore,
T(A,C) ◦ T(X − C,B) ⊆ T(A,B). Finally, from (PP3) it is easily checked that

⋂
S = △.

Now we conclude that µδ is totally bounded. Then it suffices prove that each element U ofS is U-dense.
Take any U = T(A,B) ∈ S. Then Aδ̄B, hence A ∩ B = ∅. Take any point a ∈ A and any point b ∈ B, and put
C = {a, b}. For any x ∈ X, without loss of generality, we may assume that x < B, then

(x, a) ∈ (X − B) × (X − B) ⊆ T(A,B)

since
(X − A) × (X − A) ∪ (X − B) × (X − B) ⊆ T(A,B).

Therefore, T(A,B) is U-dense.
Now we prove that µδ is compatible with δ. Let θ be the pre-proximity induced by µδ. For any

A,B ∈ P(X), we conclude that AδB if and only if AθB. Indeed, if Aδ̄B, then A × B ∩ T(A,B) = ∅, hence Aθ̄B.
Now let AδB. We assume that Aθ̄B, then there exist E,F ∈ P(X) such that A× B∩ T(E,F) = ∅ and Eδ̄F. Thus
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A × B ⊆ E × F, then A ⊆ E and B ⊆ F. However, since AδB, it follows form definition of pre-proximity that
EδF, which is a contradiction. Therefore, AθB.
µδ is the coarsest pre-uniformity compatible with δ. Let µ ∈ π(δ). Let Aδ̄B. Then there exists U ∈ µ such

that A × B ∩U = ∅, thus U ⊆ T(A,B). Therefore, we have µδ ⊆ µ.

If µ is a pre-uniformity on a set X, then µw denotes the totally bounded member of π(δµ). From Proposi-
tion 6.10, it follows that µw is the finest totally bounded pre-uniformity on X that is coarser than µ.

However, the following questions are still unknown for us.

Question 6.11. Is µδ the unique totally bounded pre-uniformity compatible with δ in Proposition 6.10?

Question 6.12. If two pre-uniformities µ and ν pp-equivalent, does µw = νw hold?

By Proposition 6.6, we consider the family of all pre-proximities on a set X to be partially order by reverse
set inclusion and we say that ρ is finer than δ (and δ is coarser than ρ) provided ρ ⊂ δ. Each set X has a finest
pre-proximity: the discrete pre-proximity given by AδB if and only if A∩ B , ∅. Of course, it has a coarsest
pre-proximity given by AδB if and only if A , ∅ and B , ∅.

The following proposition is obvious.

Proposition 6.13. Let {δi : i ∈ I} be a nonempty family of pre-proximities on a set X and let δ0 be defined by Aδ0B
iff for every finite coverA and every finite cover B of B there are A′ ∈ A and B′ ∈ B such that A′δiB′ for each i ∈ I.
Then δ0 is the coarsest pre-proximity on X such that it is finer than δi for each i ∈ I.

Suppose that {µi : i ∈ I} is a collection of pre-uniformities on a set X and let µ = sup{µi : i ∈ I}. It is
natural to ask the following question.

Question 6.14. Does sup{δµi : i ∈ I} = δµ hold?

The following proposition gives a partial answer to Question 6.14.

Proposition 6.15. Let {µi : i ∈ I} be a collection of totally bounded pre-uniformities on a set X, let µ = sup{µi : i ∈ I}
and let δ0 = sup{δµi : i ∈ I}. Then δ0 = δµ.

Proof. For every i ∈ I, we have µi ⊆ µ and δµ ⊆ δµi . Therefore, δµ ⊆ δ0. Note that if Aδ̄µi B, then Aδ̄0B and
that if T(A,B) ∈ µi, then T(A,B) ∈ µδ0 . From Proposition 6.10, it follows that µi ⊆ µδ0 , which shows that
µ ⊆ µδ0 . Thus δ0 ⊆ δµ.

Corollary 6.16. Suppose that {δi : i ∈ I} is a family of pre-proximities on a set X, then sup{δi : i ∈ I} induces
sup{P(δi) : i ∈ I}.

Proposition 6.17. Let (X, τ) be a normal Hausdorff pre-topological space. The relation defined by AδB iff A∩ B , ∅
is the finest pre-proximity compatible with τ.

Proof. Since (X, τ) is a normal Hausdorff pre-topological space, it is easily verified that δ is a pre-proximity
on X. Now we only need to prove that δ is the finest pre-proximity compatible with τ.

(1) δ is compatible with τ.

By Theorem 6.3, it suffices to prove that A = {x ∈ X : {x}δA} for each subset A of X. Indeed, take any
x ∈ A. Since (X, τ) is a T1 pre-topological space, it follows that {x} is closed, hence {x} ∩A = {x} ∩A = {x} , ∅,
which shows that {x}δA. Conversely, suppose that {x}δA. Then {x}δA, which implies that {x} ∩ A , ∅, thus
x ∈ A.

(2) δ is the finest pre-proximity compatible with τ.

Suppose that ρ, which is compatible with τ, is finer than δ, then ρ ⊆ δ. Let AδB. Then A ∩ B , ∅. Take
any x ∈ A ∩ B; then x ∈ A = {y ∈ X : {y}ρA}. Hence {x}ρA, so AρB, then AρB by Lemma 6.2. Therefore, we
have ρ = δ.



F. Lin et al. / Filomat 37:10 (2023), 3201–3215 3215

Let δ be a pre-proximity on a set X. A finite cover {Ai}
k
i=1 of the set X is called δ-pre-uniform if there exists

a cover {Bi}
k
i=1 of the set X such that Bi ≪ Ai for each i = 1, 2, . . . , k.

Proposition 6.18. Let δ be a pre-proximity on a set X and A,B ⊆ X. If each δ-pre-uniform cover {Ai}
k
i=1 of the set X

contains a set A j such that A ∩ A j , ∅ , B ∩ A j, then AδB.

Proof. Assume that Aδ̄B. From (PP5), it follows that there exists C ⊆ X such that Aδ̄C and Bδ̄(X \ C), then
C≪ X−A and X−C≪ X−B. Let A1 = X−A,A2 = X−B, B1 = C and B2 = X−C. Since A1∪A2 = X−A∩B = X
and B1 ∪ B2 = C ∪ (X − C) = X,A = {Ai : i = 1, 2} is a δ-pre-uniform cover of X. However, no member ofA
meets both A and B, which is a contradiction.

We don’t know if the condition in Proposition 6.18 is necessary.
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