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Abstract. In this paper, we prove common fixed point results for monotone asymptotic pointwise ρ-
nonexpansive semigroups in modular function spaces. Thus, utilizing the monotonicity of semigroups,
our findings generalize and extend some prominent recent results of the literature in the setting of modular
function spaces.

1. Introduction

The theory of semigroups has recently become a very interesting subject area for future research and
applications. As in the case of theory of dynamical systems the modular function space Xρ on which
the semigroup S is defined represents the states space, and the mapping R+ × C → C, (t, s) → Tt( f ) de-
fines the evolution function of the dynamical system (see for instance, [14, 18]). In 1992 the existence
of semigroups of nonexpansive mappings in modular function spaces was investigated by Khamsi [8] in
the context of Musielak-Orlicz spaces and discussed applications to differential equations. The problem
of finding common fixed points, and the structure of the set of common fixed points, for semigroups of
mappings is in its beginning stage. There are a lot of interesting features of the theory that are to be explored.

In recent years, an analogous variant of the Banach contraction principle [9] for monotone mappings
in ordered metric spaces was investigated by Turinici [23, 24], and modified by Ran and Reurings [22]
which was later extended and generalized by several authors [2, 17, 19–21]. The respective authors also
presented applications of these newly obtained fixed point results to linear and nonlinear matrix equations
and integro-differential equations. For recent development of the theory of fixed points via monotone
mappings, we must quote the survey article by Bachar and Khamsi [3].

On another point of note, Goebel and Kirk [7] established the existence of fixed points for asymptotic
nonexpansive mappings. Kirk and Xu [12] extended these results for asymptotic pointwise contractions
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and asymptotic pointwise nonexpansive mappings in the Banach spaces. Afterwards, Khamsi and Ko-
zlowski [10, 11] and Kozlowski [13] extended these results to modular function spaces. In this continuation,
Kozlowski [15] proved that the set of common fixed points of any semigroup of ρ-nonexpansive mappings,
for a ρ-closed convex and ρ-bounded subset of a uniformly convex modular space, is nonempty ρ-closed
and convex.

Most recently, Bin Dehaish et al. [5] presented the existence of common fixed points for asymptotic
pointwise nonexpansive semigroups in modular spaces, Kozlowski [14] for monotone Lipschitzian semi-
groups in Banach spaces and El Harmouchi et al. [6] for the monotone ρ-nonexpansive semigroups in
modular function spaces. Motivated by the above cited work, and with a view to utilize the monotonicity
of the semigroups, it is our aim in this paper, to establish the existence of common fixed points for monotone
asymptotic pointwise ρ-nonexpansive semigroups in modular function spaces.

2. Preliminaries

In this section, we provide some basic definitions which will work as a relevant necessary background
for further presentations. Throughout this paper, X denotes a real vector space.

Definition 2.1. [1] A function ρ : X→ [0,+∞] is called a modular if the following holds:
(i) ρ( f ) = 0 if and only if f = 0;
(ii) ρ(− f ) = ρ( f );
(iii) ρ(α f + (1 − α)1) ≤ ρ( f ) + ρ(1) for all α ∈ [0, 1] and f , 1 ∈ X.
If (iii) is replaced by ρ(α f + (1 − α)1) ≤ αρ( f ) + (1 − α)ρ(1) for all α ∈ [0, 1] and f , 1 ∈ X, then ρ is called a convex
modular. A modular ρ defines the corresponding modular function space, that is, the vector space

Xρ = { f ∈ X : lim
λ→0
ρ(λ f ) = 0}.

Let ρ be a convex modular. Then the modular space Xρ is equipped with a norm called the Luxemburg norm, defined
by

∥ f ∥ρ = inf{λ > 0 : ρ(
f
λ

) ≤ 1}.

Definition 2.2. [1, 9] Let { fn} be a sequence in a modular function space Xρ and let C be a non-empty subset of Xρ.
Then
(i) { fn} is called ρ-Cauchy if ρ( fn − fm)→ 0 as n,m→ +∞.
(ii) { fn} is called ρ-convergent to f ∈ Xρ if and only if ρ( fn − f )→ 0, as n→ +∞, f ∈ Xρ.
(iii) Xρ is called ρ-complete if every ρ-Cauchy sequence ρ-converges to a point in Xρ.
(iv) C is called ρ-closed if the ρ-limit of a ρ-convergent sequence of C always belongs to C.
(v) C is called ρ-bounded if δρ(C) = sup{ρ( f − 1) : f , 1 ∈ C} < ∞.
(vi) C is called ρ-compact if for any { fn} in C there exists a subsequence that ρ-converges to f in C.
(vii) ρ satisfies the Fatou property if ρ( f − 1) ≤ limn→+∞ ρ( f − 1n) for any f whenever {1n} ρ-converges to 1 in Xρ.

Note that the ρ-convergence does not imply the ρ-Cauchy condition. Also, fn
ρ
−→ f does not imply in

general that λ fn
ρ
−→ λ f for every λ > 1.

The property connected with a function modular, which plays a crucial role in the modular function
spaces, is the ∆2-condition.

Definition 2.3. [1, 16] Let ρ be a modular defined on a vector space X. Then ρ satisfies ∆2-condition if ρ(2 fn)→ 0
whenever ρ( fn)→ 0 as n→ +∞, and ∆2-type condition, if there exists K > 0 such that ρ(2 f ) ≤ Kρ( f ).

Definition 2.4. [2, 24] (a) Let X be a non-empty set endowed with a partial order relation (anti-symmetric, reflexive
and transitive ) denoted by ’⪯’. Then the pair (X,⪯) is called a partially ordered set or an ordered set.
(b) The element f is called comparable to the element 1, if either f ⪯ 1 or f ⪰ 1 and we denote this as ’≺≻’.
(c) X is linearly ordered or totally ordered if any two elements of X are comparable.
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Definition 2.5. [6] Let ρ be a modular, and let C be a nonempty subset of the modular space Xρ. A mapping
T : C→ C is called
(i) monotone if T( f ) ⪯ T(1) for all f , 1 ∈ C such that f ⪯ 1,
(ii) monotone ρ-nonexpansive if T is monotone such that ρ(T( f )− T(1)) ≤ ρ( f − 1) for all f , 1 ∈ Xρ such that f ⪯ 1,
(iii) ρ-continuous if {T( fn)} ρ-converges to T( f ) whenever { fn} ρ-converges to f .

It is not true that a monotone ρ-nonexpansive mapping is ρ-continuous since this result is not true in general
when ρ is a norm. Further we assume that ρ is a convex modular.

Definition 2.6. [1] Let ρ be a modular and let r > 0 and ϵ > 0. Define a relation Di(r, ϵ) on Xρ for i ∈ {1, 2} such
that

Di(r, ϵ) = {( f , 1) ∈ Xρ × Xρ : ρ( f ) ≤ r, ρ(1) ≤ r, ρ
( f − 1

i
) ≥ r}.

If Di(r, ϵ) , ϕ, then

δi(r, ϵ) = {1 −
1
r
ρ
( f − 1

2

)
: ( f , 1) ∈ Di(r, ϵ)}.

If Di(r, ϵ) = ϕ, then we set δi(r, ϵ) = 1.

We say that ρ satisfies
(i) uniform convexity (UCi) if for all r > 0 and ϵ > 0,we have δi(r, ϵ) > 0 ,
(ii) unique uniform convexity (UUCi) if for all s ≥ 0 and ϵ > 0, there exists η(s, ϵ) > 0 such that δi(r, ϵ) > η(s, ϵ)
for r > s,
(iii) strictly convex (SC) if for all f , 1 ∈ Xρ such that ρ( f ) = ρ(1) and ρ( f+1

2 ) = ρ( f )+ρ(1)
2 , we have f = 1.

The following proposition shows the connection between the above notions.

Proposition 2.7. [1] (a) (UUCi) implies (UCi) for i = 1, 2,
(b) δ1(r, ϵ) ≤ δ2(r, ϵ) for r > 0 and ϵ > 0,
(c) (UC1) implies (UC2),
(d) (UC2) implies (SC),
(e) (UUC1) implies (UUC2).

Motivated by the above notion, El Harmouchi et al. [6] introduced the notion of uniform convexity in every
direction (UCED) for modular spaces as follows.

Definition 2.8. [6] Let ρ be a modular. Then ρ is
(i) uniformly convex in every direction (UCED) if for any r > 0 and nonzero h ∈ Xρ, we have

δ(r, h) = inf{1 −
1
r
ρ( f +

h
2

) : ρ( f ) ≤ r, ρ( f + h) ≤ r} > 0;

(ii) unique uniform convexity in every direction (UUCED) if there exists η(s, h) > 0 for s ≥ 0 and nonzero h ∈ Xρ
such that δ(r, h) > η(s, h) for r > s.

The following proposition shows the connection between the above notions.

Proposition 2.9. [6] (a) (UCi) (resp., (UUCi)) implies (UCED) (resp., (UUCED)) for i = 1,2,
(b) (UUCED) implies (UCED),
(c) (UCED) implies (SC).

The following property plays a similar role as the reflexivity in Banach spaces for modular spaces.

Definition 2.10. [16] Let ρ be a modular. Then the modular space Xρ is said to satisfy property (R) if for every
decreasing sequence {Cn} of nonempty ρ-closed convex and ρ-bounded subsets of Xρ, we have⋂

n∈N

Cn , ϕ.
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Lemma 2.11. [1] Let ρ be a convex modular satisfying the Fatou property such that Xρ is ρ-complete and ρ is
(UUC2). Then Xρ satisfies the property (R).

Proposition 2.12. [1] Let ρ be a convex modular such that Xρ is ρ-complete and ρ is (UUC2). Let C be a ρ-closed
convex and ρ-bounded nonempty subset of Xρ . Let (Ci) i ∈ I be a family of ρ-closed convex nonempty subsets of C
such that ∩i∈I Ci is nonempty for any finite subset F of I. Then⋂

i∈I

Ci , ϕ.

The ρ-type function is a powerful technical tool to prove the existence of a fixed point.

Definition 2.13. [9] Let { fn} be a sequence in Xρ, and let K be a nonempty subset of Xρ. The function τ : K→ [0,+∞]
defined by

τ( f ) = lim sup
n→+∞

ρ( fn − f )

is called a ρ-type function.

The next definition is an alternation of the definition of ρ-type functions to a one parameter family of
mappings.

Definition 2.14. [9] Let C ⊂ Xρ be convex ρ-bounded. A function τ : C→ R+ is a ρ-type function if there exists a
one-parameter family {Tt : t ≥ 0} of elements of a nonempty subset K of Xρ such that for all f ∈ K,

τ( f ) = lim sup
n→+∞

ρ(Tt( f ) − 1),

for all 1 ∈ K.
A sequence {cn} ⊂ K is a minimizing sequence of τ if

lim
n→+∞

τ(cn) = inf
f∈K
τ( f ).

Note that the ρ-type function τ is convex since ρ is convex.
Recall the definition of the uniform continuity of a modular.

Definition 2.15. [9] A modular ρ is said to be uniformly continuous if for any ϵ > 0 and R > 0, there exists η > 0
such that

|ρ(1) − ρ( f + 1)| ≤ ϵ,

whenever ρ( f ) ≤ η and ρ(1) ≤ R.

Lemma 2.16. [6] Let ρ be a convex modular uniformly continuous and (UUCED). Assume that the modular space
Xρ satisfies property (R). Let C be a ρ-closed ρ-bounded convex nonempty subset of Xρ . Let K be a nonempty ρ-closed
convex subset of C. Let { fn} be a sequence in C and consider the ρ-type function τ : K→ [0,+∞] defined by

τ(1) = lim sup
n→+∞

ρ( fn − 1).

Then τ has a unique minimum point in K.

A subset P ⊂ Xρ is called a pointed ρ-closed convex cone if P is a nonempty ρ-closed subset of Xρ
satisfying the following properties:
(i) P + P ⊂ P,
(ii) λP ⊂ P for all λ ∈ R+,
(iii)P ∩ (−P) = 0.
Using P,we define an ordering on Xρ by f ⪯ 1 if and only if 1− f ∈ P.We further suppose that the modular
space Xρ is equipped with the partial order defined by P.
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3. Main Results

Before we state our main results, let us recall the definition of a monotone semigroups.

Definition 3.1. [6] Let C be a nonempty subset of a modular space Xρ. A one-parameter family S = {Tt : t ≥ 0} of
mappings from C into C is called monotone semigroup on C if it satisfies the following assumptions:
(i) T0( f ) = f for all f ∈ C,
(ii) Ts+t( f ) = Ts{Tt( f )} for all s, t ≥ 0,
(iii) Tt is monotone, that is, Tt( f ) ⪯ Tt(1) for all t ≥ 0, f , 1 ∈ C such that f ⪯ 1.

Next, we present slight modification in the definitions of monotone ρ-Lipschitz semigroup (see, Defini-
tion 3.17 in [6]) and asymptotic pointwise nonexpansive semigroups (see, Definition 2.6 in [5]) as follows.

Definition 3.2. (a) A semigroup S is called monotone ρ-Lipschitz semigroup if S is monotone and t ≥ 0, there exists
k ≥ 0 such that

ρ(Tt( f ) − Tt(1)) ≤ kρ( f − 1),

for all f , 1 ∈ C with f ≺≻ 1. For k < 1, S is a monotone ρ-contraction semigroup and if k = 1, then it is called a
monotone ρ-nonexpansive semigroup.
(b) A semigroup S is called monotone asymptotic pointwise ρ-nonexpansive if S is monotone and, for each t ≥ 0, f ∈ C,
there exists a function (t, f )→ α(t, f ) := αt( f ) from [0,∞[×C to [0,∞] with lim supt→+∞ αt( f ) ≤ 1 such that

ρ(Tt( f ) − Tt(1)) ≤ αt( f )ρ( f − 1),

for all 1 ∈ C with f ≺≻ 1.
The set of all common fixed points of S is defined by

Fix(S) = { f ∈ C : Tt( f ) = f for all t ≥ 0 and f ≺≻ Tt( f )} =
⋂
t≥0

Fix(Tt).

It is important to note that the above assumptions (a) and (b) of monotone semigroups are required to
hold on only those elements which are comparable under the underlying partial ordering.
Also note that, for assumption (b) without loss of generality, we may assume αt( f ) ≥ 1 for all t ≥ 0, f ∈ C,
and lim supt→+∞ αt( f ) = limt→+∞ αt( f ) = 1.
The following lemma generalizes the minimizing sequence property for type functions generated by a
sequence to the case of type functions defined by a one-parameter family {ut : t ≥ 0}. Also, the method of
proof of the lemma is technically connected with the proof of Lemma 7.11 in [9].

Lemma 3.3. [6] Let ρ be a convex modular satisfying the Fatou property and (UUC1), and let Xρ be a ρ-complete
modular space. Let C be a nonempty ρ-closed convex subset of Xρ. Let S be a monotone ρ-nonexpansive semigroup
on C. Fix f0 ∈ C and consider the function φ : C→ R+ given by

φ(1) = lim sup
t→+∞

ρ(Tt( f0) − 1) = inf
s≥0

sup
t≥s
ρ(Tt( f0) − 1).

Then every minimizing sequence of φ, ρ-converges to the same limit.

Theorem 3.4. Let ρ be a convex modular satisfying (UUC1) and the Fatou property. Let C be a nonempty ρ-closed
convex ρ-bounded subset of a ρ-complete modular space Xρ . Let S = {Tt : t ≥ 0} be a monotone asymptotic pointwise
ρ-nonexpansive semigroup such that Tt is ρ-continuous. Assume that for all t ≥ 0 there exists f0 ∈ C such that
f0 ≺≻ Tt( f0). Then S has a common fixed point, i.e., h ∈ Fix(S) such that f0 ≺≻ h.
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Proof. In pursuance of the assumption f0 ≺≻ Tt( f0) the condition ρ(Tt( f ) − Tt(1)) ≤ αt( f )ρ( f − 1) is satisfied
under two cases: Either f0 ⪯ Tt( f0) or f0 ⪰ Tt( f0). If it holds for the first case, then by the symmetry of
modular ρ, it must hold for the second case too and the same is true for converse consideration. Therefore
applying the given contractive condition on these two cases are the same. So, we consider only the first to
explore our further investigations.
Also, in light of the same assumption, we ensure the existence of an element f0 ∈ C, then f0 ⪯ Tt( f0) ∈ C. If
f0 = Tt( f0) then f0 is a common fixed point of semigroup S. So the proof is accomplished.
However, if f0 , Tt( f0) , then in view of partial order relation and Proposition 2.12, we have

K =
⋂
t≥0

[Tt( f0),→) ∩ C

is nonempty. In fact, utilizing the Proposition 2.12, it suffices to prove that⋂
t∈F

[Tt( f0),→) ∩ C

is nonempty for any finite subset F = {t0, t1, ..., tn} of R+, where ti are arbitrarily chosen in R+.
Let us consider f = Tt0+t1+...+tn ( f0) ∈ C. Since S is a monotone semigroup and f0 ⪯ Tt( f0) for all t ≥ 0,we have
Ts( f0) ⪯ Ts+t( f0) for all s, t ≥ 0. Hence Tti ( f0) ⪯ f for all i ∈ {1, 2, ...,n}, that is, f ∈ [Tti ( f0),→) ∩ C.
Thus

⋂
ti∈F[Tti ( f0),→) ∩ C is nonempty for all n ≥ 0.Moreover, K is ρ-closed convex.

Further, as K is invariant by S. In fact, let f ∈ K and t, s ≥ 0 such that t ≥ s, then t − s ≥ 0. So, Tt−s( f0) ⪯ f
implies Tt( f0) ⪯ Ts( f ). If t < s, then ϵ = s − t > 0. Since f0 ⪯ f ,we have

f0 ⪯ Tϵ( f0) ⪯ Tϵ( f ) =⇒ Tt( f0) ⪯ Tt+ϵ( f ) = Ts( f ).

Thus, Tt( f0) ⪯ Ts( f ) for all t, s ≥ 0. Then Ts( f ) ∈ K for all s ≥ 0. Therefore S(K) ⊂ K. Consider the function
φ : K→ [0,+∞) defined by

φ(1) = lim sup
t→+∞

ρ(Tt( f0) − 1) = inf
s≥0

sup
t≥s
ρ(Tt( f0) − 1).

As K is ρ-bounded, φ0 = inf1∈C φ(1) < +∞. So, for any n ≥ 1, there exists hn ∈ K such that

φ0 ≤ φ(hn) ≤ φ0 +
1
n
.

Then in the light of Lemma 3.3, {hn} is a minimizing sequence of φ and ρ-converges to h ∈ K. To prove that
h ∈ Fix(S), it suffices to show that {Tt(hn)} is also a minimizing sequence of φ for any t ≥ 0.
Fix s, η ≥ 0, and let t ≥ s + η, 1 ∈ K then Tt−s( f0) ⪯ 1. Since S is a monotone asymptotic pointwise
ρ-nonexpansive semigroup, we have

ρ(Ts(Tt−s( f0)) − Ts(1)) = ρ(Tt( f0) − Ts(1))
≤ αt( f0)ρ(Tt−s( f0) − 1)
≤ sup

t≥η
αt( f0)ρ(Tt( f0) − 1),

sup
t≥η
ρ(Tt( f0) − Ts(h)) ≤ sup

t≥s+η
ρ(Tt( f0) − Ts(h)) ≤ sup

t≥η
αt( f0)ρ(Tt( f0) − h).

Taking the infη≥0 over the foregoing inequality, we have

inf
η≥0

sup
t≥η
ρ(Tt( f0) − Ts(h)) ≤ inf

η≥0
sup
t≥η
αt( f0)ρ(Tt( f0) − h).
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Since η is arbitrary positive, we obtain

φ(Ts(1)) ≤ inf
η≥0

sup
t≥η
αt( f0)ρ(Tt( f0) − h)

= lim sup
t→+∞

αt( f0)ρ(Tt( f0) − h)

≤ lim sup
t→+∞

αt( f0) lim sup
t→+∞

ρ(Tt( f0) − h)

= 1 · φ(1).

Hence, for any s ≥ 0, we have

φ(Ts(1)) ≤ φ(1).

Thus for all s ≥ 0, {Ts(hn)} is a minimizing sequence of φ.
Owing to Lemma 3.3, the sequence {Ts(hn)} ρ-converges to h for all s ≥ 0. Since Ts is ρ-continuous for all
n, s ≥ 0, {Ts(hn)} ρ-converges to Ts(h). Finally, in light of the uniqueness of the limit for all s ≥ 0, we conclude
that h = Ts(h), that is, h is a common fixed point of the semigroup S.

Remark 3.5. Theorem 3.4 remains true and reduces to the theorem presented in [6] (see, Theorem 3.19), if we replace
the assumption, monotone asymptotic pointwise ρ-nonexpansive semigroup by monotone ρ-nonexpansive semigroup
besides retaining rest of the assumptions.

The next lemma is a generalization of Lemma 2.16 for ρ-type functions defined by a given one-parameter
family of mappings.

Lemma 3.6. [6] Let ρ be a convex modular uniformly continuous and (UUCED), and let Xρ be a modular space
satisfying property (R). Let C be a nonempty ρ-closed convex ρ-bounded subset of Xρ, let S be a monotone ρ-
nonexpansive semigroup on C, and let K be a ρ-closed convex subset of C. Fix f0 ∈ C and consider the function
φ : C→ R+ given by

φ(y) = lim sup
t→+∞

ρ(Tt( f0) − 1) = inf
s≥0

sup
t≥s
ρ(Tt( f0) − 1).

Then there exists a unique h ∈ K such that φ(h) = inf1∈K φ(1).

Bachar et al. [4] generalized Kozlowski’s work in Banach spaces in the case of monotone nonexpansive
semigroups, and proved the following common fixed point result.

Theorem 3.7. [4] Let (X, ∥.∥) be a Banach space uniformly convex in every direction. Let C be a weakly compact
convex nonempty subset of X, and S = Tt : t ≥ 0 be a monotone nonexpansive semigroup defined on C. Assume that
for all t ≥ 0 there exists f0 ∈ C such that f0 ≺≻ Tt( f0). Then S has a common fixed point, i.e., h ∈ Fix(S) such that
f0 ≺≻ h.

The next result is an extension of the Theorem 3.7 for asymptotic pointwise ρ-nonexpansive semigroups
in uniformly convex in every direction (UCED) modular spaces.

Theorem 3.8. Let ρ be a convex modular uniformly continuous and (UUCED), and let Xρ be a modular space
satisfying property (R). Let C be a nonempty ρ-closed convex ρ-bounded subset of Xρ . Let S be a monotone
asymptotic pointwise ρ-nonexpansive semigroup on C. Assume that for all t ≥ 0 there exists f0 ∈ C such that
f0 ≺≻ Tt( f0). Then S has a common fixed point, i.e., h ∈ Fix(S) such that f0 ≺≻ h.

Proof. Without loss of assumption, we consider that f0 ⪯ Tt( f0) for all t > 0. Let {sn} be a nondecreasing
sequence in R+ such that s0 = 0 and limn→+∞ sn = +∞. For all n ≥ 0, set

Kn =
⋂
t≥sn

[Tt( f0),→) ∩ C.
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Indeed, for all u ≥ 0, f0 ⪯ Tu( f0), {Kn} is a decreasing sequence of ρ-closed convex and ρ-bounded subsets
of C. In particular, for u = sn, we have f0 ⪯ Tsn ( f0). Let t ≥ sn, then we have Tt( f0) ⪯ Tt+sn ( f0) ⪯ T2sn ( f0) = f .
So that f = T2sn ( f0) ∈ Kn. Hence Kn is nonempty for all n ≥ 0.
For all n ≥ 0, Kn is ρ-closed. In fact, let 1p be a sequence in Kn that ρ-converges to 1 ∈ C. For all p ≥ 0, 1p ∈ Kn,
that is, Tt( f0) ⪯ 1p for all t ≥ sn and p ≥ 0. Then in light of the partial ordering defined on ρ-closed convex
cone P ⊂ Xρ, we have 1p − Tt( f0) ∈ P for all t ≥ sn and p ≥ 0. Since

lim
p→+∞

ρ(1p − Tt( f0) − 1 + Tt( f0)) = lim
p→+∞

ρ(1p − 1) = 0,

and P is ρ-closed, we have 1 − Tt( f0) ∈ P for all t ≥ sn, that is, 1 ∈ Kn.
As P is convex and {Kn} ⊂ C, therefore {Kn} is convex and ρ-bounded subset of C. Moreover, {Kn} is
decreasing because {sn} is an increasing sequence.
In light of the property (R), the set K =

⋂
n≥0 Kn is nonempty ρ-closed and convex subset of C.

K is invariant by S. In fact, let f ∈ K, then Tt( f0) ⪯ f for all n ≥ 0 and t ≥ sn. Letting η ≥ 0, let us prove that
Tt( f0) ⪯ Tη( f ) for all t ≥ sn.
If η ≤ t, then t − η ≥ 0,where t ≥ sn,which implies that Tt−η( f0) ⪯ f . As f ∈ K0 then in light of monotonicity
of semigroup, we have Tt( f0) ⪯ Tη( f ). Hence, Tη( f ) ∈ Kn. In all cases, we obtain S(K) ⊂ K.
Consider the function φ : K→ R+ defined by

φ(1) = lim sup
t→+∞

ρ(Tt( f0) − 1).

Owing to Lemma 3.6, φ has a unique minimum point h ∈ K.
Fix s, η ≥ 0 and let t ≥ s+ η. As S is a monotone asymptotic pointwise ρ-nonexpansive semigroup, we have

ρ(Tt( f0) − Ts(h)) = ρ(Ts(Tt−s( f0)) − Ts(h))
≤ αt( f0)ρ(Tt−s( f0) − h)
≤ sup

t≥η
αt( f0)ρ(Tt( f0) − h),

which implies

φ(Ts(1)) ≤ inf
η≥0

sup
t≥η
αt( f0)ρ(Tt( f0) − 1).

Hence, for all s ≥ 0, we have φ(Ts(h)) ≤ φ(h). Thus, for all s ≥ 0, {Ts(hn)} is a minimizing sequence of φ. In
view of the uniqueness of h, we obtain h = Ts(h), that is, h is a common fixed point of the semigroup S.

Remark 3.9. Theorem 3.8 remains true and reduces to the theorem presented in [6] (see, Theorem 3.22), if we replace
the assumption, monotone asymptotic pointwise ρ-nonexpansive semigroup by monotone ρ-nonexpansive semigroup
besides retaining rest of the assumptions.

We highlight the role of asymptotic pointwise assumption by the following remark.

Remark 3.10. We point out the fact that examples of monotone asymptotic pointwise nonexpansive mappings are
not easy to explore. As it was highlighted by Kirk and Xu [12] that the example presented by Goebel and Kirk [7] may
be modified to produce an example of a monotone asymptotic nonexpansive mapping. In fact, let C be the positive part
of the unit ball in the Hilbert space l2 and i.e.,

C = { fn ∈ B+ : fn ≥ 0 for all n ≥ 1}.

As we know that Hilbert space l2 is a modular function space, too. Define a transformation T : C→ C by

T : ( f1, f2, f3, ...)→ (0, f 2
1 , a2 f2, a3 f3, ...).

Assume that ai ∈ (0, 1) for all n ≥ 1 and
∏+∞

i=2 ai =
1
2 , then it can be easily shown that T is a monotone asymptotic

pointwise nonexpansive which is not nonexpansive. It indicates the utility of asymptotic pointwise assumption and
usefulness of our findings.
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4. Conclusion

We established two existence theorems for common fixed points under asymptotic pointwiseρ-nonexpansive
assumption of monotone semigroups in modular function spaces. Moreover, we also highlight the use-
fulness of asymptotic pointwise assumption for monotone semigroups by the above remark. In this way,
the existence results presented in this paper are generalizations and extension over the several well known
recent results of the existing literature.
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