Four double series involving $\zeta(3)$

Wenchang Chu ${ }^{\text {a,b }}$
${ }^{a}$ School of Mathematics and Statistics, Zhoukou Normal University, Henan, China
${ }^{b}$ Department of Mathematics and Physics, University of Salento, Lecce 73100, Italy

Abstract

Four double series involving $\zeta(3)$ are evaluated in closed form by calculating definite integrals. Three examples are also illustrated by the hypergeometric series approach.

1. Introduction and Outline

Let $\zeta(z)$ be the usual Riemann zeta function defined by

$$
\zeta(z):=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \quad \text { where } \quad \mathfrak{R}(z)>1
$$

In a letter to Euler, Goldbach posed the problem to evaluate the double series

$$
\zeta(\lambda, \mu):=\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}} \sum_{k=1}^{n} \frac{1}{k^{\mu}}, \quad \text { where } \quad \lambda, \mu \in \mathbb{N} \text { with } \lambda>1
$$

This led Euler to examine the nowadays so-called "multiple zeta functions" extensively. One of his beautiful formulae is recorded below

$$
2 \zeta(\lambda, 1)=\lambda \zeta(\lambda+1)-\sum_{j=1}^{\lambda-2} \zeta(j+1) \zeta(\lambda-j), \quad \text { where } \quad \lambda>1 .
$$

In particular for $\lambda=2$, we get immediately

$$
\zeta(2,1)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{n} \frac{1}{k}=\sum_{n \geq k} \frac{1}{n^{2} k}=\zeta(3) .
$$

Recently, there have been growing interests (cf. [1, 2, 4, 5, 7-10] and [12-15, 17-20]) in finding closed form expressions and interrelations for the multiple Euler sums. Observe that the above series can be interpreted

[^0]as the subseries of the divergent one " $\sum_{n, k} \frac{1}{n^{2} k}$ " consisting of only the terms with indices $n>k$ (under the main diagonal). This suggests the author to recall the following well-known series
$$
\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=2 \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}} \quad \text { and } \quad \ln 2=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k}
$$
and consider their tensor products
\[

$$
\begin{aligned}
& \Omega(1,-1)=\sum_{n, k=1}^{\infty} \frac{(-1)^{k}}{n^{2} k}=-\frac{\pi^{2}}{6} \ln 2 \\
& \Omega(-1,-1)=\sum_{n, k=1}^{\infty} \frac{(-1)^{n+k}}{n^{2} k}=\frac{\pi^{2}}{12} \ln 2
\end{aligned}
$$
\]

Define, in general, the bivariate series by

$$
\begin{equation*}
\Omega(x, y)=\sum_{n, k=1}^{\infty} \frac{x^{n} y^{k}}{n^{2} k} \tag{1}
\end{equation*}
$$

Then there are four subseries divided by the main diagonal " $n=k$ ":

$$
\begin{array}{ll}
\Omega_{>}(x, y)=\sum_{n>k} \frac{x^{n} y^{k}}{n^{2} k}, \quad \Omega_{\geq}(x, y)=\sum_{n \geq k} \frac{x^{n} y^{k}}{n^{2} k} ; \\
\Omega_{<}(x, y)=\sum_{n<k} \frac{x^{n} y^{k}}{n^{2} k}, \quad \Omega_{\leq}(x, y)=\sum_{n \leq k} \frac{x^{n} y^{k}}{n^{2} k} .
\end{array}
$$

The aim of this short article is to focus entirely on the subseries of $\Omega(\pm 1, \pm 1)$ and to evaluate them in closed form. Four remarkable formulae are highlighted, in anticipation, as follows:

$$
\begin{aligned}
& \Omega_{>}(1,1)=\sum_{n>k} \frac{1}{n^{2} k}=\zeta(2,1)=\zeta(3), \\
& \Omega_{>}(1,-1)=\sum_{n>k} \frac{(-1)^{k}}{n^{2} k}=\zeta(3)-\frac{\pi^{2}}{4} \ln 2, \\
& \Omega_{>}(-1,1)=\sum_{n>k} \frac{(-1)^{n}}{n^{2} k}=\frac{\zeta(3)}{8}, \\
& \Omega_{>}(-1,-1)=\sum_{n>k} \frac{(-1)^{n+k}}{n^{2} k}=\frac{\pi^{2}}{4} \ln 2-\frac{13}{8} \zeta(3) ;
\end{aligned}
$$

where the first one is well-known, while the other three values also involve $\zeta(3)$.
These values will be determined in the next section by calculating definite integrals in conjunction with power series expansions. Some of them will alternatively be illustrated in Section 3 by the hypergeometric series approach.

2. Integration Method

For $|x| \leq 1$, write the sum in terms of a definite integral

$$
\begin{aligned}
\sum_{n=k+1}^{\infty} \frac{x^{n}}{n^{2}} & =\sum_{n=k+1}^{\infty} \int_{0}^{x} \frac{d \tau}{\tau} \int_{0}^{\tau} T^{n-1} d T \\
& =\sum_{n=k+1}^{\infty} \int_{0}^{x} T^{n-1} d T \int_{T}^{x} \frac{d \tau}{\tau} \\
& =\int_{0}^{x}\left\{\sum_{n=k+1}^{\infty} T^{n-1}\right\} \ln (x / T) d T \\
& =\int_{0}^{x} \frac{T^{k} \ln (x / T)}{1-T} d T
\end{aligned}
$$

By substitution, we can further reformulate the double series

$$
\begin{aligned}
\Omega_{>}(x, y) & =\sum_{n>k} \frac{x^{n} y^{k}}{n^{2} k}=\sum_{k=1}^{\infty} \frac{y^{k}}{k} \int_{0}^{x} \frac{T^{k} \ln (x / T)}{1-T} d T \\
& =\int_{0}^{x} \frac{\ln (x / T)}{1-T}\left\{\sum_{k=1}^{\infty} \frac{(T y)^{k}}{k}\right\} d T
\end{aligned}
$$

and

$$
\begin{aligned}
\Omega_{\geq}(x, y) & =\sum_{n \geq k} \frac{x^{n} y^{k}}{n^{2} k}=\sum_{k=1}^{\infty} \frac{y^{k}}{k} \int_{0}^{x} \frac{T^{k-1} \ln (x / T)}{1-T} d T \\
& =\int_{0}^{x} \frac{\ln (x / T)}{T(1-T)}\left\{\sum_{k=1}^{\infty} \frac{(T y)^{k}}{k}\right\} d T
\end{aligned}
$$

which yield the following definite integral expressions

$$
\begin{align*}
& \Omega_{>}(x, y)=\int_{0}^{x} \frac{\ln (T / x) \ln (1-T y)}{1-T} d T \tag{2}\\
& \Omega_{\geq}(x, y)=\int_{0}^{x} \frac{\ln (T / x) \ln (1-T y)}{T(1-T)} d T \tag{3}
\end{align*}
$$

Now we are in position to determine the values of the double series by computing the corresponding integrals for specific " $x, y= \pm 1$ ".

2.1. $\boldsymbol{\Omega}_{>}(\mathbf{1}, \mathbf{1})$

There are different proofs (see $[5,6]$ for example) for the value of $\Omega_{>}(1,1)$. For completeness, we show it by making use of two integrals:

$$
\int_{0}^{1} T^{n-1} \ln (T) d T=\frac{-1}{n^{2}} \quad \text { and } \quad \int_{0}^{1} T^{n-1} \ln ^{2}(T) d T=\frac{2}{n^{3}}
$$

In fact, by integration by parts, it is almost routine check that

$$
\begin{aligned}
\Omega_{>}(1,1) & =\int_{0}^{1} \frac{\ln (T) \ln (1-T)}{T} d T \\
& =-\int_{0}^{1} \ln (T)\left\{\sum_{n=1}^{\infty} \frac{T^{n-1}}{n}\right\} d T \\
& =-\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{1} T^{n-1} \ln (T) d T \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\zeta(3) .
\end{aligned}
$$

The same value can alternatively be obtained as follows:

$$
\begin{aligned}
\Omega_{>}(1,1) & =\int_{0}^{1} \frac{\ln (T) \ln (1-T)}{T} d T \\
& =\left.\frac{\ln ^{2}(T) \ln (1-T)}{2}\right|_{0} ^{1}+\int_{0}^{1} \frac{\ln ^{2}(T)}{2(1-T)} d T \\
& =\int_{0}^{1} \frac{\ln ^{2}(T)}{2}\left\{\sum_{n=1}^{\infty} T^{n-1}\right\} d T \\
& =\frac{1}{2} \sum_{n=1}^{\infty} \int_{0}^{1} T^{n-1} \ln ^{2}(T) d T \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\zeta(3) .
\end{aligned}
$$

2.2. $\boldsymbol{\Omega}_{>}(\mathbf{1}, \mathbf{- 1})$

Expanding $(1-T)^{-1}$ into the geometric series

$$
\frac{1}{1-T}=\sum_{n=1}^{\infty} T^{n-1} \quad \text { and } \quad \int_{0}^{T} T^{n-1} \ln (T)=\frac{T^{n}}{n} \ln T-\frac{T^{n}}{n^{2}}
$$

we can proceed by making use of integration by parts

$$
\begin{aligned}
\int_{0}^{1} T^{n-1} \ln (T) \ln (1+T) d T & =\left.\left\{\frac{T^{n}}{n} \ln (T)-\frac{T^{n}}{n^{2}}\right\} \ln (1+T)\right|_{0} ^{1} \\
& -\int_{0}^{1}\left\{\frac{T^{n}}{n(1+T)} \ln (T)-\frac{T^{n}}{n^{2}(1+T)}\right\} d T \\
& =\frac{-\ln 2}{n^{2}}-\int_{0}^{1}\left\{\frac{T^{n} \ln (T)}{n(1+T)}-\frac{T^{n}}{n^{2}(1+T)}\right\} d T
\end{aligned}
$$

This leads us to the expression

$$
\begin{aligned}
\Omega_{>}(1,-1) & =\int_{0}^{1} \frac{\ln (T) \ln (1+T)}{1-T} d T \\
& =\sum_{n=1}^{\infty} \int_{0}^{1} \frac{T^{n}}{n^{2}(1+T)} d T-\sum_{n=1}^{\infty} \int_{0}^{1} \frac{T^{n} \ln (T)}{n(1+T)} d T-\frac{\pi^{2}}{6} \ln 2 .
\end{aligned}
$$

Evaluating further the integrals

$$
\begin{equation*}
\int_{0}^{1} \frac{T^{n}}{1+T} d T=\sum_{k=1}^{\infty}(-1)^{k-1} \int_{0}^{1} T^{n+k-1} d T=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n+k} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \frac{T^{n} \ln (T)}{1+T} d T=\sum_{k=1}^{\infty}(-1)^{k-1} \int_{0}^{1} T^{n+k-1} \ln (T) d T=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(n+k)^{2}} \tag{5}
\end{equation*}
$$

then making substitution, we can simplify the expression

$$
\begin{aligned}
\Omega_{>}(1,-1) & =\int_{0}^{1} \frac{\ln (T) \ln (1+T)}{1-T} d T \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{n+k}-\sum_{n=1}^{\infty} \frac{1}{n} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(n+k)^{2}}-\frac{\pi^{2}}{6} \ln 2 \\
& =-\sum_{n<m} \frac{(-1)^{m+n}}{n^{2} m}-\sum_{m>n} \frac{(-1)^{m+n}}{m^{2} n}-\frac{\pi^{2}}{6} \ln 2 \quad m=n+k \\
& =-\Omega_{<}(-1,-1)-\Omega_{>}(-1,-1)-\frac{\pi^{2}}{6} \ln 2 \\
& =\zeta(3)-\frac{\pi^{2}}{4} \ln 2,
\end{aligned}
$$

where the last passage is justified by

$$
\Omega(-1,-1)=\frac{\pi^{2}}{12} \ln 2=\zeta(3)+\Omega_{<}(-1,-1)+\Omega_{>}(-1,-1)
$$

2.3. $\boldsymbol{\Omega}_{>}(\mathbf{- 1 , 1})$

Analogously, from the integral expression

$$
\begin{array}{rlr}
\Omega_{>}(-1,1) & =\int_{0}^{-1} \frac{\ln (-T) \ln (1-T)}{1-T} d T \\
& =-\int_{0}^{1} \frac{\ln (T) \ln (1+T)}{1+T} d T & T \rightarrow-T \\
& =\int_{0}^{1} \frac{\ln ^{2}(1+T)}{2 T} d T
\end{array}
$$

we can manipulate further the series

$$
\begin{aligned}
\Omega_{>}(-1,1) & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n} \int_{0}^{1} T^{n-1} \ln (1+T) d T \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n}\left\{\left.\frac{T^{n}}{n} \ln (1+T)\right|_{0} ^{1}-\int_{0}^{1} \frac{T^{n}}{n(1+T)} d T\right\} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}} \int_{0}^{1} \frac{T^{n}}{1+T} d T-\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln 2}{2 n^{2}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}} \int_{0}^{1} \frac{T^{n}}{1+T} d T+\frac{\pi^{2}}{24} \ln 2 .
\end{aligned}
$$

By invoking (4), the above sum can further be reduced to

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n^{2}} \int_{0}^{1} \frac{T^{n}}{1+T} d T & =\sum_{n, k=1}^{\infty} \frac{(-1)^{n+k-1}}{2 n^{2}(n+k)}=\frac{-1}{2} \sum_{n<m} \frac{(-1)^{m}}{m n^{2}} \quad m=n+k \\
& =\frac{-1}{2} \Omega_{<}(1,-1)=\frac{-1}{2}\left\{\Omega(1,-1)+\frac{3}{4} \zeta(3)-\Omega_{>}(1,-1)\right\} \\
& =\frac{-1}{2}\left\{-\frac{\pi^{2}}{6} \ln 2+\frac{3}{4} \zeta(3)-\zeta(3)+\frac{\pi^{2}}{4} \ln 2\right\}=\frac{\zeta(3)}{8}-\frac{\pi^{2}}{24} \ln 2 .
\end{aligned}
$$

Consequently we arrive at the closed formula

$$
\Omega_{>}(-1,1)=\int_{0}^{1} \frac{\ln ^{2}(1+T)}{2 T} d T=\frac{\zeta(3)}{8}
$$

Alternatively, for $0<T<1$, if making use of the geometric series

$$
\frac{1}{T}=\frac{1}{(1+T)-1}=\sum_{k=0}^{\infty} \frac{1}{(1+T)^{k+1}}
$$

and then evaluating the integrals

$$
\begin{aligned}
& \int_{0}^{1} \frac{\ln ^{2}(1+T)}{1+T} d T=\frac{\ln ^{3}(2)}{3} \\
& \int_{0}^{1} \frac{\ln ^{2}(1+T)}{(1+T)^{k+1}} d T=\frac{2}{k^{3}}-\frac{2}{k^{3} \cdot 2^{k}}-\frac{2 \ln 2}{k^{2} \cdot 2^{k}}-\frac{\ln ^{2}(2)}{k \cdot 2^{k}}
\end{aligned}
$$

we can derive the following expression

$$
\begin{aligned}
\Omega_{>}(-1,1) & =\int_{0}^{1} \frac{\ln ^{2}(1+T)}{2 T} d T \\
& =\frac{\ln ^{3}(2)}{6}+\frac{1}{2} \sum_{k=1}^{\infty}\left\{\frac{2}{k^{3}}-\frac{2}{k^{3} \cdot 2^{k}}-\frac{2 \ln 2}{k^{2} \cdot 2^{k}}-\frac{\ln ^{2}(2)}{k \cdot 2^{k}}\right\} \\
& =\zeta(3)-\operatorname{Li}_{3}\left(\frac{1}{2}\right)-\ln 2 \operatorname{Li}_{2}\left(\frac{1}{2}\right)-\frac{\ln ^{3}(2)}{3},
\end{aligned}
$$

where the polylogarithm function is defined by the power series

$$
\mathrm{Li}_{n}(y)=\sum_{k=1}^{\infty} \frac{y^{k}}{k^{n}} .
$$

Thanks to the two known equations

$$
\begin{aligned}
\mathrm{Li}_{2}\left(\frac{1}{2}\right) & =\frac{\pi^{2}}{12}-\frac{\ln ^{2}(2)}{2} \\
\mathrm{Li}_{3}\left(\frac{1}{2}\right) & =\frac{\ln ^{3}(2)}{6}-\frac{\pi^{2}}{12} \ln 2+\frac{21}{24} \zeta(3)
\end{aligned}
$$

we confirm again

$$
\Omega_{>}(-1,1)=\int_{0}^{1} \frac{\ln ^{2}(1+T)}{2 T} d T=\frac{\zeta(3)}{8}
$$

2.4. $\boldsymbol{\Omega}_{>}(\mathbf{- 1}, \mathbf{- 1})$

Finally, we turn to evaluate the integral

$$
\begin{aligned}
\Omega_{>}(-1,-1) & =\int_{0}^{-1} \frac{\ln (-T) \ln (1+T)}{1-T} d T \\
& =-\int_{0}^{1} \frac{\ln (T) \ln (1-T)}{1+T} d T \quad T \rightarrow-T .
\end{aligned}
$$

By means of integration by parts, we have

$$
\begin{aligned}
\Omega_{>}(-1,-1) & =-\int_{0}^{1} \frac{\ln (T) \ln (1-T)}{1+T} d T=\int_{0}^{1} \frac{\ln (1+T) \ln (1-T)}{T} d T \\
& -\left.\ln (T) \ln (1+T) \ln (1-T)\right|_{0} ^{1}-\int_{0}^{1} \frac{\ln (T) \ln (1+T)}{1-T} d T \\
& =\int_{0}^{1} \frac{\ln (1+T) \ln (1-T)}{T} d T-\Omega_{>}(1,-1)
\end{aligned}
$$

Denote by H_{n} the harmonic number

$$
H_{0}=0 \quad \text { and } \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k} \text { for } n \in \mathbb{N} .
$$

According to the equality

$$
\int_{0}^{1} T^{n-1} \ln (1-T) d T=-\frac{H_{n}}{n}
$$

we can evaluate the integral

$$
\begin{aligned}
\int_{0}^{1} \frac{\ln (1+T) \ln (1-T)}{T} d T & =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_{0}^{1} T^{n-1} \ln (1-T) d T \\
& =\sum_{n=1}^{\infty}(-1)^{n} \frac{H_{n}}{n^{2}}=\Omega_{\geq}(-1,1) \\
& =\Omega_{>}(-1,1)-\frac{3}{4} \zeta(3) .
\end{aligned}
$$

Therefore, we find that

$$
\begin{aligned}
\Omega_{>}(-1,-1) & =\Omega_{>}(-1,1)-\frac{3}{4} \zeta(3)-\Omega_{>}(1,-1) \\
& =\frac{\zeta(3)}{8}-\frac{3}{4} \zeta(3)-\zeta(3)+\frac{\pi^{2}}{4} \ln 2 \\
& =\frac{\pi^{2}}{4} \ln 2-\frac{13}{8} \zeta(3) .
\end{aligned}
$$

From the four summation formulae established for $\Omega_{>}(\pm 1, \pm 1)$ in this section, we can deduce other double series $\Omega(\pm 1, \pm 1)$ labeled by " $<, \leq, \geq$ ". For example, among the four series $\Omega_{<}(\pm 1, \pm 1)$, two series " $\Omega_{<}(1,1)$ and $\Omega_{<}(-1,1)$ " are divergent, while two convergent ones are evaluated by
$\Omega_{<}(1,-1)=\frac{\pi^{2}}{12} \ln 2-\frac{\zeta(3)}{4}$,
$\Omega_{<}(-1,-1)=\frac{5}{8} \zeta(3)-\frac{\pi^{2}}{6} \ln 2$.

3. Hypergeometric Series Approach

For an indeterminate α and a nonnegative integer n, define the shifted factorial by $(\alpha)_{0} \equiv 1$ and

$$
(\alpha)_{n}=\alpha(\alpha+1) \cdots(\alpha+n-1) \quad \text { for } \quad n \in \mathbb{N} .
$$

Then the classical hypergeometric series (cf. Bailey [3]) reads as

$$
{ }_{p} H_{q}\left[\left.\begin{array}{l}
a_{1}, a_{2}, \cdots, a_{p} \\
b_{1}, b_{2}, \cdots, b_{q}
\end{array} \right\rvert\, z\right]=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \cdots\left(a_{p}\right)_{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \cdots\left(b_{q}\right)_{n}} .
$$

There exist numerous hypergeometric series identities in the literature. Some of them have been shown powerful to prove summation formulae involving harmonic numbers (see [6, 11]). The strategy consists of two steps. The first one is to extract the initial coefficient of x from hypergeometric terms. Let $\left[x^{m}\right] \phi(x)$ stand for the coefficient of x^{m} in the formal power series $\phi(x)$. Then it is trivial to check the following relations:

$$
[x] \frac{(1+x)_{n}}{n!}=H_{n} \quad \text { and } \quad[x] \frac{n!}{(1-x)_{n}}=H_{n}
$$

Another step is to do the same from the Γ-function quotient. Recalling, for the Γ-function (cf. $[16, \S 11]$), the Weierstrass product

$$
\Gamma(z)=z^{-1} \prod_{n=1}^{\infty}\left\{(1+1 / n)^{z} /(1+z / n)\right\}
$$

and the logarithm-differentiation

$$
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\gamma+\sum_{n=0}^{\infty} \frac{z-1}{(n+1)(n+z)}
$$

with the Euler constant

$$
\gamma=\lim _{n \rightarrow \infty}\left\{\sum_{k=1}^{n} \frac{1}{k}-\ln n\right\},
$$

we can derive the following expansions (cf. [6])

$$
\begin{aligned}
& \Gamma(1-z)=\exp \left\{\sum_{k=1}^{\infty} \frac{\sigma_{k}}{k} z^{k}\right\} \\
& \Gamma\left(\frac{1}{2}-z\right)=\sqrt{\pi} \exp \left\{\sum_{k=1}^{\infty} \frac{\tau_{k}}{k} z^{k}\right\}
\end{aligned}
$$

where the Riemann Zeta sequences $\left\{\sigma_{k}, \tau_{k}\right\}$ are defined by

$$
\begin{array}{ll}
\sigma_{1}=\gamma, & \sigma_{m}=\zeta(m), m=2,3, \cdots \\
\tau_{1}=\gamma+2 \ln 2, & \tau_{m}=\left(2^{m}-1\right) \zeta(m), m=2,3, \cdots .
\end{array}
$$

Now we are going to illustrate the hypergeometric approach through three examples.
3.1. $\boldsymbol{\Omega}_{>}(\mathbf{1}, \mathbf{1})$

Recall the Gauss summation theorem (cf. Bailey [3, §1.3])

$$
{ }_{2} F_{1}\left[\left.\begin{array}{ll}
x, & x \\
& 1
\end{array} \right\rvert\, 1\right]=\frac{\Gamma(1-2 x)}{\Gamma^{2}(1-x)} .
$$

Then we can express $\Omega_{>}(1,1)$ in terms of the coefficient

$$
\begin{aligned}
\Omega_{>}(1,1) & =\sum_{n>k} \frac{1}{n^{2} k}=\sum_{n=1}^{\infty} \frac{H_{n-1}}{n^{2}} \\
& =\frac{1}{2}\left[x^{3}\right]_{2} F_{1}\left[\left.\begin{array}{rr}
x, & x \\
1 & 1
\end{array} \right\rvert\,\right] \\
& =\frac{1}{2}\left[x^{3}\right] \frac{\Gamma(1-2 x)}{\Gamma^{2}(1-x)}=\zeta(3) .
\end{aligned}
$$

3.2. $\boldsymbol{\Omega}_{>}(-\mathbf{1}, \mathbf{1})$

In view of the Kummer summation theorem (cf. Bailey [3, §2.3])

$$
{ }_{2} F_{1}\left[\left.\begin{array}{ll}
x, & x \\
& 1
\end{array} \right\rvert\,-1\right]=\frac{\Gamma\left(1+\frac{x}{2}\right)}{\Gamma(1+x) \Gamma\left(1-\frac{x}{2}\right)},
$$

we can express $\Omega_{>}(-1,1)$ in terms of the coefficient

$$
\begin{aligned}
\Omega_{>}(-1,1) & =\sum_{n>k} \frac{(-1)^{n}}{n^{2} k}=\sum_{n=1}^{\infty}(-1)^{n} \frac{H_{n-1}}{n^{2}} \\
& =\frac{1}{2}\left[x^{3}\right]_{2} F_{1}\left[\left.\begin{array}{ll}
x, & x \\
1
\end{array} \right\rvert\,-1\right] \\
& =\frac{1}{2}\left[x^{3}\right] \frac{\Gamma\left(1+\frac{x}{2}\right)}{\Gamma(1+x) \Gamma\left(1-\frac{x}{2}\right)}=\frac{\zeta(3)}{8} .
\end{aligned}
$$

However, we fail to rederive the formulae for both $\Omega_{>}(1,-1)$ and $\Omega_{>}(-1,-1)$. Instead, we succeed in proving an extra identity in the next subsection.

3.3. $\Omega_{\geq}\left(\frac{\mathbf{1}}{\mathbf{2}}, \mathbf{1}\right)$

Recall Bailey's summation theorem (cf. Bailey [3, §2.4])

$$
\mathcal{B}(x, y)={ }_{2} F_{1}\left[\left.\begin{array}{ll}
x, & 1-x \\
1+y
\end{array} \right\rvert\, \frac{1}{2}\right]=\frac{\Gamma\left(\frac{1+y}{2}\right) \Gamma\left(\frac{2+y}{2}\right)}{\Gamma\left(\frac{1+x+y}{2}\right) \Gamma\left(\frac{2-x+y}{2}\right)} .
$$

According to the linear relation " $2 x=(k+x)-(k-x)$ ", the contiguous series can be written in terms of \mathcal{B}-series

$$
{ }_{2} F_{1}\left[\left.\begin{array}{l}
x,-x \\
1+y
\end{array} \right\rvert\, \frac{1}{2}\right]=\frac{1}{2} \mathcal{B}(x, y)+\frac{1}{2} \mathcal{B}(-x, y) .
$$

Then we can evaluate the series

$$
\left.\begin{array}{rl}
\sum_{n=1}^{\infty} \frac{H_{n}}{n^{2} \cdot 2^{n}} & =\left[x^{2} y\right]_{2} F_{1}\left[\left.\begin{array}{c}
x,-x \\
1+y
\end{array} \right\rvert\, \frac{1}{2}\right.
\end{array}\right] .
$$

This is equivalent to the following interesting identity

$$
\Omega_{\geq}\left(\frac{1}{2}, 1\right)=\zeta(3)-\frac{\pi^{2}}{12} \ln 2
$$

References

[1] G. Almkvist, A. Granville, Borwein and Bradley's Apéry-like formulae for $\zeta(4 n+3)$, Exper. Math. 8 (1999) 197-203.
[2] T. Amdeberhan, Faster and faster convergent series for $\zeta(3)$, Electron. J. Combin. 3 (1996) \#R13.
[3] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
[4] J. M. Borwein, D. M. Bradley, Empirically determined Apéry-like formulae for $\zeta(4 n+3)$, Exper. Math. 6(3) (1997) 181-194.
[5] J. M. Borwein, D. M. Bradley, Thirty-two Goldbach variations, arXiv:math/0502034v2 [math.NT] 3 Nov 2005.
[6] W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith. 82 (1997) 103-118.
[7] W. Chu, Symmetric functions and the Riemann zeta series, Indian J. Pure Appl. Math. 31(12) (2000) 1677-1689.
[8] W. Chu, Hypergeometric approach to Apéry-like series, Integral Transforms Spec. Funct. 28(7) (2017) 505-518.
[9] W. Chu, Alternating series of Apéry-type series for the Riemann zeta function, Contrib. Discrete Math. 15(3) (2020) $108-116$.
[10] W. Chu, Further Apéry-like series for Riemann zeta function, Math. Notes. 109(1) (2021) 136-146.
[11] W. Chu, L. De Donno, Hypergeometric series and harmonic number identities, Adv. Appl. Math. 34(1) (2005) 123-137.
[12] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152(2) (1992) 275-290.
[13] L. J. Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33(3) (1958) 368-371.
[14] M. R. Murty, K. Sinha, Multiple Hurwitz zeta functions, Proc. Sympos. Pure Math. 75 (2006) 135-156.
[15] A. Van der Poorten, A proof that Euler missed. . . Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1978/1979) 195203.
[16] E. D. Rainville, Special Functions, New York, The Macmillan Company, 1960.
[17] T. Rivoal, Simultaneous generation of Koecher and Almkvist-Granville's Apéry-like formulae, Exper. Math. 13(4) (2004) 503508.
[18] L. P. Teo, Alternating double Euler sums, hypergeometric identities and a theorem of Zagier, . arXiv:1705.01269v1 [math.CV] 3 May 2017
[19] L. Tornheim, Harmonic double series, Amer. J. Math. 72(2) (1950) 303-314
[20] D. Zagier, Evaluation of the multiple zeta values $\zeta(2, \cdots, 2,3,2, \cdots, 2)$, Ann. Math. 175 (2012) 977-1000.

[^0]: 2020 Mathematics Subject Classification. Primary 11M06; Secondary 33C20
 Keywords. Multiple Euler sum, Integration by parts, Classical hypergeometric series.
 Received: 17 May 2022; Accepted: 18 August 2022
 Communicated by Paola Bonacini
 Email address: chu.wenchang@unisalento.it (Wenchang Chu)

