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Abstract. A graph G is fractional [a, b]-covered if for any e ∈ E(G), G possesses a fractional [a, b]-factor
including e. A graph G is fractional (a, b, k)-critical covered if G − Q is fractional [a, b]-covered for any
Q ⊆ V(G) with |Q| = k. In this paper, we verify that a graph G of order n is fractional (a, b, k)-critical covered
if n ≥ (a+b)((2r−3)a+b+r−2)+bk+2

b , δ(G) ≥ (r − 1)(a + 1) + k and

max{dG(w1), dG(w2), · · · , dG(wr)} ≥
an + bk + 2

a + b

for every independent vertex subset {w1,w2, · · · ,wr} of G. Our main result is an improvement of the previous
result [S. Zhou, Y. Xu, Z. Sun, Degree conditions for fractional (a, b, k)-critical covered graphs, Information
Processing Letters 152(2019)105838].

1. Introduction

A large number of real-world networks can be modelled by graphs. The nodes in the networks are
represented by the vertices in the graphs, and the links between the nodes are represented by the edges in
the graphs. Hence, the term network can be replaced by graph.

Consequently, we may convert the problem of network into the problem of graph theory. In data trans-
mission network, we always require the network as a whole to meet pre-setting transmission requirements,
especially when some nodes do not work properly due to failure or being under attacked for some unex-
pected reasons, the entire network is unobstructed. From the standpoint of graph theory, the transmission
problem of data packets within a certain range in the network is equivalent to the existence of fractional
[a, b]-factor in a graph. Besides, the smooth procedure transmission under the conditions that some nodes
cannot work and some links must work is equivalent to the existence of fractional (a, b, k)-critical covered
graph. The degree condition of graph is often used to measure the vulnerability and robustness of network,
which is a much important parameter in network data transmission and network design, etc.

In this paper, we only discuss the simple graph. Let G be a graph. The vertex set and edge set of G
are denoted by V(G) and E(G), respectively. For w ∈ V(G), we use dG(w) and NG(w) to denote the degree
and neighborhood of w in G, respectively. Set δ(G) = min{dG(w) : w ∈ V(G)} and NG[w] = NG(w) ∪ {w}.
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For Q ⊆ V(G), we write G[Q] for the subgraph of G induced by Q, and set G − Q = G[V(G) \ Q]. A subset
Q ⊆ V(G) is independent if G[Q] does not possess edges.

Let b ≥ a ≥ 0 be integers and h be a function with 0 ≤ h(e) ≤ 1 for each e ∈ E(G). If a ≤
∑
e∋x

h(e) ≤ b

for every x ∈ V(G), then we call G[Fh] a fractional [a, b]-factor of G with indicator function h, where
Fh = {e ∈ E(G) : h(e) > 0}. A graph G is fractional [a, b]-covered if for any e ∈ E(G), G admits a fractional
[a, b]-factor G[Fh] with h(e) = 1. A graph G is fractional (a, b, k)-critical covered if G − Q is fractional [a, b]-
covered for any Q ⊆ V(G) with |Q| = k, which is defined by Zhou, Xu and Sun [27]. If h(e) ∈ {0, 1} for any
e ∈ E(G), then G[Fh] is just an [a, b]-factor of G.

Many results on factors of graphs were derived by Matsuda [8], Li and Cai [4], Li [3], Cymer and Kano
[2], Yashima [12], Zhou, Bian and Pan [21], Zhou, Sun and Liu [24], Zhou [18–20], Zhou, Wu and Bian [25],
Zhou, Wu and Xu [26], Zhou and Liu [22], Wang and Zhang [9], Yan and Liu [11]. Many results on fractional
factors of graphs were obtained by Liu and Zhang [6, 7], Cai, Wang and Yan [1], Wang and Zhang [10],
Zhou [17], Zhou, Liu and Xu [23], Yuan and Hao [14, 15]. A fractional [a, b]-covered graph was studied by
Yuan and Hao [13], and they posed a degree condition for the existence of fractional [a, b]-covered graphs.
Zhou [16] posed a neighborhood condition for fractional (a, b, k)-critical covered graphs. Zhou, Xu and Sun
[27] improved and generalised Yuan and Hao’s previous result, and verified a degree condition for the
existence of fractional (a, b, k)-critical covered graphs which is shown in the following.

Theorem 1 ([27]). Let a, b and k be integers with k ≥ 0, a ≥ 1 and b ≥ max{2, a}, and let G be a graph of order
n with n ≥ (a+b)(a+b−1)+bk+3

b . If δ(G) ≥ a + k + 1 and

max{dG(u), dG(v)} ≥
an + bk + 2

a + b

for every pair of nonadjacent vertices u and v of G, then G is fractional (a, b, k)-critical covered.

Next, we also investigate fractional (a, b, k)-critical covered graphs, and gain a new sufficient condition
for graphs being fractional (a, b, k)-critical covered. Our main result is an improvement of Theorem 1 and it
is given in Section 2.

2. Main result and proof

In this section, we first give the main theorem of this paper.

Theorem 2. Let k, r, a and b be integers with k ≥ 0, r ≥ 2, a ≥ 1 and b ≥ max{2, a}, and let G be a graph of
order n with n ≥ (a+b)((2r−3)a+b+r−2)+bk+2

b . If δ(G) ≥ (r − 1)(a + 1) + k and

max{dG(w1), dG(w2), · · · , dG(wr)} ≥
an + bk + 2

a + b
(1)

for every independent vertex subset {w1,w2, · · · ,wr} of G, then G is fractional (a, b, k)-critical covered.

Let n be sufficiently large. Set r = 2 in Theorem 2, then we easily see that Theorem 1 is a special case of
Theorem 2. Furthermore, we easily derive the following result from Theorem 2.

Corollary 1. Let r, a and b be integers with r ≥ 2, a ≥ 1 and b ≥ max{2, a}, and let G be a graph of order n
with n ≥ (a+b)((2r−3)a+b+r−2)+2

b . If δ(G) ≥ (r − 1)(a + 1) and

max{dG(w1), dG(w2), · · · , dG(wr)} ≥
an + 2
a + b

for every independent vertex subset {w1,w2, · · · ,wr} of G, then G is fractional [a, b]-covered.

To verify Theorem 2, we need the following theorem which was derived by Li, Yan and Zhang [5].
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Theorem 3 ([5]). Let G be a graph, and let b ≥ a ≥ 0 be integers. Then G is fractional [a, b]-covered if and
only if

λG(X,Y) = b|X| + dG−X(Y) − a|Y| ≥ ε(X)

for every subset X of V(G), where Y = {w ∈ V(G) \ X, dG−X(w) ≤ a} and ε(X) is defined by

ε(X) =


2, i f X is not independent,
1, i f X is independent and there is an ed1e joinin1 X and V(G) \ (X ∪ Y), or

there is an ed1e e = uv joinin1 X and Y with dG−X(v) = a f or v ∈ Y,
0, otherwise.

Proof of Theorem 2. Let H = G −Q for Q ⊆ V(G) with |Q| = k. Note that δ(G) ≥ (r − 1)(a + 1) + k. Hence,

δ(H) = δ(G −Q) ≥ δ(G) − k ≥ (r − 1)(a + 1). (2)

To verify Theorem 2, it suffices to claim that H is fractional [a, b]-covered. Assume that H is not fractional
[a, b]-covered. Then it follows from Theorem 3 that

λH(X,Y) = b|X| + dH−X(Y) − a|Y| ≤ ε(X) − 1 (3)

for some X ⊆ V(H), where Y = {w ∈ V(H) \ X : dH−X(w) ≤ a}.
Claim 1. Y , ∅.
Proof. If Y = ∅, then

λH(X, ∅) = b|X| ≥ |X| ≥ ε(X),

which contradicts (3). Therefore, Y , ∅. □
Note that Y , ∅ by Claim 1. Thus, we may construct a sequence w1,w2, · · · ,wt of vertices of Y. Define

β1 = min{dH−X(w) : w ∈ Y}

and select w1 ∈ Y with dH−X(w1) = β1. If t ≥ 2 and Y \
( t−1⋃

i=1
NY[wi]

)
, ∅, then we define

βt = min
{
dH−X(w) : w ∈ Y \

( t−1⋃
i=1

NY[wi]
)}

and select wt ∈ Y \
( t−1⋃

i=1
NY[wi]

)
with dH−X(wt) = βt, 2 ≤ t ≤ r. Obviously, 0 ≤ β1 ≤ β2 ≤ · · · ≤ βt ≤ a holds,

and {w1,w2, · · · ,wt} ⊆ Y is independent.
Claim 2. β1 ≤ a − 1.
Proof. Assume that β1 = a. Then

λH(X,Y) = b|X| + dH−X(Y) − a|Y|
≥ b|X| + β1|Y| − a|Y| = b|X| ≥ |X| ≥ ε(X),

which contradicts (3). Hence, β1 ≤ a − 1. □
Claim 3. |Y| ≥ (r − 1)(b + 1).
Proof. Note that |X| + β1 = |X| + dH−X(w1) ≥ dH(w1) ≥ δ(H) ≥ (r − 1)(a + 1) by (2). Thus, we get

|X| ≥ (r − 1)(a + 1) − β1. (4)

Let |Y| ≤ (r − 1)(b + 1) − 1. Then it follows from (4), a − β1 ≥ 0, r ≥ 2, b ≥ max{2, a} and ε(X) ≤ 2 that

λH(X,Y) = b|X| + dH−X(Y) − a|Y| ≥ b|X| + β1|Y| − a|Y|
= b|X| − (a − β1)|Y| ≥ b((r − 1)(a + 1) − β1) − (a − β1)((r − 1)(b + 1) − 1)
= (b − a)(r − 1) + (b + 1)(r − 2)β1 + a ≥ (b − a)(r − 1) + a
≥ (b − a) + a = b ≥ 2 ≥ ε(X),
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which contradicts (3). Hence, |Y| ≥ (r − 1)(b + 1). □
Claim 4. There exists an independent subset {w1,w2, · · · ,wr} of Y.
Proof. Note that dH−X(w1) = β1 ≤ a − 1 by Claim 2. Thus, dH−X(w) ≤ a for any w ∈ Y \ {w1}. Then using
Claim 3, we can take above independent subset {w1,w2, · · · ,wr} ⊆ Y for t = r. □

From Claim 4 and the assumption of Theorem 2, we admit

an + bk + 2
a + b

≤ max{dG(w1), dG(w2), · · · , dG(wr)}

≤ max{dG−Q(w1), dG−Q(w2), · · · , dG−Q(wr)} + |Q|
= max{dH(w1), dH(w2), · · · , dH(wr)} + k
≤ max{dH−X(w1), dH−X(w2), · · · , dH−X(wr)} + |X| + k
= max{β1, β2, · · · , βr} + |X| + k
= βr + |X| + k,

namely,

|X| ≥
an − ak + 2

a + b
− βr. (5)

Claim 5. |X| < an−ak+2
a+b .

Proof. It follows from (3), ε(X) ≤ 2 and |X| + |Y| + k ≤ n that

2 > ε(X) − 1 ≥ λH(X,Y) = b|X| + dH−X(Y) − a|Y|
≥ b|X| − a|Y| ≥ b|X| − a(n − k − |X|)
= (a + b)|X| − an + ak,

which implies |X| < an−ak+2
a+b . □

By (5), Claim 5 and the integrity of βr, we admit

βr ≥ 1. (6)

We easily see that

|NY[wi]| −
∣∣∣∣NY[wi]

⋂( i−1⋃
j=1

NY[w j]
)∣∣∣∣ ≥ 1 (7)

for 2 ≤ i ≤ r − 1, and

∣∣∣∣ i⋃
j=1

NY[w j]
∣∣∣∣ ≤ i∑

j=1

|NY[w j]| ≤
i∑

j=1

(dH−X(w j) + 1) =
i∑

j=1

(β j + 1) (8)

for 1 ≤ i ≤ r.
From (3), (5), (6), (7), (8), |X| + |Y| + k ≤ n, ε(X) ≤ 2 and 0 ≤ β1 ≤ β2 ≤ βr ≤ a, we admit

1 ≥ ε(X) − 1 ≥ λH(X,Y) = b|X| + dH−X(Y) − a|Y|

≥ b|X| + β1|NY[w1]| + β2(|NY[w2]| − |NY[w2]
⋂

NY[w1]|) + · · · +

βr−1

(
|NY[wr−1]| −

∣∣∣∣NY[wr−1]
⋂( r−2⋃

i=1

NY[wi]
)∣∣∣∣) + βr(|Y| − |

r−1⋃
i=1

NY[wi]|) − a|Y|
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≥ b|X| + (β1 − βr)|NY[w1]| +
r−1∑
i=2

βi − βr

r−1∑
i=2

|NY[wi]| − (a − βr)|Y|

≥ b|X| + (β1 − βr)(β1 + 1) +
r−1∑
i=2

βi − βr

r−1∑
i=2

(βi + 1) − (a − βr)|Y|

= b|X| + β2
1 +

r−1∑
i=1

βi − βr

r−1∑
i=1

(βi + 1) − (a − βr)|Y|

≥ b|X| + β2
1 +

r−1∑
i=1

βi − βr

r−1∑
i=1

(βi + 1) − (a − βr)(n − k − |X|)

= (a + b − βr)|X| + β2
1 − (βr − 1)

r−1∑
i=1

βi − βr(r − 1) − (a − βr)(n − k)

≥ (a + b − βr)
(an − ak + 2

a + b
− βr

)
+ β2

1 − (r − 1)(βr − 1)βr

−(r − 1)βr − (a − βr)(n − k)

≥ (a + b − βr)
(an − ak + 2

a + b
− βr

)
− (r − 1)(βr − 1)βr

−(r − 1)βr − (a − βr)(n − k)

≥ (a + b − βr)
(an − ak + 2

a + b
− βr

)
− (r − 1)β2

r − (a − βr)(n − k),

namely,

(a + b − βr)
(an − ak + 2

a + b
− βr

)
− (r − 1)β2

r − (a − βr)(n − k) − 1 ≤ 0. (9)

Let φ(βr) = (a + b − βr)
(

an−ak+2
a+b − βr

)
− (r − 1)β2

r − (a − βr)(n − k) − 1. Using r ≥ 2, 1 ≤ βr ≤ a and

n ≥ (a+b)((2r−3)a+b+r−2)+bk+2
b , we admit

φ′(βr) = −
an − ak + 2

a + b
+ βr − a − b + βr − 2(r − 1)βr + n − k

=
bn − bk − 2

a + b
− 2(r − 2)βr − a − b

≥
bn − bk − 2

a + b
− 2(r − 2)a − a − b

=
bn − bk − 2

a + b
− (2r − 3)a − b

≥ (2r − 3)a + b + r − 2 − (2r − 3)a − b
= r − 2 ≥ 0,

which implies thatφ(βr) attains its minimum value atβr = 1 by (6). From (9), r ≥ 2 and n ≥ (a+b)((2r−3)a+b+r−2)+bk+2
b ,

we get

0 ≥ φ(βr) ≥ φ(1) = (a + b − 1)
(an − ak + 2

a + b
− 1
)
− (r − 1) − (a − 1)(n − k) − 1

=
bn − bk − 2

a + b
− a − b − r + 3

≥ (2r − 3)a + b + r − 2 − a − b − r + 3
= 2(r − 2)a + 1 ≥ 1,

which is a contradiction. Theorem 2 is verified. □



X. Lv / Filomat 37:10 (2023), 3315–3320 3320

3. Remark

The condition (1) in Theorem 2 is best possible. It cannot be replaced by

max{dG(w1), dG(w2), · · · , dG(wr)} ≥
an + bk + 2

a + b
− 1,

which is claimed by constructing a graph G = Kamr+k ∨ (bmr + 1)K1, where m is a sufficiently large positive
integer, and k ≥ 0, r ≥ 2, a ≥ 2 and b ≥ max{3, a} are integers. Then n = |V(Kamr+k)| + |V((bmr + 1)K1)| =
(a + b)mr + k + 1 and

an + bk + 2
a + b

> max{dG(w1), dG(w2), · · · , dG(wr)} = amr + k >
an + bk + 2

a + b
− 1

for any {w1,w2, · · · ,wr} ⊆ V((bmr + 1)K1). Set H = Kamr ∨ (bmr + 1)K1. We easily see that H is not fractional
[a, b]-covered since b|V(Kamr)| < a|V((bmr + 1)K1)| holds. Note H = G −Q, where Q ⊆ V(Kamr+k) with |Q| = k.
Hence, G is not fractional (a, b, k)-critical covered.
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